Помехи и искажения в канале связи. Помехи в каналах связи, аналоговых систем передачи. Помехи и искажения в канале

Помеха в канале – это посторонний сигнал, спектр в котором частично или полностью совпадает с полезным сигналом. Помехи существуют как при наличии сигнала, так и при его отсутствии и обусловлены свойствами каналообразующего оборудования и внешними причинами. Соответственно, помехи делятся на два вида: внутренние и внешние .

К внутренним помехам относят тепловые помехи всех элементов, образующих канал, и помехи, вызванные нелинейностью устройств, входящих в канал связи.

К внешним помехам относят шумы нелинейных переходов, возникающие за счёт переходных влияний между параллельными цепями, шумы радиостанций, атмосферные помехи(пыльные бури, дожди), промышленные помехи(шумы от электроустановок и электрифицированных ЖД).

В линейных трактах, образованных различными линиями связи, наиболее значимы следующие виды помех: шумы линейных переходов, которые занимают половину мощности шумов в каналах связи, а так же тепловой шум и шумы нелинейных переходов.

В коаксиальных кабелях тепловые шумы и шумы нелинейных переходов приблизительно равны.

В ВЛС наиболее весомы внешние шумы. Это наиболее шумный канал.

Нормой шума в канале связи считается его мощность 10000пВт на 2.5 тысяч км. Действующую мощность и напряжение в канале принято оценивать псофометрическими единицами, то есть на выходе канала подключают псофометр (вольтметр с квадратичной шкалой, ко входу которого подключен псофометрический фильтр, оценивающий особенности чувствительности человеческого уха. Ухо человека наиболее чувствительно в диапазоне от 0,8 до 1,2кГц.

Псофометрический коэффициент вольтметра равен 0,75.

Если измеряют шум в каналах телевидения, то на входе такого вольтметра установлен контур, учитывающий особенности глаза. В каналах вещания псофометр рассчитан на диапазон до 15кГц.

Собственные помехи.

Тепловой шум, обусловленный хаотическим движением электронов, присутствует во всех элементах канала. К нему относят шумы транзисторов, диодов, ламп и так далее. Тепловой шум имеет флуктуационный характер, так как складывается из последовательности независимых кратковременных импульсов. Спектр такого шума практически равномерен в диапазоне до 6ГГц, поэтому уровень теплового шума в КТЧ при 20 0 С равен приблизительно –139дБм. Уровень собственных шумов на протяжении линейного тракта остаётся постоянным, а уровень сигнала, передаваемого по тракту, уменьшается. Причём большее затухание получают каналы, расположенные в верхнем диапазоне частот.

Помехозащищённость – это разница между уровнем сигнала и шума.

Для повышения помехозащищённости от собственного шума высокочастотных спектральных составляющих сигнала системы обычно работают в режиме с “перекосом уровней” ΔР.

Однако перекос уровней не компенсирует неравномерность затухания линейного тракта.

Перекос уровней делают меньше затухания, так как если компенсировать всю неравномерность, то в низкочастотных каналах появится недопустимый уровень шумов нелинейных переходов за счёт большой мощности сигнала в верхних каналах. Перекос уровней предназначен не для коррекции линейных искажений, а для повышения помехозащищённости от собственных шумов линейного тракта каналов, расположенных в высокочастотной области.

Атмосферные помехи.

К атмосферным помехам относят: газовые разряды, магнитные бури, полярные сияния, снежные и песчаные бури, осадки, и другие атмосферные явления большой интенсивности.

Уровень атмосферных помех в каналах ВЛС колеблется в диапазоне от –70 до – 80дБм.

Шумы линейных переходов.

Возникают вследствие электромагнитных влияний между параллельными цепями, в результате неоднородностей в линии связи, а также через 3 – и цепи.

Способы уменьшения шумов.

1.) Согласование выхода систем передачи со входом в линейный тракт.

2.) Инверсия и сдвиг линейного спектра для систем, работающим по параллельным цепям.

Инверсия спектра приводит к тому, что шумы в линейных переходах становятся не внятными, значит их влияние уменьшается, что эквивалентно повышению помехозащищённости на 7 дБм.

3.) Применение вариантов линейного спектра со сдвигом частот.

Вследствие сдвига частот переходные разговоры также будут не внятными, а помехозащищённость увеличится на 2 – 4 дБм в зависимости от величины сдвига.

Импульсные помехи.

Импульсные помехи – это кратковременные импульсы напряжения, амплитуда которых превышает амплитуду полезного сигнала. Причиной импульсных помех являются атмосферные помехи, а также плохие контакты, пайка и низкая квалификация обслуживающего персонала. Они возникают при переключении импульсного оборудования с основного на резервный. Импульсные помехи в телефонных каналах и каналах вещания проявляются в виде треска, а в каналах передачи данных снижают достоверность связи.

Импульсные помехи:

1.) Не должны превышать порога 100мВ с вероятностью 2·10 -5 за час.

2.) Не должны быть больше порога 200мВ с вероятностью 2·10 -6 за один час.

3.) Не должны быть больше порога 300мВ с вероятностью 1·10 -6 за один час.

Методы борьбы с помехами.

Защита кабельных линий связи от электромагнитных влияний осуществляется с помощью газоразрядников в оконечном оборудовании и повышения квалификации обслуживающего персонала.

В микроэлектронных устройствах линии связи чаще всего являются электрически разомкнутыми линиями без потерь. Входное сопротивление таких линий носит емкостной характер, и его можно представить в виде конденсатора С n 11 , включенного параллельно приемнику сигнала и имеющего входной импеданс Z вх1 (рис. 2.55). В линии связи возникают помехи, источником которых являются тепловые шумы элементов линии, ЭДС гальванических пар и термопар, возникающих в местах контакта разнородных металлов. Напряжение помех U вн1 такого вида включено последовательно с Z вх1. Помехи такого вида зависят только от собственных параметров канала связи, поэтому будем называть их внутренними.

При наличии нескольких каналов связи обычно обратный провод делают общим для всех или для нескольких линий связи из соображений экономии проводов или из-за невозможности изолирования общих выводов нескольких источников и приемников сигналов. Этот факт отмечен введением в эквивалентную схему Z общ.

Токовые (последовательные) внешние помехи, напряжение которых включено последовательно с ; – напряжение помехи, наводимой из второго канала связи в первый; – напряжение помехи, наводимой из первого канала связи во второй;

Потенциальные (параллельные) внешние помехи и соответственно, напряжение которых включено параллельно Zвх соответствующего канала: Zвх1 и Zвх2. Такое разделение вида помех позволяет получить обобщенные формулы для расчета значения помех на входе приемника сигнала.

Для параллельной внешней помехи верно равенство

где – изображение тока во втором канале (канале, создающем помеху). В соответствии со схемой

Помехами называются посторонние электромагнитные возмущения n(t), накладывающиеся на передаваемые сигналы S(t) и препятствующие приему сигналов.

По форме помехи делятся на несколько видов:

  • синусоидальные - от промышленной сети с частотой 50 Гц, от медицинских установок и различных аппаратов;
  • импульсные - в виде отдельных импульсов или групп импульсов (например, помехи от систем зажигания двигателей внутреннего сгорания);
  • хаотические - типа теплового шума (например, броуновское движение заряженных частиц).

По характеру мешающего воздействия помехи также делятся на несколько видов:

  • аддитивные - когда в канале связи помеха u(t) складывается с полезным сигналом S{t), т.е. Z(t) = S(t ) + u(t);
  • мультипликативные - когда воздействие помехи n(t) эквивалентно изменению коэффициента передачи канала связи, т.е. Z{t) = S(t) n(t).

Аддитивные помехи, в свою очередь, подразделяются на помехи соседних радиоканалов, промышленные, естественные, флюктуаци- онные и помехи в виде случайного процесса.

Помехи соседних радиоканалов (перекрестные помехи) возникают, например, из-за перекрытия спектров соседних каналов связи (рис. 5.12). Мера борьбы - раздвигание несущих частот соседних каналов не менее чем на две полуширины спектров сигналов.

Рис. 5.12. Перекрытие спектров соседних каналов связи с несущими частотами f x и/ 2

Промыииенные помехи (искусственные помехи) возникают вследствие затухающих колебаний при искрообразовании в различных электрических устройствах (например, электромагнитное излучение промышленного оборудования, ламп накаливания). Эти помехи проявляются, например, в беспорядочном треске и щелчках в телефонах. Мера борьбы - предотвращение или уменьшение искрообразования, использование фильтров для замыкания ВЧ-колебаний в устройствах, экранирование радиоаппаратуры.

Естественные помехи могут быть атмосферными (внутриканаль- ными) и космическими. Атмосферные помехи возникают из-за электромагнитного излучения при грозовых разрядах и проявляются на длинных и средних волнах в виде сильного нерегулярного треска в телефонах и радиоприемниках. Космические помехи вызваны излучением звезд в результате протекающих в них процессов преобразования энергии. Меры борьбы - переход в ультракоротковолновый диапазон, свободный от этого вида помех.

Флюктуационные помехи, источником которых являются внутренние шумы, представляют собой случайные колебания токов и напряжений в элементах радиоаппаратуры - последовательность коротких импульсов, имеющих случайный момент появления.

Помехи в виде случайного процесса можно определить как нежелательный процесс, который сопровождает передачу сигналов в линиях связи. Примером могут служить перекрестные помехи, когда во время телефонной связи происходит ложная коммутация двух телефонных линий, в результате чего в трубке можно слышать разговор по другой линии. Другим примером являются внутриканальные помехи, которые иногда возникают в телевизионных системах под воздействием атмосферных явлений. При этом телевизионный сигнал начинает распространяться на расстояния, превышающие обычные, и возникают взаимные помехи с локальными радиостанциями, ведущими вещание на тех же частотах.

Часть помех в линии связи вносят электронные компоненты - различные шумы: тепловой, дробовой, фликер-шум.

Тепловой шум возникает в процессе теплового возбуждения атомов проводника или резистора. В результате появляются свободные электроны, которые хаотически движутся в различных направлениях с различными скоростями. Их движение приводит к появлению случайной разности потенциалов на концах проводника или резистора.

Дробовой шум присутствует везде, где через какое-либо активное устройство течет постоянный или переменный ток и происходят случайные колебания величины этого тока, которые накладываются на сигнал и искажают его. Название «дробовой шум» происходит от специфического потрескивания, которое можно услышать в наушниках, если усилить сигнал с помощью усилителя низкой частоты.

Фликер-шум возникает в полупроводниковых вакуумных устройствах вследствие дефектов кристаллической структуры материала, которые приводят к флюктуациям проводимости. Происхождение этих шумов до конца не выяснено. Фликер-шумы нельзя смоделировать, поскольку они изменяются от устройства к устройству. В большинстве случаев на частотах свыше 10 кГц фликер-шумом можно пренебречь. Условно считают, что фликер-шум занимает полосу 0,1... 10 3 Гц.

В качестве параметра для оценки качества системы используется отношение сигнал/шум - отношение максимального значения напряжения сигнала к эффективному значению напряжения шума:

Отношение сигнал/шум часто определяют в децибелах:

Иногда в качестве отношения сигнал/шум берут отношение мощности сигнала P s и средней мощности помехи Р„, также выраженное в децибелах:

Типичные значения приемлемого отношения сигнал/шум составляют около 50...60 дБ - для высококачественного радиовещания музыкальных программ, 16 дБ - для низкокачественной передачи речи, до 30 дБ - для коммерческих телефонных систем, 60 дБ - для телевизионного вещания с хорошим качеством.

Отношение сигнал/шум уменьшается при прохождении сигнала через каскады усиления или преобразования в приемных устройствах систем связи, так как каждый каскад добавляет собственный шум. Если рассматривать многокаскадный усилитель, то общий коэффициент усиления определяется произведением коэффициентов усиления каждого каскада:

В идеальном случае, когда каскады не вносят собственных шумов, на выходе отношение сигнал/шум не изменится, так как

Реально каждый /-каскад вносит шумы и помехи:

Тогда отношение сигнал/шум на выходе /-каскада будет составлять

При расчете общего отношения сигнал/шум всех каскадов системы необходимо раздельно вычислить полезный сигнал 5 отах ВЬ1Х и уровень шума л вых (/) с учетом коэффициентов передачи каскадов G, и уровня шумов «,(/), внесенных в каждый каскад.

Полезные сигналы редко присутствуют в электрических цепях в чистом виде. Практически всегда на них накладываются шумы и помехи. При этом полезный сигнал искажается при передаче, и сообщение воспроизводится с некоторой ошибкой. Причиной ошибок являются как искажения, вносимые самим каналом, так и различного вида помехи, воздействующие на сигнал при передаче. В собственно устройствах канала передачи информации имеются два основных источника шумов: дискретная структура тока в усилительных элементах (транзисторах, микросхемах и т.д.) и тепловое движение свободных электронов в проводниках электрической цепи. При этом временные и частотные характеристики канала определяют линейные искажения. Кроме того, радиоканал может вносить и нелинейные искажения, обусловленные нелинейностью тех или иных его звеньев, цепей или устройств.

В общем случае под помехой понимают случайный сигнал, однородный с полезным и действующий одновременно с ним. Для систем передачи информации помеха - любое случайное воздействие на полезный сигнал, ухудшающее верность приема и воспроизведения передаваемых по линии связи сообщений.

По месту возникновения помехи делят на внешние и внутренние. Причинами внешних помех являются природные процессы и работа различных технических устройств. В диапазонах дециметровых и менее волн имеют значение и космические помехи , связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах. В диапазоне оптических частот имеется квантовый шум , вызванный дискретной природой сигнала.

В радиоканалах встречаются атмосферные помехи , обусловленные электрическими процессами в атмосфере, прежде всего грозовыми разрядами.

Сильные помехи создают промышленные установки. Это так называемые индустриальные помехи , возникающие из-за резких изменений тока в мощных электрических цепях всевозможных электротехнических устройств. Распространенным видом внешних помех являются помехи от посторонних радио- и телестанций, систем военного назначения. Они обусловлены нарушением регламента распределения частот, недостаточной стабильностью частот генераторов и плохой фильтрацией гармоник сигнала, а также нелинейными процессами в каналах, ведущими к так называемым перекрестным искажениям (проявляются в переносе модуляции с мешающего внеполосного сигнала на полезный).

Основными видами внешних помех в проводных каналах связи являются импульсные шумы и прерывание связи.

Внутренние помехи обусловлены процессами, происходящими при работе самого устройства. В любом диапазоне частот имеют место внутренние шумы устройств, связанные с хаотическим движением носителей заряда в усилительных приборах, резисторах и других элементах.

Аналитически влияние помехи r(t) на полезный сигнал u(t) в общем виде можно выразить оператором Y:

где функция s(u(t)) отражает искаженный полезный сигнал.

Возможны два сочетания полезного сигнала и шума. Если оператор У в формуле (2.1) вырождается в линейную сумму сигнальной составляющей и помехи, т.е.

то помеху называют аддитивной (от англ, addition - сложение).

Если же оператор У может быть представлен в виде произведения некоторого коэффициента k(t) (здесь k(t) - случайный процесс) и сигнала u(t), т.е.

то помеху называют мультипликативной (от англ, multiplication - умножение).

Мультипликативные помехи обусловлены случайными изменениями параметров радиоканала. Они проявляются в изменении уровня сигнала. В реальных каналах передачи информации обычно имеют место и аддитивные, и мультипликативные помехи, и поэтому

По основным свойствам аддитивные помехи делят на три класса: сосредоточенные но спектру (узкополосные помехи), импульсные (сосредоточенные во времени) и флуктуационные (распределенные по частоте и во времени) помехи, не ограниченные ни во времени, ни но спектру.

Сосредоточенными по спектру называют помехи, основная часть мощности которых приходится на отдельные участки диапазона частот, меньших полосы пропускания системы связи.

Импульсной (сосредоточенной во времени) помехой называют регулярную или хаотическую последовательность импульсных сигналов, однородных с полезным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы цепей или работающего рядом с ними устройства. В зависимости от частоты следования импульсов одна и та же помеха может воздействовать как импульсная на приемник с широкой полосой пропускания и как флуктуациопная па приемник с относительной узкой полосой пропускания.

Флуктуационная помеха (флуктуационный шум) представляет случайный процесс с нормальным распределением - гауссовский процесс (закон Гаусса). Эти помехи имеют место практически во всех реальных каналах связи, и их называют шумами. С физической точки зрения аддитивные флуктуационные помехи порождаются в системах связи различного рода флуктуациями, т.е. случайными отклонениями тех или иных физических величин (параметров) от их средних значений. Среди таких шумов можно прежде всего назвать внутренние шумы электронных усилителей. Различают следующие виды флуктуационных шумов:

  • тепловой (шум Джонсона);
  • фликкер-шум (иногда - розовый шум);
  • дробовый (квантовый).

Тепловые шумы резисторов. Одной из главных причин возникновения шума являются флуктуации объемной плотности электрического заряда в резистивных элементах из-за хаотического теплового движения носителей. В любом резисторе всегда имеются свободные электроны, находящиеся в хаотическом тепловом движении. При этом может оказаться, что в определенный момент времени в одном направлении проходит больше электронов, чем в другом. Значит, даже в отсутствие внешней ЭДС мгновенное значение тока, текущего через резистор, отлично от нуля. Эти мгновенные изменения тока вызывают на выводах резистора шумовую разность потенциалов. Среднее значение такого напряжения равно нулю, а переменная составляющая проявляется как шум.

Важное значение для систем связи имеет спектр мощности шумового напряжения на концах резистора. Его определяют по формуле Найквиста:

где R - сопротивление резистора, Ом; к = 1,38- 10~ 23 Дж/К - постоянная Больцмана; Т - абсолютная температура резистора в градусах Кельвина. Часто удобнее пользоваться односторонним энергетическим спектром, который задают в области положительных частот | В 2 /Гц |:

Спектральную плотность мощности теплового шума оценим из такого примера: при Г= 300 К и R = 20 кОм значение N 0 = 4 -1,38 -10 23 -300-20 000 = = 3,31 10 1(> В 2 /Гц, откуда среднее квадратическое значение напряжения f/ m = 3,3M0 16 В/Гц 2 .

Спектральная плотность мощности теплового шума одинакова для всех частот, представляющих интерес для большинства систем связи; другими словами, источник теплового шума на всех частотах излучает с равной мощностью на единицу ширины полосы - от постоянной составляющей до частоты порядка 10 12 Гц. Следовательно, простая модель теплового шума предполагает, что спектральная плотность его мощности равномерна и достаточно точно соответствует модели белого шума (см. далее).

Фликкер-шум - шум, спектральная плотность которого изменяется с частотой по закону 1// (с примерно постоянной спектральной мощностью на декаду - изменение в 10 раз). Часто фликкер-шумом называют любой шум, спектральная плотность которого уменьшается с увеличением частоты. Обычно на частотах выше 10 кГц фликкер-шумами пренебрегают.

Дробовой шум обусловлен неравномерным движением дискретных носителей электрического тока в электронных приборах - диодах, транзисторах, микросхемах и лампах; он имеет равномерный спектр, т.е. является белым; в отличие от резисторов флуктуации возникают не за счет хаотического теплового движения электронов, а вследствие статистической независимости их упорядоченного перемещения.

Поскольку тепловой шум присутствует во всех системах связи и является заметным источником помех, характеристики теплового шума (аддитивный, белый и гауссов) часто применяются для моделирования шума в системах связи. Гауссов шум с нулевым средним полностью характеризуется дисперсией, поэтому эту модель особенно просто использовать и при детектировании сигналов, и при проектировании оптимальных приемников.

По виду частотного спектра помехи делят на стационарный (белый) и нестационарный шумы. Белый шум содержит гармонические составляющие с одинаковой амплитудой и случайной начальной фазой, которые равномерно распределены практически по всему частотному радиодиапазону - от постоянной составляющей до частоты порядка 10 12 Гц. В теории оптимальной фильтрации часто вводят понятие квазибелого шума (от лат. quasi - якобы; почти), параметры и характеристики которого близки к показателям белого шума.

Нестационарный шум - шум, длящийся короткие промежутки времени (меньшие, чем время усреднения в измерителях).

В зависимости от спектра помехи могут быть сплошными или селективными. Сигнал сплошной помехи характеризуется распределением его мощности по широкому спектру частот. Селективная помеха характеризуется тем, что ее мощность сосредоточена либо на одной частоте, либо в узкой полосе частот.

Хорошее техническое проектирование может устранить большинство шумов путем экранирования, фильтрации, выбора модуляции и оптимального местоположения приемника.

С математической точки зрения информационные случайные сигналы (сигналы случайного характера, несущие передаваемую информацию) и шумы подчиняются одним вероятностным законам, поэтому они получили обобщенное название случайные колебания или случайные процессы.

Для анализа случайных сигналов применяют методы статистической теории связи, базирующейся на математическом аппарате теории вероятностей и теории случайных процессов. С целью упрощения и наглядности анализа работу электрических цепей часто рассматривают при воздействии детерминированных сигналов. Для учета же случайного характера реального сигнала в качестве его математической модели используют не отдельную детерминированную функцию u(t ), а совокупность подобных функций {u k (t)} = u { (t), u 2 (t ),..., образующих случайный процесс, в котором будет заключена полезная информация.

Понятие помехи

Лекция 3. Дискретный канал с помехами

Цель лекции: ознакомление c понятием помех

а) понятие помех;

б) виды помех;

в) искажения;

г) борьба с помехами.

Помеха – это любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Помехи весьма разнообразны как по своему происхождению, так и по физическим свойствам.

В проводных каналах связи основным видом помех являются импульсные шумы и прерывная связь. Появление импульсных помех часто связано с автоматической коммутацией и с перекрестными наводками. Прерывание связи есть явление, при котором сигнал в линии резко затухает или совсем исчезает.

Практически в любом диапазоне частот имеют место внутренние шумы аппаратуры, обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Этот вид помех особенно сказывается в диапазоне ультракоротких волн. В этом диапазоне имеют значение и космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах и других внеземных объектах.

Классификацию помех можно провести по следующим признакам:

По происхождению (месту возникновения);

По физическим свойствам;

По характеру воздействия на сигнал.

К помехам по происхождению в первую очередь относятся внутренние шумы аппаратуры (тепловые шумы) обусловленные хаотическим движением носителей заряда в усилительных приборах, сопротивлениях и других элементах аппаратуры. Случайное тепловое движение носителей заряда в любом проводнике вызывает случайную разность потенциалов на его концах. Среднее значение напряжения равно нулю, а переменная составляющая проявляется как шум. Квадрат эффективного напряжения теплового шума определяется известной формулой Найквиста

где Т- абсолютная температура, которую имеет сопротивление R;

F - полоса частот; k =1,37*10 (-23) Вт.сек/град- постоянная Больцмана.

К помехам по происхождению, во вторую очередь, относятся помехи от посторонних источников, находящихся вне каналов связи:

Атмосферные помехи (громовые разряды, полярное сияние, и др.), обусловленные электрическими процессами в атмосфере;

Индустриальные помехи, возникающие в электрических цепях электроустановок (электротранспорт, электрические двигатели, системы зажигания двигателей, медицинские установки и другие.);

Помехи от посторонних станций и каналов, возникающих от различных нарушений режима их работы и свойств каналов;

Космические помехи, связанные с электромагнитными процессами, происходящими на Солнце, звездах, галактиках и других внеземных объектах.


По физическим свойствам помех различают:

Флуктуационные помехи;

Сосредоточеные помехи.

Флуктуационные помехи . Среди аддитивных помех особое место занимает флуктационная помеха, которая является случайным процессом с нормальным распределением (гауссов процесс). Этот вид помех практически имеет место во всех реальных каналах.

Электрическую структуру флуктуационной помехи можно представить себе как последовательность бесконечно коротких импульсов, имеющих случайную амплитуду и следующих друг за другом через случайные промежутки времени. При этом импульсы появляются один за другим настолько часто, что переходные явления в приемнике от отдельных импульсов накладываются, образуя случайный непрерывный процесс.

Так, источником шума в электрических цепях могут быть флуктуации тока, обусловленные дискретной природой носителей заряда (электронов, ионов). Дискретная природа электрического тока проявляется в электронных лампах и полупроводниковых приборах в виде дробового эффекта.

Наиболее распространенной причиной шума являются флуктуации, обусловленные тепловым движением.

Длительность импульсов, составляющих флуктуационную помеху, очень мала, поэтому спектральная плотность помехи постоянна вплоть до очень высоких частот.

К сосредоточенным по времени (импульсным) помехам относят помехи в виде одиночных импульсов, следующих один за другим через такие большие промежутки времени, что переходные явления в радиоприемнике от одного импульса успевают практически затухнуть к моменту прихода следующего импульса.

Сосредоточенные по спектру помехи . К этому виду помех принято относить сигналы посторонних радиостанций, излучения генераторов высокой частоты различного назначения и т. п. В отличие от флуктационных и импульсных помех, спектр которых заполняет полосу частот приёмника, ширина спектра сосредоточенной помехи в большинстве случаев меньше полосы пропускания приёмника. В диапазоне коротких волн этот вид помех является основным, определяющим помехоустойчивость связи.

По характеру воздействия на сигнал различают:

Аддитивные помехи;

Мультипликативные помехи.

Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Мешающее воздействие аддитивной помехи определяется суммированием с полезным сигналом. Аддитивные помехи воздействует на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.

Мультипликативной называется помеха, мгновенные значения которой перемножаются с мгновенными значениями сигнала. Мешающее действие мультипликативных помех проявляется в виде изменения параметров полезного сигнала, в основном амплитуды. В реальных каналах электросвязи обычно имеют место не одна, а совокупность помех.

Под искажениями понимают такие изменения форм сигнала, которые обусловлены известными свойствами цепей и устройств, по которым проходит сигнал. Главная причина искажений сигнала – переходные процессы в линии связи, цепях передатчика и приемника. При этом различают искажения: линейные и нелинейные возникающие в соответствующих линейных и нелинейных цепях. В общем случае искажения отрицательно сказываются на качестве воспроизведения сообщений и не должны превышать установленных значений (норм).

При известных характеристиках канала связи форму сигнала на его выходе всегда можно рассчитать по методике, изложенной в теории линейных и нелинейных цепей. Дальнейшие изменения формы сигнала можно скомпенсировать корректирующими цепями или просто учесть при последующей обработке в приемнике. Это уже дело техники.

ДРУГОЕ ДЕЛО ПОМЕХИ - ОНИ заранее не известны и поэтому не могут быть устранены полностью.

Борьба с помехами - основная задача теории и техники связи. Любые теоретические и технические решения, о выполнении кодера или декодера, передатчика и приемника системы связи должны приниматься с учетом того, что в линии связи имеются помехи. При всем многообразии методов борьбы с помехами их можно свести к трем направлениям:

Подавление помех в месте их возникновения. Это достаточно эффективное и широко применяемое мероприятие, но не всегда приемлемо. Ведь существуют источники помех, на которые воздействовать нельзя (грозовые разряды, шумы Солнца и др.);

Уменьшение помех на путях проникновения в приемник;

Ослабление влияния помех на принимаемое сообщение в приемнике, демодуляторе, декодере. Именно это направление для нас является предметом изучения.




Top