Модели каналов передачи информации. Модели дискретных каналов связи михаил владимирович марков


Владельцы патента RU 2254675:

Изобретение относится к области техники связи и может быть использован для моделирования дискретного канала связи с независимыми и группирующимися ошибками. Сущность изобретения состоит в том, что определяют множество состояний канала связи s 0 , s 1 ,..., s m-1 и вычисляют условные вероятности P(e/s) возникновения ошибки в каждом состоянии s>>i=0,..., m-1 канала связи и в соответствии с условной вероятностью ошибки для текущего состояния канала связи получают ошибки в канале связи, при этом определяют вероятность появления безошибочного интервала р(0 i) длиной i бит, по которым на основе вероятностей p(0 i) по рекуррентным правилам вычисляют условные вероятности p(0 i 1/11), p(0 i 1/01) безошибочных интервалов длины i бит в каждый текущий момент времени и предшествующий этому моменту времени при условии, что для генерации ошибок используют два состояния канала связи, соответствующие комбинации ошибок 11 или 01, генерируют равномерно распределенное в интервале от 0 до 1 случайное число р, осуществляют суммирование условных вероятностей p(0 i 1/11), p(0 i 1/01), начиная с i=0, и в результате получают последовательность 0 k 1, которая составляет побитный поток ошибок канала связи. Технический результат, достигаемый при осуществлении изобретения, состоит в повышении быстродействия. 1 табл.

Изобретение относится к области техники связи и может быть использовано для моделирования дискретного канала связи с независимыми и группирующимися ошибками.

Способ, описанный в настоящей заявке, может применяться для моделирования двоичного симметричного канала связи и позволяет получать побитный поток ошибок, необходимый для испытаний аппаратуры передачи данных.

Для сравнения возможных способов построения системы связи и прогнозирования ее характеристик без непосредственных экспериментальных испытаний необходимо располагать различными характеристиками входящих в нее каналов. Описание канала, позволяющее рассчитать или оценить его характеристики, называют моделью канала.

Во всем мире телекоммуникационные устройства тщательно тестируются на предмет соответствия требованиям подключения к сети связи (С1-ТЧ и С1-ФЛ в России; FCC Part 65, Part 15 в США; BS6305 в Великобритании). Испытания проводятся в сертификационных центрах и лабораториях МинСвязи, МПС, ФАПСИ, МВД, МО и т.п. - во всех ведомствах, имеющих свои каналы связи.

Крупные банки, государственные ведомства, владельцы сетей передачи данных - все те, кто активно эксплуатируют средства передачи данных, вынуждены проводить их сравнительные испытания. Пользователей интересует устойчивость устройств к различным помехам и искажениям.

Для проведения подобных сравнительных тестов используются различные модели каналов связи, позволяющие получать побитный поток ошибок канала связи.

Во многих случаях канал связи определяют блочной статистикой ошибок канала связи. Под блочной статистикой ошибок канала связи понимают распределение P(t,n) вероятностей t ошибок в блоке длины n бит для различных значений t и n (t≤n). Например, модель канала связи по Пуртову задается блочной статистикой ошибок канала связи. Предлагаемый способ позволяет на основании блочной статистики ошибок канала связи получать побитный поток ошибок канала, необходимый для проведения испытаний различных устройств.

Известен способ моделирования канала связи с независимыми ошибками, при котором сначала вычисляют среднюю вероятность ошибки на бит в канале, а затем в соответствии с этой вероятностью получают ошибки в канале связи .

Недостатком этого способа является ограниченная область его применения, поскольку распределение ошибок в реальных каналах связи существенным образом отличается от распределения независимых ошибок.

Наиболее близким к предлагаемому способу является способ моделирования канала связи с группирующимися ошибками по марковской модели канала (прототип), заключающийся в том, что сначала определяют множество состояний канала связи s 0 , s 1 ,..., s m-1 и вычисляют условные вероятности P(e/s i) возникновения ошибки в каждом состоянии s i , i=0,..., m-1 канала связи. Далее в соответствии с условной вероятностью ошибки для текущего состояния канала связи получают ошибки в канале связи. При этом следующее состояние канала связи определяется переходными вероятностями P(s j /s i), соответствующими переходу из текущего состояния s i в следующие состояния канала связи s j .

Недостатком этого способа является высокая сложность моделирования канала связи по блочной статистике канала связи, поскольку при построении марковской модели по блочной статистике канала связи необходим большой объем вычислений для определения параметров марковской модели. При этом во многих случаях для получения преемлемой точности марковская модель будет иметь большое число состояний, что усложняет получение побитной статистики канала связи. Кроме того, этот способ имеет низкое быстродействие, обусловленное тем, что в каждом состоянии канала связи генерируется только один бит потока ошибок, а затем принимается решение о переходе в следующее состояние.

Цель изобретения - упрощение моделирования канала связи за счет получения потока ошибок непосредственно по блочной статистике канала связи и повышение быстродействия, поскольку в каждом состоянии канала связи может генерироваться последовательность ошибок, состоящая из одного или более бит, и только после этого принимается решение о переходе в следующее состояние канала связи.

Для достижения цели предложен способ, заключающийся в том, что сначала определяют множество состояний канала связи s 0 , s 1 ,..., s m-1 и вычисляют условные вероятности P(e/s i) возникновения ошибки в каждом состоянии s i , i=0,..., m-1 канала связи. Далее в соответствии с условной вероятностью ошибки для текущего состояния канала связи получают ошибки в канале связи. Новым является то, что каждое состояние канала связи соответствует событию возникновения определенной комбинации ошибок s i =0 i 1 в моменты времени, предшествующие текущему моменту времени, где 0 i 1=0...01 - двоичная комбинация, состоящая из i подряд идущих позиций, в которых отсутствует ошибка, и одной позиции, в которой имеет место ошибка, при этом для каждого из состояний канала связи вычисляют условные вероятности Р(0 k 1/s i), и ошибки в канале связи получают в виде последовательности вида 0 k 1 в соответствии с условной вероятностью Р(0 k 1/s i).

Реализацию предлагаемого способа моделирования канала связи рассмотрим на примере построения модифицированной модели канала связи по Пуртову .

Модифицированная модель канала связи по Пуртову задается блочной статистикой канала связи. Согласно модифицированной модели канала связи по Пуртову вероятность t и более ошибок (t≥2) в блоке длины n бит выражается формулой:

где р - средняя вероятность ошибок (р<0.5),

а - коэффициент группирования ошибок (0≤а≤1), значение а=0 приближенно соответствует каналу с независимыми ошибками, а=1 - каналу, когда все ошибки сосредоточены в одной группе,

Вероятность искажения кодовой комбинации равна

Эта модель ошибок определяется всего двумя параметрами р и а и при различных параметрах модели достаточно точно описывает многие реальные каналы связи.

Блочная статистика этого канала связи определяется уравнением

Блочная статистика канала позволяет во многих случаях достаточно просто получать различные характеристики системы связи, например определять достоверность приема сообщений, защищенных помехоустойчивым кодом. Вероятность правильного приема помехоустойчивого кода, исправляющего t ошибок и имеющего блоковую длину n, оценивается по формуле:

К сожалению, задание блочной статистики канала связи в модифицированной модели канала связи по Пуртову вызывает существенные затруднения при получении побитного потока ошибок, необходимого для испытаний аппаратуры передачи данных.

Поэтому предложен способ, который генерирует побитный поток ошибок, удовлетворяющий блочной статистике канала связи, в частности блочной статистике модифицированной модели канала связи по Пуртову.

Рассматривают двоичный симметричный канал. Пусть р(0 i) - вероятность появления безошибочного интервала длиной i бит, i=0,1,.... Эту вероятность вычисляют на основании формулы (2)

p(0 i)=1-P(≥1,i).

При построении модели канала по экспериментальным данным распределение вероятностей длин безошибочных интервалов определяют непосредственно по статистике ошибок реального канала связи.

На основе распределения вероятностей р(0 i) далее вычисляют следующие распределения вероятностей р(0 i 1), p(10 i 1), p(10 i 11), где 1 означает ошибочный бит.

Эти вероятности вычисляют по следующим рекуррентным правилам

откуда

Справедливо

Предлагаемый способ использует условные вероятности

где безусловные вероятности p(10 i+1 1) и p(110 i 1) вычисляют по формулам (5) и (7) соответственно, а p(11)=1-2×р(0)+р(00) и р(01)=р(0)-р(00).

Условные вероятности p(0 i 1/11) и p(0 i 1/01) задают вероятности безошибочных интервалов длины i бит при условии, что до этого моделью генерировалась комбинация 11 или 01 и для генерации ошибок используется всего два состояния канала связи, соответствующие комбинации ошибок 11 и 01. В нашей модели только такие комбинации ошибок и могут быть в моменты времени, предшествующие текущему моменту, поскольку генерируются последовательности вида 0 i 1. При i=0 состояние канала связи будет соответствовать комбинации 11, а при i>0 - состоянию 01. Определив в текущий момент времени состояние канала связи, далее по формулам (8) и (9) вычисляем условные вероятности р(0 i 1/11) и р(0 i 1/01) и в соответствии с этими вероятностями определяем последовательность вида 0 k 1, которая и составляет побитный поток ошибок канала связи. При этом сначала генерируют равномерно распределенное в интервале от 0 до 1 случайное число р и осуществляют суммирование условных вероятностей p(0 i 1/11) либо p(0 i 1/01), начиная с i=0, и в результате получают последовательность 0 k 1, которую выбирают по следующему правилу

где символ # может принимать значение 0 либо 1.

Отметим, что для повышения быстродействия модели канала длины неискаженных интервалов k для каждого случайного числа р, взятого с некоторой допустимой погрешностью, можно вычислить заранее перед началом моделирования и поместить в таблицу, входом которой будет величина р, а выходом - длина неискаженного интервала k. В процессе моделирования длины неискаженных интервалов тогда будут определяться по таблице, отображающей функциональную зависимость между р и k. Поскольку объем таблицы ограничен, "хвост" распределения, отображающий зависимость между р и k, не попавший в таблицу, следует аппроксимировать подходящей аналитической зависимостью, например прямо пропорциональной зависимостью (прямой). При этом события, соответствующие "хвосту" распределения, как правило, маловероятны и погрешность аппроксимации не существенно влияет на точность моделирования.

Пример. В таблице приведена блочная статистика P 1 (t,n) модифицированной модели канала связи по Пуртову, рассчитанная по формулам (1) и (2), и аналогичная статистика P 2 (t,n) потока ошибок для предлагаемого способа моделирования канала связи. Параметры модифицированной модели канала связи по Пуртову: р=0.01, а=0.3, длина блока n=31, объем потока ошибок составлял 1000000 бит.

Статистический критерий согласия хи - квадрат для теоретического P 1 (t,n) и экспериментального P 2 (t,n) распределения вероятностей будет равен χ 2 =0.974, что говорит о высокой степени приближения предлагаемой модели и модифицированной модели канала связи по Пуртову.

В предлагаемом способе получение побитного потока ошибок канала связи осуществляется непосредственно на основе блочной статистики канала связи, в частности способ основан на использовании статистики неискаженных интервалов. Во многих случаях это позволяет упростить построение модели канала. Например, для сравнения, марковская модель модифицированной модели канала связи по Пуртову, позволяющая генерировать побитный поток ошибок и обеспечивающая преемлемую точность, будет иметь не менее 7 состояний. Число независимых параметров такой модели составляет соответственно не менее 49. Причем для получения параметров марковской модели по блочной статистике требуется большой объем вычислений. Рассматриваемый способ, даже при генерации потока ошибок на основе всего лишь двух состояний канала связи, обеспечивает высокую точность модели, что упрощает реализацию способа. Кроме того, в каждом состоянии канала сразу получают последовательность ошибок вида 0 k 1, состоящую из одного или большего числа бит, что увеличивает быстродействие способа.

Достигаемым техническим результатом предлагаемого способа моделирования канала связи является упрощение его реализации и повышение быстродействия.

Источники информации

1. Зелигер Н.Б. Основы передачи данных. Учебное пособие для вузов, М., Связь, 1974, стр.25.

2. Блох Э.Л., Попов О.В., Турин В.Я. Модели источника ошибок в каналах передачи цифровой информации. М.: 1971, стр.64.

3. Самойлов В.М. Обобщенная аналитическая модель канала с групповым распределением ошибок. Вопросы радиоэлектроники, сер. ОВР, вып. 6, 1990.

Способ моделирования канала связи, заключающийся в том, что определяют множество состояний канала связи s 0 , s 1 ,..., s m-1 и вычисляют условные вероятности P(e/s i) возникновения ошибки в каждом состоянии s i , где i=0,..., m-1 канала связи, и в соответствии с условной вероятностью ошибки для текущего состояния канала связи получают ошибки в канале связи, отличающийся тем, что определяют вероятность появления безошибочного интервала р(0 i) длиной i бит, по которым на основе вероятностей р(0 i) по рекуррентным правилам вычисляют условные вероятности p(0 i 1/11), p(0 i 1/01) безошибочных интервалов длины i бит в каждый текущий момент времени и предшествующий этому моменту времени, при условии, что для генерации ошибок используют два состояния канала связи, соответствующих комбинации ошибок 11 или 01, генерируют равномерно распределенное в интервале от 0 до 1 случайное число р, осуществляют суммирование условных вероятностей p(0 i 1/11), p(0 i 1/01), начиная с i=0, и в результате получают последовательность 0 k 1, которая составляет побитный поток ошибок канала связи.

Похожие патенты:

Изобретение относится к системам кодирования и декодирования. .

Изобретение относится к вычислительной технике и технике приема передачи сообщений и может применяться для повышения достоверности приема последовательной информации Цель изобретения - повышение достоверности приема последовательной информации.

Изобретение относится к области кодирования дискретной информации и может быть использовано для передачи информации. Техническим результатом является повышение достоверности передачи информации. Способ основан на преобразовании кодируемой информации в фазовые соотношения двух отрезков рекуррентных последовательностей на стороне передачи и обратных преобразованиях на стороне приема. 6 ил.

Изобретение относится к области информационной безопасности. Технический результат - высокий уровень криптозащиты переговорных процессов от их перехвата за счет использования алгоритмов криптографического кодирования. Способ шифрования/дешифрования аналоговых сигналов, состоящих из потока областей с n-множеством оцифрованных данных циклов квантования по Котельникову заключается в том, что при шифровании из области потока поступающих данных размерностью n-циклов квантования формируется кадр шифрования, затем из этих n-циклов квантования посредством вычислительных операций формируется достаточное количество кодированных циклов квантования, обладающих отличительными признаками от остальных циклов квантования кадров шифрования, далее, кадры шифрования подвергаются относительной перестановке порядка их следования в соответствии ключа шифрования, представляющего собой массив набора управляющих кодовых слов данного алгоритма криптографического кодирования и в пошаговом режиме цифроаналогового преобразования в виде непрерывного потока неразрывно следующих кадров шифрования выдается на канал связи, как шумоподобный выходной аналоговый сигнал. На приемной стороне канала связи дешифрация процесс дешифрования поступающего потока данных начинается с режима пошаговых операций циклов квантования для поиска и выделения из потока поступающих данных кадра шифрования, используя при этом соответствующее ключу шифрования распределение кодированных циклов квантования, имеющих свои отличительные признаки. В этих пошаговых операциях поиска и определения кадра шифрования применяется процесс вычисления корреляционной функции совпадения наборов кодовых слов ключей передающей и приемной сторон, при этом массив набора кодовых слов ключа дешифрования представляет собой алгоритм криптографического декодирования поступающих зашифрованных данных. После определения из потока поступающих данных кадра шифрования и совпадения набора кодовых слов ключей, осуществляется формирование посредством цифроаналогового преобразования восстановленных дешифрированных выходных аналоговых сигналов голосовой связи. Для защиты кодов ключа шифрования от возможного считывания и «взлома» на входе передающего канала предусматривается специальная программа цифровой заградительной фильтрации поступающего потока данных, также возможность применения большого количества вариантов ключей шифрования. 2 н.п. ф-лы.

Изобретение относится к области радиосвязи. Технический результат - повышение скорости передачи данных за счет оценки вероятности ошибки на бит при кодировании с помощью линейного блока помехоустойчивого кода. Способ оценки вероятности ошибки на бит, при котором источник сообщений формирует последовательность бит и передает ее на вход кодера, в котором с помощью линейного блокового кода кодируют последовательность, получая кодовое слово длиной n бит, а с выхода кодовое слово передают на вход модулятора, в котором осуществляют модуляцию и получают информационный сигнал, передают сигнал в канал связи, а с выхода канала связи передают сигнал на вход демодулятора, в котором получают принятую кодовую комбинацию, которая может содержать ошибки из-за наличия искажений в канале связи, передают кодовую комбинацию на вход декодера, в котором декодируют комбинацию и получают информационное слово, а также число q обнаруженных ошибок и с первого выхода декодера передают информационное слово на вход получателя сообщений, а со второго выхода декодера передают число q, равное количеству обнаруженных декодером ошибок в полученном кодовом слове, на вход блока проверки. 1 ил.

Изобретение относится к области техники связи и может быть использован для моделирования дискретного канала связи с независимыми и группирующимися ошибками

Страница 1

УДК 621.397

Модели дискретных каналов связи

Михаил Владимирович Марков , магистрант, mmarkov 1986@ mail . ru ,

ФГОУВПО «Российский государственный университет туризма и сервиса»,

г. Москва
The basic models of the discrete communication channels used for information transfer in wireless systems of access to information resources are described. The basic merits and demerits of various communication channels are considered and their general characteristic is given. The mathematical apparatus that is necessary for the description of the pulsing nature of the traffic in real channels of transfer is presented. The mathematical calculations used for definition of functions of density of probability are given. Models of channels with the memory, characterized by packing of errors in the conditions of a frequency-selective dying down and multibeam distribution of signals are considered.
Описаны основные модели дискретных каналов связи, используемых для передачи информации в беспроводных системах доступа к информационным ресурсам. Рассмотрены основные достоинства и недостатки различных каналов связи и дана их общая характеристика. Приведен математический аппарат, необходимый для описания пульсирующей природы трафика в реальных каналах передачи. Даны математические выкладки, используемые для определения функций плотности вероятности. Рассмотрены модели каналов с памятью, характеризующиеся пакетированием ошибок в условиях частотно-селективных замираний и многолучевого распространения сигналов.
Key words : models of communication channels, discrete channels without memory, channels with deleting, asymmetrical channels without memory, channels with memory

Ключевые слова : модели каналов связи, дискретные каналы без памяти, каналы со стиранием, несимметричные каналы без памяти, каналы с памятью.
Постановка задачи

Для описания каналов передачи информации принято использовать математические модели, учитывающие особенности распространения радиоволн в окружающей среде. Среди таких особенностей можно, например, отметить наличие частотно-селективных замираний, приводящих к явлению межсимвольной интерференции (МСИ). Эти явления существенно сказываются на качестве принимаемой информации, так как приводят в ряде случаев к пакетированию одиночных ошибок. Для описания процессов пакетирования было разработано множество моделей каналов связи с памятью. В статье описаны основные модели, обладающие различными характеристиками, описываемыми с помощью полигеометрических распределений длин безошибочных промежутков и пачек ошибок.

Каналы связи принято называть дискретными по времени только в том случае, если входные и выходные сигналы доступны для наблюдения и дальнейшей обработки в строго фиксированные моменты времени. Для определения моделей дискретных каналов связи достаточно описать случайные процессы, происходящие в них, а также знать вероятности появления ошибок. Для этого необходимо иметь входной (А ) и выходной () наборы передаваемых символов, должна быть задана совокупность переходных вероятностей p ( | a ), которая зависит от следующих величин:
– случайной последовательности символов входного алфавита, где
– символ на входе канала в i -й момент времени;
– последовательности принятых символов, взятой из выходного алфавита, где
– символ на выходе канала в i -й момент.

С математической точки зрения вероятность
можно определить как условную вероятность приема последовательности при условии, что передана последовательность a . Количество переходных вероятностей прямо пропорционально возрастает с увеличением длительности входных и выходных последовательностей. Например, при использовании бинарного кода для последовательности длиной n, количество переходных вероятностей составит
. Ниже приведено описание математических моделей дискретных каналов, содержащих ошибки. С их помощью можно достаточно просто определить переходные вероятности
для заданной последовательности длиной п.


Дискретный канал без памяти

Этот тип канала характеризуется тем, что вероятность появления символа на его выходе определяется только набором символов на его входе. Это утверждение справедливо для всех пар символов, передаваемых через данных канал связи. Наиболее ярким примером канала без памяти является бинарный симметричный канал. Принцип его функционирования можно описать в виде графа, показанного на рис. 1.

На вход канала подается произвольный символ из последовательности а . На приемной стороне он воспроизводится верно с постоянной вероятностью q равной , или неверно, в случае, если вероятность определяется выражением

Диаграмма переходов для бинарного канала (БСК) показана на рис. 1.

Рис. 1. Дискретный канал без памяти
Для БСК можно легко определить вероятность получения любой последовательности символов на выходе при условии, что задана некоторая входная последовательность, обладающая фиксированной длиной. Допустим, что такая последовательность имеет длину 3

Для удобства анализа представим БСК как канал, к которому подключен генератор ошибок. Такой генератор выдает случайную последовательность ошибок
. Каждый её символ складывается по модулю с символом , принадлежащим двоичному каналу -
. Сложение выполняется только при условии, что позиции ошибки и символа совпадают. Таким образом, если ошибка { } имеет единичное значение, передаваемый символ изменится на обратный, то есть на приемной стороне будет декодирована последовательность { }, содержащая ошибку.

Переходные вероятности, описывающие стационарный симметричный канал имеют вид

Из вышеприведенного выражения видно, что канал можно полностью описать статистикой последовательности ошибок { }, где
{0, 1} . Такую последовательность, обладающую длиной n , принято называть вектором ошибок. Компоненты данного вектора принимают единичные значения только на позициях, соответствующих неправильно принятым символам. Число единиц в векторе определяет его вес.


Симметричный канал без памяти со стиранием

Этот вид канала во многом аналогичен каналу без памяти за исключением того, что входной алфавит содержит дополнительный (m+1) символ "? ". Используется этот символ только в том случае, если детектор не способен надежно распознать переданный символ a i . Вероятность такого события Р с всегда является фиксированной величиной и не зависит от передаваемой информации. Граф вероятностей переходов для данной модели показан на рис. 2.

Рис. 2. Симметричный канал без памяти со стиранием
Несимметричный канал без памяти

Данный канал связи можно охарактеризовать тем, что отсутствует зависимость между вероятностями возникновения ошибки. Но сами они определяются передаваемыми в текущий момент времени символами. Таким образом, для бинарного канала можно записать
. Переходные вероятности, описывающие данную модель, показаны на рис. 3.


Рис. 3. Несимметричный канал без памяти
Дискретный канал с памятью.

Этот канал можно описать зависимостью между символами входной и выходной последовательностей. Каждый принятый символ зависит как от соответствующего переданного, так и от предыдущих входных и выходных бит. Большая часть реально функционирующих систем связи содержит именно такие каналы. Наиболее существенной причиной наличия памяти в канале является межсимвольная интерференция, проявляющаяся из-за ограничений, накладываемых на полосу пропускания канала связи. Каждый выходной символ обладает зависимостью от нескольких последовательных символов на входе. Вид этой зависимости определяется импульсной характеристикой канала связи.

Второй, не менее важной, причиной эффекта «памяти» являются паузы в передаче данных в канал. Длительность таких пауз может значительно превышать длительность одного бита данных. Во время перерыва в передаче вероятность неправильного приема информации резко возрастает, в результате возможно появление групп ошибок, называемых пакетами.

По этой причине многими исследователями рекомендуется использовать понятие “состояния канала”. В результате каждый символ принятой последовательности статистически зависит как от входных символов, так и с состояния канала в текущий момент времени. Под термином “состояние канала” обычно понимают вид последовательности входных и выходных символов вплоть до заданного момента времени. На состояние канала в том числе оказывает сильное влияние и межсимвольная интерференция. Память у каналов связи подразделяется на два вида: память по входу и выходу. Если присутствует зависимость между выходным символом и битами на входе
, то такой канал обладает памятью по входу. Его можно описать переходными вероятностями вида
, i = –1, 0, 1, 2, … С точки зрения математического анализа память канала бесконечна. На практике количество символов оказывающих влияние на вероятность правильного или неверного приема информации конечно.

Память канала вычисляется как число символов N, начиная с которого справедливо равенство условных вероятностей

Для всех
. (4)

Последовательность входных символов
можно представить как состояние канала
в (i- 1)-й момент. В таком случае канал можно охарактеризовать набором переходных вероятностей вида
.

В том случае если принятый бит данных характеризуется зависимостью от предшествующих выходных символов, то канал связи принято называть каналом с памятью по выходу. Переходные вероятности можно представить в виде выражения

где выходные символы
определяют состояние канала
в (i –1)-й момент.

Использование переходных вероятностей для описания каналов с памятью очень неэффективно в виду громоздкости математических выкладок. Например, если имеется канал с межсимвольной интерференцией, а его память ограничена пятью символами, то количество возможных состояний канала составит 2 5 =32.

Если же память только по входу или только по выходу ограничивается в двоичном канале N символами, то число состояний равно 2 N , то есть растет по экспоненциальному закону в зависимости от количества символов памяти N. На практике чаще всего приходиться сталкиваться с каналами, обладающими памятью в десятки, сотни и даже тысячи символов.


Дискретно-непрерывный канал

Рассмотрим дискретно-непрерывный канал на входе которого имеются независимые символы a i , а на выходе присутствует непрерывный сигнал
. Для его описания воспользуемся переходными (условными) плотностями
декодируемой реализации z (t) при условии, что передан символ , а также априорными вероятностями передаваемых символов
. Переходные плотности также принято называть функциями правдоподобия. С другой стороны, дискретно-непрерывный канал можно описать апостериорными вероятностями
передачи символа при получении на выходе колебания z (t ). При использовании формулы Байеса получим

, (6).

В данном выражении используется плотность декодируемого колебания, которая определяется как

(7).

Непрерывно-дискретный канал описывается аналогично.


Дискретный канал с памятью, характеризующийся коррелированными

замираниями

Замирания возникают, когда амплитуда или фаза сигнала, переданного через канал изменяются по случайному закону. Понятно, что замирания приводят к существенному ухудшению качества принятой информации. Одной из наиболее существенных причин появления замираний считается многолучевое распространение сигналов.

Здесь буквами E, T обозначена энергия и длительность сигнала,

–целые числа, l k > 1. (9).

На приемной стороне будет наблюдаться случайный процесс y (t )

В данном выражении используются следующие параметры:

µ -коэффициент передачи канала, выбираемый случайным образом,

- случайный фазовый сдвиг,

n (t ) - белый гауссовский шум (АБГШ). Его спектральная плотность мощности равна N 0 /2.

Если передается некоторая последовательность a , то выходной сигнал когерентного демодулятора примет вид . Названная последовательность поступает на вход декодера. Полученную последовательность можно представить в виде вектора

, для вычисления компонент которого используются выражения (11) и (12):

(12)


,

- квадратурные компоненты в сумме дающие коэффициент передачи канала,

- случайные величины, связанные с влиянием белого гауссовского шума,

-- отношение сигнал/шум.

Данные выражения имеют силу, только если передается символ
.

Если имеет место передача символа
, то правые части равенств (11) и (12) меняются местами. Случайные величины подчиняются гауссовскому распределению, обладающему параметрами

(15)

Анализируя эти выражения можно прийти к выводу, что канальный коэффициент передачи

зависит от рэлеевского распределения.

Канал с замираниями характеризуется наличием памяти между элементами последовательности символов . Эта память зависит от характера связей между членами рядов

Предположим, что

, (18),

где
.

В таком случае µ c и µ s образуют независимые Марковские последовательности. А функция плотности вероятностей w (µ) для последовательности µ при N> 1 будет равна



(20)

(21).

В приведенном выражении (х) является функцией Бесселя первого рода нулевого порядка. Параметр будет равен среднему значению отношения С/Ш для релеевского канала. Параметр r характеризует зависимость случайных канальных коэффициентов передачи от времени. Этот параметр может лежать в интервале 0,99-0,999.

Зная все вышеперечисленные параметры можно определить условную функцию плотности вероятности
. Аналитическое выражение для этой функции имеет вид

С учетом выше приведенных уравнений, получим

(23).

Таким образом, условные функции плотности вероятности
являются произведением функций плотности вероятности в случае центрированного и не центрированного X 2 – распределения. Такое распределение имеет две степени свободы.

Модель Гильберта

К сожалению, все выше описанные модели каналов не способны описать пульсирующую природу реальных каналов передачи. Поэтому Гильбертом была предложена следующая модель канала с ошибками. Вероятность ошибки в текущем состоянии сети зависит от того, в каком состоянии находилась сеть в предыдущий момент времени. То есть подразумевается, что имеет место корреляция между двумя последовательными событиями. Таким образом, проявляется память канала и его пульсирующая природа. Модель Гильберта по сути является моделью Маркова первого порядка с двумя состояниями – «хорошим» и «плохим». Если ошибки в принятых данных отсутствуют, то речь идет о «хорошем» состоянии. В «плохом» состоянии вероятность ошибки принимает некоторое значение большее, чем 0. На рис. 4 показана модель Гильберта.

Рис. 4. Схематическая иллюстрация модели Гильберта

Рис. 5. Схематическая иллюстрация модели Гильберта-Эллиота
Вероятность того, что канал находится в «плохом» состоянии равна

(24),

и таким образом, полная вероятность ошибки

Модель Гильберта является самовозобновляемой моделью, это означает, что длины пачек ошибок и длины безошибочных промежутков не зависят от предшествующих пачек и промежутков ошибок. Это так называемая скрытая модель Маркова (HMM). Текущее состояние модели (Х или П) не может быть определено до тех пор, пока не будет получен выходной сигнал модели. Кроме того, параметры модели {p , q , P( 1|B) } не могут быть получены непосредственно во время моделирования. Они могут быть оценены лишь с помощью специальных триграмм или с помощью аппроксимации кривых, как это предложено в работе Гильберта.

Из-за возможности прямой оценки параметров чаще всего использовалась упрощенная версия модели Гильберта, в которой вероятность ошибки в «плохом» состоянии всегда равна 1. Эта модель может быть несколько модифицирована и представлена в виде цепи Маркова первого порядка с двумя состояниями. Два параметра упрощенной модели Гильберта {p, q} могут быть вычислены непосредственно путем измерений трасс ошибок при учете средней длины пачек ошибок

(26)

и среднем значении длин промежутков

или полной вероятности ошибки

Улучшения модель Гильберта впервые была описана в работе Элиота. В ней ошибки могут происходить также и в хорошем состоянии, как это показано на рис. 5.

Эта модель, также известная как канал Гильберта – Элиота (GEC), преодолевает ограничение модели Гильберта в отношении геометрических распределений длин пачек ошибок. Кроме того, что данная модель должна соответствовать модели HMM, она должна быть не возобновляемой, то есть длины пачек ошибок должны быть статистически независимы от длин промежутков. Это привносит новые возможности для моделирования радиоканала, но и усложняет процедуру оценки параметров. Параметры для не возобновляемой модели HMM и модели GEC могут быть оценены с использованием алгоритма Баума-Валия.

Рис. 6. Разделенные цепи Маркова
В 1960-х годах, исследователи Бергер, Манделброт, Суссман и Элиот предложили использовать возобновляемые процессы для моделирования характеристик ошибок коммуникационных каналов. Для этого Бергер и Манделброт использовали независимое распределение Парето вида

для интервалов между последовательными ошибками.

Рис. 7. Разделенные цепи Маркова с двумя безошибочными и тремя ошибочными состояниями

Дальнейшие улучшения модели Гильберта были опубликованы Фричманом (1967), который предложил разделить цепи Маркова на несколько цепей с ошибочными и безошибочными состояниями (рис. 6). Было введено ограничение по количеству запрещенных переходов между ошибочными состояниями и состояниями, свободными от ошибок. Параметры этой модели могут быть несколько улучшены благодаря выборочной аппроксимации полигеометрических распределений длин промежутков и длин пачек ошибок. Полигеометрическое распределение вычисляется как

при следующих ограничениях

0 i 1 и 0 i 1.

Параметры μ i и λ i соответствуют вероятностям перехода к новому состоянию и вероятности перехода в пределах нового состояния, K – это число безошибочных состояний, N – общее количество состояний.

Конфигурация данной модели показана на рис. 7. Она включает в себя два безошибочных состояния и три состояния соответствующие ошибкам. Однако все еще имеется статистическая зависимость между текущим промежутком и предыдущей пачкой ошибок, а также между текущим промежутком (пачкой ошибок) и предыдущим промежутком (пачкой ошибок). Поэтому для полного описания модели эти зависимости также необходимо рассмотреть. Однако здесь имеется ограничение, связанное с сохранением фиксированных пропорций вероятностей перехода из одного состояния в другое. В связи с этим модель становится возобновляемой. Например, в случае конфигурации модели 2/3 соотношения между вероятностями будут такими: p 13 : p 14 : p 15 = p 23 : p 24 : p 25 и p 31 : p 32 = p 41 : p 42 = p 51 : p 52 . Так, модель Фричмана, показанная на рис. 8, является частным случаем разделенной цепи Маркова. На этом рисунке показано только одно ее ошибочное состояние. Такая конфигурация распределения промежутков между ошибками уникально характеризует модель, а ее параметры могут быть найдены путем аппроксимации соответствующей кривой. Каждое состояние модели Фричмана представляет собой ошибочную модель без памяти, и поэтому модель Фричмана ограничивается полигеометрическими распределениями длин промежутков и пачек ошибок.

Рис. 8. Модель Фричмана

В статье были рассмотрены основные модели каналов связи, используемых для передачи различной дискретной информации и обеспечивающих доступ к разделяемым информационным ресурсам. Для большинства моделей даны соответствующие математические выкладки, на основе анализа которых сделаны выводы об основных достоинствах и ограничениях этих моделей. В работе было показано, что все рассматриваемые модели обладают существенными различиями в характеристиках ошибок.
Литература


  1. Adoul, J-P.A., Fritchman, B.D. and Kanal, L.N. A critical statistic for channels with memory // IEEE Trans. on Information Theory. 1972. № 18.

  2. Aldridge, R.P. and Ghanbari, M. Bursty error model for digital transmission channels. // IEEE Letters. 1995. № 31.

  3. Murthy, D.N.P., Xie, M. and Jiang, R. Weibull Models. John Wiley & Sons Ltd., 2007.

  4. Pimentel, C. and Blake, F. Modelling Burst Channels Using Partitioned Fritchman’s Markov Models. // IEEE Trans. on Vehicular Technology. 1998. № 47.

  5. McDougall, J., Yi, Y. and Miller, S. A Statistical Approach to Developing Channel Models for Network Simulations. // Proceedings of the IEEE Wireless Communication and Networking Conference. 2004. vol. 3. Р. 1660–1665.
страница 1

Дискретный канал предназначен для передачи дискретных сигналов (символов). При передаче по такому каналу сообщение представляется некоторой последовательностью элементарных дискретных сообщений , принадлежащих конечному множеству. В результате помехоустойчивого кодирования последовательность заменяется другой последовательностью , которая ставится в соответствие сообщению . Последовательность , состоящая из кодовых символов , подается на вход дискретного канала. Кодовые символы обычно (но не всегда) являются цифрами двоичной системы счисления. Таким образом, сообщение на входе дискретного канала может быть представлено последовательностью , где - номер позиции, а - дискретная случайная величина, принимающая значение 0 и 1. Сообщение на выходе дискретного канала также представляется в виде , где , а - аналогичная случайная величина. В идеальном случае, при отсутствии помех и искажений, для всех .

Ограничения на входные символы дискретного канала обычно задаются указанием алфавита символов и скорости их следования. Основной характеристикой дискретного канала является вероятность того или иного изменения символа на данной позиции. Эта характеристика определяется теми преобразованиями, которые претерпевает символ при передаче по каналу:

Смещение во времени (задержка символов);

Отличие на некоторых позициях выходных символов от входных (аддитивные ошибки);

Смещение номеров позиций выходной последовательности относительно номеров входной (ошибки синхронизации);

Появление на некоторых позициях символов стирания (невозможность принять надежное решение по какому-либо символу).

Первый фактор (задержка) является детерминированным или содержит детерминированную и случайную составляющие. Все остальные факторы случайны.

При действии рассмотренных факторов основная характеристика дискретного канала – вероятность искажения символа на определенной позиции – зависит от номера позиции, от значения передаваемого и всех ранее переданных символов.

Так определяются характеристики для нестационарного несимметричного канала с неограниченной памятью. Полное описание таких каналов задается совокупностью условных (переходных) вероятностей вида , т.е. вероятностей того, что выходные символы примут значения , если входные символы имеют значения , где и - номера позиций последовательностей и , - длина конечной последовательности (сообщение).

Естественно, что эти вероятности должны быть известны при любых и . Если рассматриваются стационарные каналы с идеальной синхронизацией, то полное описание канала задается системой переходных вероятностей . Располагая этой системой вероятностей, можно, например, найти такую важную характеристику, как пропускную способность дискретного канала.

В ряде случаев, особенно при анализе методов повышения достоверности, дискретный канал удобно описывать методами случайных процессов, а не заданием системы условных вероятностей рассмотренного вида.

Для канала с идеальной синхронизацией используется понятие потока ошибок. Поток представляет собой дискретный случайный процесс Е (иногда используется термин «последовательность ошибок»). Каждая позиция потока Е складывается по определенному правилу с соответствующей позицией процесса Y.

В общем случае реализации потока ошибок зависят от реализации помех в непрерывном канале, вида модели и реализации процесса Y. Так, например, при стационарном канале и стационарной передаваемой последовательности Y поток ошибок также будет стационарным.

Существует тип дискретного канала, для которого характеристики потока ошибок не зависят от вида информации, передаваемой по каналу. Такой тип канала принято называть симметричным. В этом случае переходные вероятности имеют вид , где - реализация потока ошибок.

Из изложенного следует, что модель двоичного канала это, но сути дела, статистическое описание двоичной последовательности Е. Полное описание таких последовательностей достигается на основе многомерных распределений, например, интервалов между элементами последовательности или через многомерные переходные вероятности. Располагая математической моделью, дающей полное описание ошибок двоичного симметричного канала, можно определить любую характеристику методов повышения достоверности при передаче информации по такому каналу. Наиболее удобный вариант модели для проектирования задается теорией случайных процессов в виде потока ошибок.

Представляется логичным и достаточно удобным рассматривать поток ошибок дискретного канала связи как ступенчатый случайный процесс. Такой подход позволяет при исследовании каналов связи использовать многочисленные важные результаты, полученные для случайных процессов.

Выделим среди различных способов задания потоков следующие два.

Первый способ описания потоков. Для задания потоков ошибок этим способом необходимо для любого натурального числа и произвольного набора чисел , указать r -мерную функцию распределения случайного вектора , где - количество ошибок, появившихся в промежутке времени , или найти

Где - начало отсчета времени.

Таким образом, есть вероятность того, что на последовательно расположенных промежутках времени (откладываемого от момента времени ), появится соответственно ошибок. Это распределение полностью определяет поток ошибок. На практике (1) наиболее часто используется для , что соответствует одномерному распределению числа ошибок в промежутке времени :

Для стационарного потока зависимость от отсутствует.

Второй способ описания потоков. Пусть - моменты наступления событий потока ошибок. Можно определить поток, задав распределение - мерного вектора:

Однако часто удобнее получать распределение моментов наступления событий потока не на основе , а несколько иначе. Положим , тогда поток считается заданным, если определено - мерное распределение вектора , т.е.

Если , то имеем одномерную функцию распределения интервалов, которая в общем случае может зависеть от номера интервала, что отражается следующим образом:

.

Для того чтобы дать математическое описание канала, необходимо и достаточно указать множество сигналов, которые могут быть поданы на его вход, и для любого допустимого входного сигнала задать случайный процесс (сигнал) на выходе канала. Задание процесса понимается в том смысле, как это было определено

в § 2.1, и сводится к заданию в той или иной форме распределения вероятностей.

Точное математическое описание любого реального канала обычно оказывается весьма сложным. Вместо этого пользуются упрощенными математическими моделями, которые позволяют выявить все важнейшие закономерности реального канала, если при построении модели учтены наиболее существенные особенности канала и отброшены второстепенные детали, мало влияющие на ход связи.

Рассмотрим наиболее простые и широко используемые математические модели каналов, начав с непрерывных каналов, поскольку они во многом предопределяют и характер дискретных каналов.

Идеальный канал без помех представляет собой линейную цепь с постоянной передаточной функцией, обычно сосредоточенной в ограниченной полосе частот. Допустимы любые входные сигналы, спектр которых лежит в определенной полосе частот и имеющие ограниченную среднюю мощность (либо пиковую мощность Рпик). Эти ограничения характерны для всех непрерывных каналов, и в дальнейшем они оговариваться не будут. Заметим, что если мощность сигнала не ограничивать, но считать конечной, то множество допустимых сигналов образует векторное пространство, конечномерное (при определенных ограничениях на длительность и ширину спектра) либо бесконечномерное (при более слабых ограничениях). В идеальном канале выходной сигнал при заданном входном оказывается детерминированным. Эта модель иногда используется для описания кабельных каналов. Однако, строго говоря, она непригодна для реальных каналов, в которых неизбежно присутствуют, хотя бы и очень слабые, аддитивные помехи.

Канал с аддитивным гауссовским шумом, в котором сигнал на выходе

где входной сигнал; постоянные; гауссовский аддитивный шум с нулевым математическим ожиданием и заданной корреляционной функцией. Чаще всего рассматривается белый шум либо квазибелый (с равномерной спектральной плотностью в полосе спектра сигнала

Обычно запаздывание не учитывают, что соответствует изменению начала отсчета времени на выходе канала.

Некоторое усложнение этой модели получается, если коэффициент передачи и запаздывание считать известными функциями времени:

Такая модель удовлетворительно описывает многие проводные каналы, радиоканалы при связи в пределах прямой видимости, а

также радиоканалы с медленными общими замираниями, при которых можно надежно предсказать значения

Канал с неопределенной фазой сигнала отличается от предыдущего тем, что в нем запаздывание является случайной величиной. Для узкополосных сигналов, с учетом (2.69) и (3.2), выражение (3.29) при постоянном и случайных можно представить в виде

где преобразование Гильберта от случайная начальная фаза. Распределение вероятностей предполагается заданным, чаще всего его задают равномерным на интервале от 0 до Эта модель удовлетворительно описывает те же каналы, что и предыдущая, если фаза сигнала в них флуктуирует. Такая флуктуация вызывается небольшими изменениями протяженности канала, свойств среды, в которой проходит сигнал, а также фазовой нестабильностью опорных генераторов.

Однолучевой гауссовский канал с общими замираниями (флуктуациями амплитуд и фаз сигнала) также описывается формулой (3.30), но множитель К, как и фаза считаются случайными процессами. Иными словами, случайными будут квадратурные компоненты

При изменении квадратурных компонент во времени принимаемое колебание

Как отмечалось на с. 94, одномерное распределение коэффициента передачи может быть рэлеевским (3.25) или обобщенным рэлеевским (3.26). Такие каналы называют соответственно каналами с рэлеевскими или с обобщенными рэлеевскими замираниями. В более общем случае имеет четырехпараметрическое распределение . Такую модель называют обобщенной гауссовской. Модель однолучевого канала с замираниями достаточно хорошо описывает многие каналы радиосвязи в различных диапазонах волн, а также некоторые другие каналы.

Линейный канал со случайной передаточной функцией и гауссовским шумом представляет собой дальнейшее обобщение. В талом канале выходное колебание выражается через входной сигнал и случайную импульсную реакцию канала

Эта модель достаточно универсальна как для проводной, так и для радиосвязи и описывает каналы с рассеянием во времени по частоте. Часто рассеянию во времени канала можно приписать дискретный характер (модель многолучевого канала) и вместо (3.33) пользоваться представлением

где число лучей в канале; квадратурные компоненты передаточной функции канала для луча, которые в пределах спектра узкополосного сигнала практически не зависят от со.

Канал с рассеянием времени и по частоте задан полностью, если помимо корреляционной функций шума задана статистика случайной импульсной реакции канала (или передаточной функции или статистика квадратурных компонент по всем лучам. В зависимости от значений входящих сюда параметров в таком канале могут наблюдаться селективные замирания и эхо-сигналы.

Каналы со сложной аддитивной помехой (флуктуационной, сосредоточенной, импульсной) описываются любой из предыдущих моделей с добавлением дополнительных компонент аддитивной помехи. Их полное описание требует задания вероятностных характеристик всех компонент аддитивного шума, а также параметров канала. Эти модели наиболее полно отображают реальные каналы связи, однако редко используются в анализе ввиду их сложности.

Переходя к моделям дискретного канала, полезно напомнить, что в нем всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе, можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к довольно сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Следует, однако, помнить, что при проектировании системы связи имеется возможность варьировать в довольно широких пределах модель дискретного канала при заданной модели непрерывного канала путем изменения модема.

Модель дискретного канала содержит задание множества возможных сигналов на его входе и распределение условных вероятностей выходного сигнала при заданном входном. Здесь входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число различных символов (основание кода), а также длительность передачи каждого символа. Будем считать, что значение одинаково для всех символов, что выполняется в большинстве современных каналов. Величина определяет количество символов, передаваемых в единицу времени. Как указывалось в § 1.5, она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывает появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова.

В общем случае для любого должна быть указана вероятность того, что при подаче на вход канала любой заданной последовательности кодовых символов на выходе появится некоторая реализация случайной последовательности Кодовые символы обозначим числами от 0 до что позволит производить над ними арифметические операции. При этом все -последова-тельности (векторы), количество которых равно образуют -мерное конечное векторное пространство, если «сложение» понимать как поразрядное суммирование по модулю и аналогично определить умножение на скаляр (целое число). Для частного случая такое пространство было рассмотрено в § 2.6.

Введем еще одно полезное определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю между принятым и переданным векторами. Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю

где случайные последовательности из символов на входе и выходе канала; случайный вектор ошибки, который в общем случае зависит от Различные модели отличаются распределением вероятностей вектора Смысл вектора ошибки особенно прост в случае двоичных каналов , когда его компоненты принимают значения 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный прием символа. Количество ненулевых символов в векторе ошибок называется его весом. Образио говоря модем, осуществляющий переход от непрерывного канала к дискретному, преобразует помехи и искажения непрерывного канала в поток ошибок.

Перечислим наиболее важные и достаточно простые модели дискретных каналов.

Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью и правильно с вероятностью причем в случае ошибки вместо переданного символа может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ если был передан равна

Термин «без памяти» означает, что вероятность ошибочного приема символа не зависит от предыстории, т. е. от того, какие символы передавались до него и как они были приняты. В дальнейшем, для сокращения, вместо «вероятность ошибочного приема символа» будем говорить «вероятность ошибки».

Очевидно, что вероятность любого -мерного вектора ошибки в таком канале

где I - количество ненулевых символов в векторе ошибки (вес вектора ошибки). Вероятность того, что произошло I каких угодно ошибок, расположенных как угодно на протяжении последовательности длины определяется формулой Бернулли

где биномиальный коэффициент, равный числу различных сочетаний I ошибок в блоке длиной

Эту модель называют также биномиальным каналом. Она удовлетворительно описывает канал, возникающий при определенном выборе модема, если в непрерывном канале отсутствуют замирания, а аддитивный шум белый (или, по крайней мере, квазибелый). Вероятности переходов в двоичном симметричном канале схематически показаны в виде графа на рис. 3.3.

Рис. 3.3. Переходные вероятности в двоичном симметричном канале

Рис. 3.4. Переходные вероятности в двоичном симметричном канале со стиранием

Рис. 3.5. Переходные вероятности в двоичном несимметричном канале

Симметричный канал без памяти со стиранием отличается от предыдущего тем, что алфавит на выходе канала содержит дополнительный символ, обозначаемый знаком Этот символ появляется тогда, когда 1-я решающая схема (демодулятор) не может надежно опознать переданный символ. Вероятность такого отказа от решения или стирания символа в данной модели постоянна и не зависит от передаваемого

символа. За счет введения стирания удается значительно снизить вероятность ошибки, иногда ее даже считают равной нулю. На рис. 3.4 схематически показаны вероятности переходов в такой модели.

Несимметричный канал без памяти характеризуется, как и предыдущие модели, тем, что ошибки возникают в нем независимо друг от друга, однако вероятности ошибок зависят от того, какой символ передается. Так, в двоичном несимметричном канале вероятность приема символа «1» при передаче символа «0» не равна вероятности приема «0» при передаче «1» (рис. 3.5). В этой модели вероятность вектора ошибки зависит от того, какая последовательность символов передается.

Марковский канал представляет собой простейшую модель дискретного канала с памятью. В ней вероятность ошибки образует простую цепь Маркова, т. е. зависит от того, правильно или ошибочно принят предыдущий символ, но не зависит от того, какой символ передается.

Такой канал, например, возникает, если в непрерывном канале с гауссовским шумом (с определенной или неопределенной фазой) используется относительная фазовая модуляция (см. ниже, § 4.5).

Канал с аддитивным дискретным шумом является обобщением моделей симметричных каналов. В такой модели вероятность вектора ошибки не зависит от передаваемой последовательности. Вероятность каждого вектора ошибки считается заданной и, вообще говоря, не определяется его весом. Во многих каналах из двух векторов с одинаковым весом более вероятным оказывается такой, в котором единицы расположены близко друг к другу, т. е. имеется тенденция к группированию ошибок.

Частным случаем такого канала является канал с переменным параметром (КПП). В этой модели вероятность ошибки для каждого символа является функцией некоторого параметра представляющего случайную последовательность, дискретную или непрерывную, с известными распределениями вероятностей, в частности с известной корреляционной функцией. Параметр может быть скалярным или векторным. Можно сказать, что определяет состояние канала. Такая модель имеет много разновидностей. Одной из них является модель Гильберта, в которой принимает лишь два значения - а вероятность ошибки при равна нулю, а при равна 0,5. Заданы вероятности переходов из состояния и наоборот. В таком канале все ошибки происходят при и поэтому очень тесно группируются. Существуют и более сложные модели КПП, например модель Попова - Турина. Они изучаются в специальных курсах. Память в КПП определяется интервалом корреляции параметра

Канал с неаддитивным шумом и с памятью. Канал с межсимвольной интерференцией. Вероятность ошибки в нем зависит от передаваемых символов, как и в модели несимметричного канала без памяти, но не от того (или не только от того) символа, для которого определяется вероятность ошибки, а от символов, которые передавались до него.

В дискретном канале всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Для модели дискретного канала входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число m различных символов, из которых формируется последовательность (основание кода), а также длительность передачи каждого символа. Будем считать значение одинаковым для всех символов, что выполняется в большинстве современных каналов. Величина определяется количеством символов, передаваемых в единицу времени. Она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывается появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова.

При подаче на вход канала любой заданной последовательности кодовых символов, на выходе появится некоторая реализация случайной последовательности . Кодовые символы обозначим числами от 0 до m-1.

Введем еще одно определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю m) между принятой и переданной кодовыми последовательностями (векторами)). Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю m):

(1.4)

где и - случайные последовательности из n символов на входе и выходе канала; -случайный вектор ошибки. Различные модели отличаются распределением вероятностей вектора . Смысл вектора ошибки особенно прост в случае двоичных каналов (m=2), тогда его компоненты принимают значение 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный приём символа. Число ненулевых символов в векторе ошибок называется его весом.

Перечислим наиболее важные и достаточно простые модели дискретных каналов

1) Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью p и правильно с вероятностью 1-p, причем в случай ошибки вместо переданного символа в может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ , если был передан


(1.5)

Термин «без памяти» означает, что вероятность ошибочного приема символа не зависит от предыстории, т.е. от того, какие символы передавались до него и как они были приняты.

Очевидно, что вероятность любого n – мерного вектора ошибки в таком канале

где -число ненулевых символов в векторе ошибки (вес вектора ошибки). Вероятность того, что произошло каких угодно ошибок, расположенных как угодно на протяжении последовательности длинноq n, определяется формулой Бернулли:

(1.7)

где -биномиальный коэффициент, равный числу различных сочетаний l ошибок в блоке длиной n.

Эту модель называют также биноминальным каналом. Она удовлетворительно описывает канал, возникающий при определенном выборе модема, если в непрерывном канале, отсутствуют замирания, а аддитивный шум белый (или, по крайней мере, квазибелый). Вероятности переходов показаны в виде графа на рис. а:

2) симметричный канал без памяти со стиранием отличается от предыдущего тем, что алфавит на выходе канала содержит, дополнительный (m+1)-u символ, обозначаемый знаком «?».

Этот символ появляется тогда, когда 1-я решающая схема (демодулятор) не может надежно опознать переданный символ. Вероятность такого отказа от решения или стирания символа в данной модели постоянна и не зависит от передаваемого символа. За счет введения стирания удается значительно снизить вероятность ошибки, иногда ее даже считают равной нулю. На рис. б) схематически показаны вероятности переходов в такой модели.

3) Несимметричный канал без памяти характеризуется, как и предыдущие модели, тем, что ошибки возникают в нем независимо друг от друга, однако вероятности ошибок зависят от того, какой символ передается. Так, в двоичном несимметричном канале вероятность р (1/0) приема символа «1» при передаче символа «0» не равна вероятности р (0/1) приема «0» при передаче»1» (рис. в)).

4) Марковский канал представляет собой простейшую модель дискретного канала с памятью. В ней вероятность ошибки образует простую цепь Маркова, т.е. зависит от того, правильно или ошибочно принят предыдущий символ, но не зависит от того, какой символ передается. Такой канал, например, возникает, если в непрерывном канале с гауссовским шумом используется ОФМ.

5) Канал с аддитивным дискретным шумом. Является обобщением моделей симметричных каналов. В такой модели вероятность вектора ошибки не зависит от передаваемой последовательности. Вероятность, каждого вектора ошибки считается заданной. Имеется тенденция к тому, что в векторе ошибки единицы расположены близко друг к другу, то есть группированию ошибок.

Раздел 2 Основные положения теории передачи информации




Top