Дать определение понятию система электросвязи. Закономерности развития электросвязи. Общие требования к сетям электросвязи

  • 7. Градиент электрического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
  • 8.Диполь в электрическом поле. Поле диполя. Момент сил, действующих на диполь. Энергия диполя в роле.
  • 9.Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
  • 10. Классическая теория электропроводности металлов. Пределы её применимости.
  • 11.Электрический ток в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
  • 12. Электрический ток в жидкостях. Законы электролиза Фарадея.
  • 13. Электроёмкость уединённого проводника. Ёмкость проводника, имеющёго форму шара радиусом r. Единица ёмкости
  • 14. Параллельное и последовательное соединение конденсаторов. Ёмкость плоского, цилиндрического и сферического конденсаторов.
  • 15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
  • 16)Диэлектрическая восприимчивость. Свободные и связные заряды.
  • Зависимость от времени
  • 17)Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференциальная форма теоремы.
  • 18) Связь между векторами d и e. Диэлектрическая проницаемость.
  • 19) Граничные условия для векторов e и d. Преломление линий e и d. Поле в однородном диэлектрике.
  • 20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
  • 21) Энергия уединенного проводника. Энергия конденсатора.
  • 22) Плотность энергии электрического поля (на примере плоского конденсатора)
  • 23) Постоянный ток. Единица измерения. Плотность тока. Уравнение непрерывности
  • 24)Диффиринциальная форма ур-я непрывности. Условие стационарности.
  • 25) Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
  • 26) Закон Ома для замкнутой цепи, участка цепи, содержащего эдс.
  • 27) Дифференциальная форма закона Ома.
  • 28) Разветвленные цепи. Правила Кирхгофа
  • 29) Закон Джоуля-Ленца. Дифференциальная форма закона Джоуля-Ленца
  • 30. Магнитное поле. Сила Лоренца. Сила Ампера.
  • 32.Магнитное поле прямолинейного тока,кругового тока.Сила взаимодействия прямолинейных токов.
  • 2. Магнитное поле в центре кругового проводника с током.
  • 33.Дивергенция, циркуляция, ротор и поток магнитной индукции.
  • 34.Графическое представление поля в. Теорема Гаусса для поля в.
  • 35.Закон полного тока. Потенциальные и соленоидные векторные поля
  • 36.Магнитное поле прямого тока, бесконечного соленоида, тороида.
  • 37.Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля b.
  • 38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
  • 39. Работа по перемещению проводника и контура с током в магнитном поле.
  • 40.Движение заряженных частиц в электрическом и магнитном поле.Эффект Холла.
  • 41. Магнитные свойства вещества. Пара-, диа-, ферро-, ферри- и антиферромагнетики.
  • 42. Опыт Эйнштейна – де Гааза. Опыт Барнета. Магнетомеханическое отношение спин электрона.
  • 43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряжённость магнитного поля.
  • 44. Закон электромагнитной индукции Фарадея. Правило Ленца.
  • 45. Природа электромагнитной индукции. Вихревое электрическое поле.
  • 46. Способы измерения индукции магнитного потока. Единица измерения магнитного потока.
  • 48. Взаимная индукция. Теорема взаимности.
  • 49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
  • 50. Энергия магнитного поля. Изолированный контур с током.
  • 51. Магнитная энергия тока. Плотность энергии магниного поля. Энергия соленоида.
  • 52. Переменный ток. Конденсатор, индуктивность и сопротивление в цепи переменного тока.
  • 54. Колебательный контур. Свободные и затухающие колебания.
  • 55. Вынужденные колебания. Резонанс.
  • 56. Уравнение Максвелла. Интегральная и дифференциальная форма уравнений. Вектор Пойнтинга. Физический смысл уравнений Максвелла.
  • 57. Ток смещения. Закон сохранения энергии для электромагнитного поля.
  • 58. Электормагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
  • 59. Проводимость полупроводников. Элементы зонной теории кристаллов.
  • 60. Собственные и примесные полупроводники. Дрейфовый и диффузные токи. P-n переходы.
  • 7. Градиент электрического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.

    Градиент (потенциала) – вектор, показывающий направление наибольшего роста скалярной функции :

    , (9)

    где , – координатные орты.

    Величина этого вектора равна изменению потенциала при перемещении на единицу длины в направлении быстрейшего изменения.

    Длина градиента (потенциала) равна

    . (10)

    Из механики известно, что консервативная сила равна градиенту потенциальной энергии частицы, взятому с обратным знаком, т.е.


    , (11)

    где
    – символический вектор, называемый оператором Гамильтона или оператором набла .

    Для электростатического поля имеем:

    Тогда соотношение (11) принимает вид


    ,

    или

    , (12)

    т.е. напряженность электрического поля равна градиенту потенциала с обратным знаком.

    Знак минус в (12) показывает, что вектор направлен противоположно вектору градиента потенциала , и силовые линии электрического поля являются линиями, вдоль которых потенциал изменяется наиболее быстро.

    Очевидно, что проекция вектора на произвольное направление l равна со знаком минус частной производной потенциала по данному направлению:

    . (13)

    В случае однородного электрического поля (поля плоского конденсатора), в любой точке которого вектор напряженности постоянен как по величине, так и по направлению, имеем простое соотношение:

    , (14)

    где
    – разность потенциалов или напряжение между пластинами конденсатора (или между двумя эквипотенциальными поверхностями);

    – расстояние между пластинами конденсатора (или между двумя эквипотенциальными поверхностями).

    Поверхность, все точки которой имеют одинаковый потенциал, называется поверхностью равного потенциала или эквипотенциальной поверхностью , для которой

    . (15)

    Перенос заряда вдоль эквипотенциальной поверхности не требует работы (разность потенциалов двух любых точек этой поверхности равна нулю). Это означает, что сила, действующая на переносимый заряд, перпендикулярна к перемещению.

    Следовательно, вектор всегда направлен по нормали к эквипотенциальной поверхности, т.е. линии напряженности в каждой точке ортогональны к эквипотенциальной поверхности.

    Итак, можно сделать важный вывод о том, что электрическое поле полностью можно описать векторной величиной – напряженностью . Но во многих случаях оказывается, что для вычисления напряженности электрического поля удобнее сначала определить потенциал φ и затем по формуле


    вычислить напряженность
    .

    Силовые линии - направленные линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности электрического поля. Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии .

    Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определитьмежду двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто:

    Графическое изображение силовых линий и эквипотенциальных поверхностей показано на рисунке 3.4.

    При перемещении по этой поверхности на dl потенциал не изменится:

    Отсюда следует, что проекция вектора на dl равнанулю, то есть Следовательно, в каждой точке направлена по нормали к эквипотенциальной поверхности.

    Эквипотенциальных поверхностей можно провести сколько угодно много. По густоте эквипотенциальных поверхностей можно судить о величине , это будет при условии, что разность потенциалов между двумя соседними эквипотенциальными поверхностями равна постоянной величине

    В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на . В воздухе имеется вертикальное электрическое поле величиной . Знак поля отвечает отрицательному заряду земной поверхности. Это означает, что на улице потенциал на уровне вашего носа на выше, чем потенциал на уровне пяток! Можно, конечно, спросить: «Почему бы не поставить пару электродов на воздухе в метре друг от друга и не использовать эти для электрического освещения?» А можно и удивиться: «Если действительно между моим носом и моей пяткой имеется напряжение , то почему же меня не ударяет током, как только я выхожу на улицу?»

    Сперва ответим на второй вопрос. Ваше тело - довольно хороший проводник. Когда вы стоите на земле, вы вместе с нею образуете эквипотенциальную поверхность. Обычно эквипотенциальные поверхности параллельны земле (фиг. 9.1, а), но когда на земле оказываетесь вы, то они смещаются, и поле начинает выглядеть примерно так, как показано на фиг. 9.1, б. Так что разность потенциалов между вашей макушкой и пятками почти равна нулю. С земли на вашу голову переходят заряды и изменяют поле вокруг вас. Часть из них разряжается ионами воздуха, но ионный ток очень мал, ведь воздух плохой проводник.

    Фигура 9.1. Распределение потенциала: а - над землей; б - около человека, стоящего на ровном месте.

    Как же измерить такое поле, раз оно искажается от всего, что в него попадает? Имеется несколько способов. Один способ - расположить изолированный проводник на какой-то высоте над землей и не трогать его до тех пор, пока он не приобретет потенциал воздуха. Если подождать довольно долго, то даже при очень малой проводимости воздуха заряды стекут с проводника (или натекут на него), уравняв его потенциал с потенциалом воздуха на этом уровне. Тогда мы можем опустить его к земле и измерить изменение его потенциала. Другой более быстрый способ - в качестве проводника взять ведерко воды, в котором имеется небольшая течь. Вытекая, вода уносит излишек заряда, и ведерко быстро приобретает потенциал воздуха. (Заряды, как вы знаете, растекаются по поверхности, а капли воды - это уходящие «куски поверхности».) Потенциал ведра можно измерить электрометром.

    Имеется еще способ прямого измерения градиента потенциала. Раз существует электрическое поле, то должен быть и поверхностный заряд на земле (). Если мы поместим у поверхности земли плоскую металлическую пластинку и заземлим ее, то на ней появятся отрицательные заряды (фиг. 9.2, а). Если затем прикрыть пластинку другой заземленной проводящей крышкой , то заряды появятся уже на крышке , а на пластинке исчезнут. Если мы измерим заряд, перетекающий с пластинки на землю (скажем, с помощью гальванометра в цепи заземляющего провода) в тот момент, когда закрывают крышкой, то мы найдем плотность поверхностного заряда, бывшего на , а значит, и электрическое поле.

    Рассмотрев способы измерения электрического поля в атмосфере, продолжим теперь его описание. Измерения прежде всего показывают, что с увеличением высоты поле продолжает существовать, только становится слабее. На высоте примерно поле уже еле-еле заметно, так что большая часть изменения потенциала (интеграла от ) приходится на малые высоты. Вся разность потенциалов между поверхностью земли и верхом атмосферы равна почти .

    Фигура. 9.2. Заземленная металлическая пластинка обладает тем же поверхностным зарядом, что и земля (а); если пластинка прикрыта сверху заземленным проводником, на ней заряда нет (б).

    Понятие и виды электросвязь

    1. Современные виды электросвязи

    Все виды электросвязи можно условно разделить на четыре группы передачи:

    · звуковых сообщений

    · неподвижных оптических сообщений;

    · подвижных оптических изображений;

    · сообщений между ЭВМ.

    · передачи сообщений, только при развитии IP - телефонии.

    Телеграфная связь и передача данных служат для передачи дискретных сообщений в виде текстов (телеграмм) и цифровых данных соответственно. Причем передача данных обеспечивает более скоростную и качественную передачу сообщений.

    Факсимильная связь и ее разновидность (передача газетных полос) обеспечивают передачу оптических сообщений в виде неподвижных изображений (в том числе и цветных).

    Телефонная связь и системы звукового вещания предназначены для передачи звуковых сообщений. Телефонная связь обеспечивает ведение переговоров между людьми (абонентами), а звуковое вещание -- одностороннюю и высококачественную передачу звуковых сообщений (радиопрограмм), предназначенных одновременно для многих слушателей.

    Телевизионное вещание и видеотелефонная связь обеспечивают одновременную передачу оптических и звуковых сообщений. При этом телевидение обеспечивает одностороннюю передачу массовых сообщений, а видеотелефонная связь -- двустороннюю передачу индивидуальных сообщений, позволяя вести переговоры, при которых собеседники видят друг друга. Этот вид электросвязи получил широкое распространение, из-за относительно высокой стоимости Каждый вид электросвязи реализуется с помощью определенной системы, обеспечивающей передачу на расстояние конкретных сообщений. Поэтому в электросвязи существуют системы: телефонной, телеграфной, факсимильной, видеотелефонной связи, передачи газет, передачи данных, а также звукового и телевизионного вещания. Состав и схемы этих систем определяются характером и видом передаваемых сообщений.

    Телефонные, телеграфные, видеотелефонные системы и системы передачи данных обеспечивают одновременную двухстороннюю передачу сообщений между абонентами, то есть позволяют вести переговоры. Для этого каждый абонент должен иметь как передатчик, так и приемник, связанные между собой двумя каналами связи, один из которых обеспечивает передачу сигналов в одном направлении, а другой в другом (обратном) направлении.

    Системы звукового и телевизионного вещания, а также передачи газет обеспечивают одностороннюю передачу сообщений, предназначенных одновременно для большого числа абонентов. Каждый слушатель или группа слушателей, находящиеся у одного приемника, пользуется "своей" системой связи, состоящей из передатчика, канала связи и приемника. При этом передатчик является общим элементом одновременно для многих систем. Общее число систем соответствует числу приемников.

    История развития пожарной автоматики

    На смену морально и технически устаревшим пожарным извещателям АТИМ, АТП, ДТЛ, ДИ-1, КИ-1, РИД-1, ИДФ-1, ИДФ-1М, ПОСТ-1 и приемно-контрольного оборудования СКПУ-1, СДПУ-1, ППКУ-1М, ТОЛЮ/100...

    Многоканальная система передачи информации

    Необходимо отметить, что для рассматриваемой СПДИ выполняются необходимые условия функционирования многоканальной системы электросвязи, а именно и. Целесообразно запас рассматриваемого канала связи по пропускной способности Ск>Iс =1...

    Модернизация телефонной сети в сельской местности Республики Казахстан

    Модернизируемая сельская сеть предполагает: использование цифровых АТС большей, чем в настоящее время, емкости в сочетании с необслуживаемыми абонентскими выносами. Современные сети строятся с использованием удаленных концентраторов...

    Основы инфокоммуникационных технологий

    Электросвязь -- передача информации с помощью электрических сигналов по проводам, волоконно-оптическому кабелю или радиоволн. Принцип электросвязи основан на преобразовании сигналов сообщения (звук...

    Понятие и виды электросвязь

    Системы для передачи непрерывных сообщений. Системы телефонной связи предназначены для передачи на расстояние звуковых (акустических) сообщений, создаваемых голосовыми связками и воспринимаемых органом слуха (ухом) человека...

    Понятие и виды электросвязь

    Витая пара является самой дешёвой и распространённой средой передачи данных. Она состоит из двух изолированных медных проводов, свитых друг с другом. Витая пара широко используется внутри зданий для объединения компьютеров в локальные сети...

    Понятие и виды электросвязь

    Классификация решений профессиональной мобильной радиосвязи (ПМР) определяется различием потребностей заказчиков, а также их отраслевой спецификой. Как и вся коммуникационная инфраструктура предприятия...

    Разработка компонентов инфраструктуры сервисного обслуживания встроенной памяти гибкой автоматизированной системы на кристалле

    В настоящее время значительная часть подобных конфигурируемых проектов разрабатывается в виде печатной платы как комбинация микросхем программируемой и жесткой логики, аналоговых блоков, микроконтроллеров...

    Расчет экономической эффективности внедрения новых служб

    Современные лазерные гироскопы

    Современный лазерный гироскоп представляет собой сложную оптико-электронную систему, основным элементом которой является КОКГ. Конструкция лазерного гироскопа выполняется в виде монолитного блока из высококачественного кварца или ситалла...

    Стандартизация оборудования в области радиосвязи

    Организацией, обеспечивающей стандартизацию оборудования связи в глобальном масштабе при ООН, является Международный союз электросвязи (МСЭ)...

    Эксплуатация трассовых радиолокаторов и радиолокационных комплексов

    сигналами, распространяющимися по проводам, или радиосигналами. В соответствии со способами передачи (переноса) сигналов различают проводную связь и радиосвязь ; в различных системах Электросвязь первую часто используют в сочетании с разновидностями второй (например, с радиорелейной связью , спутниковой связью). По классификации, принятой Международным союзом электросвязи, к Электросвязь относят, кроме того, передачу информации при помощи оптических (см. Оптическая связь ) или других электромагнитных систем связи. По характеру передаваемых сообщений Электросвязь подразделяется на следующие основные виды: телефонная связь , обеспечивающая ведение телефонных переговоров между людьми; телеграфная связь , предназначенная для передачи буквенно-цифровых сообщений - телеграмм; факсимильная связь , при которой передаётся графическая информация - неподвижные изображения текста или таблиц, чертежей, схем, графиков, фотографий и т. п.; передача данных (телекодовая связь), целью которой является передача информации, представленной в формализованном виде (знаками или непрерывными функциями), для обработки этой информации ЭВМ или уже обработанной ими; видеотелефонная связь (см. Видеотелефон ), служащая для одновременной передачи речевой и зрительной информации. При помощи технических средств Электросвязь осуществляются также проводное вещание , радиовещание (звуковое вещание) и телевизионное вещание (см. Телевидение ).

    Для установления Электросвязь между отправителем (источником сообщений) и получателем (приёмником сообщений) служат: оконечные аппараты - передающий и приёмный; канал связи , образуемый с помощью одной или нескольких включенных последовательно систем передачи; кроме того, вследствие наличия большого количества оконечных передающих и приёмных аппаратов и необходимости их всевозможных попарных соединений для организации непрерывного (сквозного) канала между ними, используется система коммутационных устройств, состоящая из одной или нескольких коммутационных станций и узлов.

    Оконечные аппараты. Оконечный передающий аппарат служит для преобразования сигнала исходной формы (звуков речи; знаков текста телеграмм; знаков, записанных в закодированном виде на перфоленте или каком-либо другом носителе информации ; изображений объектов и т. д.) в электрический сигнал. В телефонной связи и радиовещании для электроакустических преобразований применяют микрофон . В телеграфной связи кодовые комбинации знаков текста телеграмм преобразуют в серии электрических импульсов; такое преобразование осуществляется либо непосредственно (при использовании стартстопного телеграфного аппарата ), либо с предварительной записью знаков на перфоленту (при использовании трансмиттера ). В факсимильной связи преобразование светового потока переменной яркости, отражённого от оригинала, в электрические импульсы производится факсимильным аппаратом . Информацию о распределении светотеней какого-либо объекта телевизионной передачи преобразуют в видеосигнал при помощи телевизионной передающей камеры (телекамеры).

    Оконечный приёмный аппарат служит для приведения принимаемых электрических сигналов к форме, удобной для их восприятия приёмником сообщений. При Электросвязь многих видов оконечные аппараты содержат как передающие, так и приёмные устройства. В первую очередь это относится к такой Электросвязь , которая обеспечивает двухсторонний (обычно дуплексный; см. Дуплексная связь ) обмен сообщениями. Так, телефонный аппарат , как правило, содержит микрофон и телефон , объединённые в одном конструктивном узле - микротелефонной трубке. В радиовещании и телевизионном вещании передающие и приёмные оконечные аппараты разделены, причём сигналы от одного передающего устройства принимаются сразу многими оконечными аппаратами - радиоприёмниками и телевизорами .

    Канал связи; многоканальные системы передачи . Канал связи (канал электросвязи) - технические устройства и физическая среда, в которых электрические сигналы распространяются от передатчика к приёмнику. Технические устройства (модуляторы , демодуляторы, усилители электрических колебаний , кодирующие устройства , дешифраторы и т. д.) размещают в оконечных и промежуточных пунктах линий связи (кабельных, радиорелейных и т. д.). Система передачи информации - каналообразующая аппаратура и другие устройства, обеспечивающие в совокупности образование множества каналов связи в одной линии связи (см. также Линии связи уплотнение ).

    Используемые в Электросвязь каналы связи подразделяются на аналоговые и дискретные. Аналоговые каналы служат для передачи непрерывных электрических сигналов (примеры таких сигналов: напряжения и токи, получающиеся при электроакустических преобразованиях звуков речи, музыки, при развёртке изображений). Возможность передачи через данный канал связи непрерывных сигналов от того или иного источника обусловлена прежде всего такими характеристиками канала, как полоса пропускания частот и допустимая максимальная мощность передаваемых сигналов. Кроме того, поскольку любой канал подвержен различного рода помехам (см. Помехи в проводной связи, Помехи радиоприёму , Помехоустойчивость ), то он характеризуется также минимальной мощностью электрического сигнала, которая должна в заданное число раз превышать мощность помех. Отношение максимальной мощности сигналов, пропускаемых каналом, к минимальной называется динамическим диапазоном канала связи.

    Дискретные каналы служат для передачи импульсных сигналов. Такие каналы обычно характеризуются скоростью передачи информации (измеряемой в бит/сек ) и верностью передачи. Дискретные каналы могут быть также использованы для передачи аналоговых сигналов и, наоборот, аналоговые каналы - для передачи импульсных сигналов. Для этого сигналы преобразуются; аналоговые в импульсные с помощью аналого-дискретных (цифровых) преобразователей, а импульсные в аналоговые с помощью дискретно (цифро)-аналоговых преобразователей. На рис. 1 показаны возможные способы сочетания источников аналоговых и дискретных сигналов с аналоговыми и дискретными каналами связи.

    Используемые в Электросвязь системы передачи обычно обеспечивают одновременную и независимую передачу сообщений от многих источников к такому же числу приёмников. В таких системах многоканальной связи общая линия связи уплотняется несколькими десятками - несколькими тысячами индивидуальных каналов. Наибольшее распространение (1978) получили многоканальные системы с частотным разделением аналоговых каналов. При построении таких систем передачи каждому каналу связи отводится определённый участок области частот в полосе пропускания линейного тракта передачи, общего для всех передаваемых сообщений. Для переноса спектра сигнала в участок, отведённый ему в полосе частот группового тракта (частотного преобразования сигнала), используют амплитудную или частотную модуляцию (см. также Модуляция колебаний ) групп «несущих» синусоидальных токов. При амплитудной модуляции (АМ) в соответствии с передаваемым сообщением изменяется амплитуда гармонических колебаний тока несущей частоты . В результате на выходе модулирующего устройства (модулятора) создаются колебания, в спектре которых кроме составляющей несущей частоты (несущей) имеются две боковые полосы. Поскольку каждая из боковых полос содержит полную информацию об исходном (модулирующем) сигнале, то в линию связи пропускают только одну из них, а другую и несущую подавляют с помощью полосно-пропускающих электрических фильтров или иных устройств (см. Однополосная модуляция , Однополосная связь ). При частотной модуляции (ЧМ) в соответствии с передаваемым сообщением изменяется несущая частота. Системы с ЧМ обладают большей по сравнению с системами с АМ помехоустойчивостью, однако это преимущество реализуется лишь при достаточно большой девиации частоты , для чего необходима широкая полоса частот. Поэтому, например, в радиосистемах ЧМ применяют главным образом в диапазоне метровых (и более коротких) волн, где на каждый индивидуальный канал приходится полоса частот, в 10-15 раз большая, чем в системах с АМ, работающих на более длинных волнах. В радиорелейных линиях нередко используют сочетание АМ с ЧМ; с помощью АМ создаётся некоторый промежуточный спектр, который затем переводится в линейный диапазон частот с помощью ЧМ.

    Для передачи сообщений различного вида требуются каналы с определённой шириной полосы пропускания. Характерная особенность современной системы передачи - возможность организации в одной и той же системе каналов, применяемых для различных видов Электросвязь При этом в качестве стандартного канала используется телефонный канал, называемый каналом тональной частоты (ТЧ). Он занимает полосу частот 300-3400 гц. Для упрощения фильтрующих устройств, разделяющих соседние каналы, каналы ТЧ отделяются друг от друга защитными частотными интервалами и занимают (с учётом этих интервалов) полосу 4 кгц. Кроме передачи сигналов речи, каналы ТЧ используются также в факсимильной связи, низкоскоростной передаче данных (от 600 до 9600 бит/сек ) и некоторых других видах Электросвязь Учитывая большой удельный вес каналов ТЧ в сетях Электросвязь , их принимают за основу при создании как широкополосных (> 4 кгц ), так и узкополосных (< 4 кгц ) каналов. Например, в радиовещании применяется канал с полосой, втрое (иногда вчетверо) превышающей полосу канала ТЧ; для высокоскоростной передачи данных между ЭВМ, передачи изображений газетных полос и др. употребляются каналы, в 12, 60 и даже 300 раз более широкие; сигналы программ телевизионного вещания передаются через каналы с полосой, в 1600 раз превышающей полосу канала ТЧ (что составляет примерно 6 Мгц ). На базе канала ТЧ (посредством его т. н. вторичного уплотнения) создаются каналы для телеграфирования с полосами пропускания 80, 160 или 320 гц, со скоростями передачи (соответственно) 50, 100 или 200 бит/сек . Линии радиорелейной связи позволяют создать 300, 720, 1920 каналов ТЧ (в каждой паре высокочастотных стволов); линии связи через ИСЗ - от 400 до 1000 и более (в каждой паре стволов). Проводные линии связи, используемые в системах передачи с частотным разделением каналов, характеризуются следующим числом каналов ТЧ: симметричные кабели 60 (в расчёте на две пары проводов); коаксиальные кабели - 1920, 3600 или 10 800 (на каждую пару коаксиальных трубок). Возможно создание систем с ещё большим числом каналов.

    С целью увеличения дальности связи посредством уменьшения влияния шумов (накапливаемых по мере прохождения сигнала в линии) в проводных системах передачи с частотным разделением каналов используют усилители, общие для всех сигналов, передаваемых в каждом линейном тракте, и включаемые на определённом расстоянии друг от друга. Расстояние между усилителями зависит от числа каналов: для мощных проводных систем (10 800 каналов) оно составляет 1,5 км, для маломощных (60 каналов) - 18 км. В системах радиорелейной связи сооружают ретрансляционные станции в среднем на расстоянии 50 км одна от другой.

    Наряду с системами передачи с частотным разделением каналов с 70-х гг. 20 в. началось внедрение систем, в которых каналы разделяются во времени на основе методов импульсно-кодовой модуляции (ИКМ), дельта-модуляции и др. При ИКМ каждый из передаваемых аналоговых сигналов преобразуется в последовательность импульсов, образующих определённые кодовые группы (см. Код , Кодирование ). Для этого в сигнале через заданные промежутки времени (равные половине периода, соответствующего максимальной частоте изменения сигнала) вырезаются узкие импульсы (рис. 2 , а). Число, характеризующее высоту каждого вырезанного импульса, передаётся 8-значным кодом за время, не превышающее протяжённость (ширину) импульса (рис. 2 , б). В промежутках времени между передачей кодовых групп данного сообщения линия свободна и может быть использована для передачи кодовых групп других сообщений. На приёмном конце линии производится обратное преобразование кодовых комбинаций в последовательность импульсов различной высоты (рис. 2 , в), из которых с определённой степенью точности может быть восстановлен исходный аналоговый сигнал (рис. 2 , г). При дельта-модуляции аналоговый сигнал сначала преобразуется в ступенчатую функцию (рис. 3 , а), причём кол-во ступенек на период, соответствующий максимальной частоте изменения сигнала, в различных системах составляет 8-16. Передаваемая в линию последовательность импульсов отображает ход ступенчатой функции в изменении знака производной сигнала: возрастающие участки аналоговой функции (характеризующиеся положительной производной) отображаются положительными импульсами, спадающие участки (с отрицательной производной) - отрицательными (рис. 3 , б). В промежутках между этими импульсами располагаются импульсы, образованные от других сигналов. При приёме импульсы каждого сигнала выделяются и интегрируются, в результате с заданной степенью точности восстанавливается исходный аналоговый сигнал (рис. 3 , в).

    Каналы ИКМ и дельта-модуляции (без оконечных аналого-цифровых преобразующих устройств) - дискретные и часто используются непосредственно для передачи дискретных сигналов. Основным достоинством систем с временным разделением каналов является отсутствие накопления шумов в линии; искажение формы сигналов при их прохождении устраняется с помощью регенераторов, устанавливаемых на определённом расстоянии друг от друга (аналогично усилителям в системах с частотным разделением). Однако в системах с временным разделением существует шум «квантования», возникающий при преобразовании аналогового сигнала в последовательность кодовых чисел, характеризующих этот сигнал лишь с точностью до единицы. Шум «квантования», в отличие от обычного шума, не накапливается по мере прохождения сигнала в линии.

    К сер. 70-х гг. разработаны системы с ИКМ на 30, 120 и 480 каналов; находятся в стадии разработки системы на несколько тыс. каналов. Развитие систем передачи с разделением каналов во времени стимулируется тем, что в них широко используют элементы и узлы ЭВМ, и это в конечном счёте приводит к удешевлению таких систем как в проводной связи, так и радиосвязи. Весьма перспективны импульсные системы передачи на основе находящихся в стадии разработки волноводных и световодных линий связи (число каналов ТЧ может достигать 10 5 в волноводной трубе диаметром примерно 60 мм или в паре стеклянных световодных нитей диаметром 30-70 мкм ).

    Системы коммутационных устройств. Применяемые в Электросвязь системы коммутационных устройств бывают двух типов: узлы и станции коммутации каналов (КК), позволяющие при конечном числе каналов создавать временное прямое соединение через канал связи любого источника с любым приёмником (после окончания переговоров соединение разрывается, а освободившийся канал используется для организации другого соединения); узлы и станции коммутации сообщений (КС), используемые в Электросвязь тех видов, в которых допустима задержка (накопление) передаваемых сообщений во времени. Задержка бывает необходима при невозможности их немедленной передачи вызываемому абоненту из-за отсутствия в данный момент свободного канала либо занятости вызываемой абонентской установки. Узлы и станции КК, применяемые в Электросвязь наиболее массовых видов - телефонной и телеграфной, - представляют собой телефонные станции или телеграфные станции , а также телефонные или телеграфные узлы связи , размещаемые в определённых пунктах телефонной сети или телеграфной сети . Станции и узлы КК различаются в зависимости от выполняемых ими функций и их расположения в сети. Например, в телефонной сети существуют такие автоматические телефонные станции (АТС), как сельские, городские, междугородные, а также различные коммутационные узлы: узлы автоматической коммутации, узлы входящих и исходящих сообщений и другие. Характерной особенностью узлов является то, что они связывают между собой различные АТС. Любая современная станция или узел КК содержит комплекс управляющих устройств, построенных на базе электромеханических или электронных приборов, и коммутационных устройств, которые под воздействием сигналов управления осуществляют соединение или разъединение соответствующих каналов (рис. 4 ). В наиболее распространённых (1978) системах КК устройства управления строятся на основе электромеханического реле , а коммутационные устройства - на основе многократных координатных соединителей . Такие станции и узлы называются координатными.

    Системы КС используются преимущественно в телеграфной связи и при передаче данных. Дополнительно к управляющим и коммутирующим устройствам в системах КС имеются устройства для накопления передаваемых сигналов. В процессе прохождения сигналов от передатчика к приемнику в системах КС осуществляются такие технологические операции с накапливаемыми сообщениями, как изменение порядка их следования к абонентам (с учётом возможных приоритетов, т. е. преимущественного права на передачу), приём сообщений по каналу одного типа (характеризующемуся одной скоростью передачи), а передача - по каналу другого типа (с др. скоростью) и ряд дополнительных операций в соответствии с заданным алгоритмом работы. В некоторых случаях могут создаваться комбинированные узлы КС и КК, позволяющие обеспечить наиболее благоприятные режимы передачи сообщений и использования сетей Электросвязь

    Для развития современных коммутационных станций и узлов характерны тенденции использования в коммутационных устройствах быстродействующих миниатюрных герметизированных контактов (например, герконов ) для реализации соединений, а для управления процессами соединений - специализированных ЭВМ. Коммутационные станции и узлы такого типа получили название квазиэлектронных. Введение ЭВМ позволяет предоставлять абонентам дополнительные услуги: возможность применения сокращённого (с меньшим кол-вом знаков) набора номеров наиболее часто вызываемых абонентов; установку аппаратов на «ожидание», если номер вызываемого абонента занят; переключение соединения с одного аппарата на другой и т. д. С внедрением систем передачи с временным разделением каналов намечается возможность перехода к чисто электронным (без механических контактов) станциям и узлам коммутации. В таких системах коммутируются непосредственно дискретные каналы (без преобразования дискретных сигналов в аналоговые). В результате происходит объединение (интеграция) процессов передачи и коммутации, что служит предпосылкой к созиданию интегральной сети связи, в которой сообщения всех видов передаются и коммутируются едиными методами. В СССР Электросвязь развивается в рамках разработанной и планомерно внедряемой Единой автоматизированной сети связи (ЕЛСС). ЕАСС представляет собой комплекс технических средств связи, взаимодействующих посредством использования общей - «первичной» - сети каналов, на основе которой с помощью коммутационных станций и узлов и оконечных аппаратов создаются различные «вторичные» сети, обеспечивающие организацию Электросвязь всех видов.

    Лит.: Чистяков Н. И., Хлытчиев С. М., Малочинский О. М., Радиосвязь и вещание, 2 изд., М., 1968; Многоканальная связь, под ред. И. А. Аболица, М., 1971; Автоматическая коммутация и телефония, под ред. Г. Б. Метельского, ч. 1-2, М., 1968-69; Емельянов Г. А., Шварцман В. О., Передача дискретной информации и основы телеграфии, М., 1973; Румпф К. Г., Барабаны, телефон, транзисторы, пер. с нем., М., 1974; Лившиц Б. С., Мамонтова Н. П., Развитие систем автоматической коммутации каналов, М., 1976: Давыдов Г. Б., Рогинекий В. Н., Толчан А. Я., Сети электросвязи, М., 1977; Давыдов Г. Б., Электросвязь и научно-технический прогресс, М., 1978.

    1 , 2 , ...Nn - каналы или абонентские линии; СК- станционные комплекты для обеспечения функционирования оконечных аппаратов (питание микрофонов, посылка адресной информации и др.): ШК - шнуровые комплекты." src="a_pictures/18/10/th_262622794.jpg">
    Рис. 4. Структурная схема коммутационной станции (узла): ЛК - линейные комплекты для сопряжения каналов и устройств управления; M1, М2, ...Мn, 1 , 2 , ...Nn - каналы или абонентские линии; СК- станционные комплекты для обеспечения функционирования оконечных аппаратов (питание микрофонов, посылка адресной информации и др.): ШК - шнуровые комплекты.

    Статья про слово "Электросвязь " в Большой Советской Энциклопедии была прочитана 8763 раз



    
    Top