Управление сигналами com порта. COM-порт (последовательный порт). Сигналы TXD и RXD «Передаваемые данные» и «Принимаемые данные»

Рекомендация ITU-T V.24 (1980), а также её более поздняя редакция X.24 (1984) имеют название: «Перечень цепей стыка между Оконечным Оборудованием Данных и Оконечным Оборудованием Цепей Данных». Из названия следует, что протокол V.24 устанавливает процедуры взаимодействия на физическом уровне двух типов устройств — ООД и АКД.

  • Оконечное Оборудование Данных (ООД) или Data Terminal Equipment(DTE) в общем случае выполняет задачу представления данных пользователю и является в этом смысле оконечным устройством.
  • Оконечное Оборудование Цепей Данных (ОЦД) или Аппаратура Канала Данных (АКД) или Data Circuit-terminal Equipment(DCE) в общем случае выполняет задачу представления данных сети и является в этом смысле посредником.

Протокол V.24 определяет набор электрических сигналов, с помощью которых DTE и DCE устанавливают взаимодействие. Сигналы, которые формирует DTE, являются входными для DCE и наоборот. Всего в рекомендации определяется более 40 цепей стыка, однако, в промышленной реализации V.24 используются далеко не все рекомендованные сигналы.

Сигнал DTR «Присоединить АПД К линии»

Источником сигнала DTR (Data Terminal Ready) является устройство DTE. Назначение сигнала - представить DCE информацию о том, что аппаратура DTE готова к тому, чтобы начать процесс передачи данных.

Сигнал DSR «АПД готова»

Источником сигнала DSR (Data Set Ready) является устройство DCE. DSR формируется DCE в ответ на сигнал DTR, полученный от DTE. Назначение сигнала — представить DTE информацию о том, что аппаратура DCE готова к тому, чтобы участвовать в процессе передачи данных.

Сигнал RTS «Запрос передачи»

Источником сигнала RTS (Request To Send) является устройство DTE. Назначение сигнала — перевести DCE непосредственно в режим передачи данных.

Сигнал CTS «Готов к передаче»

Источником сигнала RTS (Clear To Send) является устройство DCE. CTS формируется DCE в ответ на сигнал RTS, полученный от DTE. Назначение сигнала — представить DTE информацию о том, что аппаратура DCE готова к тому, чтобы начать процесс непосредственной передачи данных.

Сигналы RTS и CTS используются для выполнения аппаратного управления темпом передачи данных. Следует различать скорость, с которой производится обмен данными между DCE и DTE и темп, с которым DCE работает с каналом передачи данных. В том случае, если DCE не справляется с выбранным DTE темпом передачи, это устройство должно перевести сигнал CTS в состояние «выключено». В ответ на это DTE протоколами верхних уровней приостанавливает процесс передачи данных до восстановления состояния сигнала CTS.

Сигнал LSD «Детектор принимаемого линейного сигнала данных»

Источником сигнала LSD (Line Signal Detect) является устройство DCE. Назначение данного сигнала — индикация наличия или отсутствия сигнала от удаленного конца передачи данных. Например, модем устанавливает этот сигнал (у модемов он обычно называется CD — Carrier Detect) в том случае, когда он установил соединение с удаленным модемом в соответствии со своим линейным протоколом.

Сигналы TXD и RXD «Передаваемые данные» и «Принимаемые данные»

Источником сигнала TXD (Transmit Data) является устройство DTE. Передача данных производится после получения от DCE подтверждения готовности к приему данных. Источником сигнала RXD (Receive Data) является устройство DCE. Достоверный прием данных в DTE производится после получения сигнала LSD от DCE.

Асинхронный режим взаимодействия DTE и DCE

При использовании этого режима DCE и DTE либо жестко устанавливают одинаковую скорость обмена данными, либо одна из сторон (обычно это DCE) подбирает соответствующее значение скорости автоматически из установленного набора в ходе обмена данными с DTE. Данные в асинхронном режиме передаются информационной группой (от 6 до 8 бит). Информационная группа может сопровождаться битом контроля (дополнение до четного или нечетного числа единиц всей группы). Формат информационной группы также должен быть предварительно согласован. О начале информационной группы сигнализирует прием стартового бита — переход принимаемого сигнала в «0». После получения стартового бита приемник запускает свой внутренний генератор, с помощью которого производится синхронизация принимаемых данных по времени. Информационная группа завершается передачей стопового бита, который обычно занимает 1,5 или две информационных позиции.

Сигналы TXC и RXC «Синхронизация элементов передаваемого и принимаемого сигнала»

Источником сигналов TXС (Transmit Clock) и RXC (Receive Clock) является устройство DCE. Переход сигнала TXС или RXC из состояния «включен» в состояние «выключен» соответствует середине информационной позиции соответствующего сигнала обмена (TXD или RXD). Сигналы TXC и RXC формируются устройством DCE в непрерывном режиме с момента включения питания и могут использоваться для синхронизации информационного обмена.

Синхронный режим взаимодействия DTE и DCE

Синхронный режим информационного обмена используется в тех случаях, когда необходимо обеспечить устойчивое, надежное и высокоскоростное взаимодействие DCE и DTE. В данном режиме аппаратура DTE принимает и передает данные на синхронизации DCE. В синхронном режиме управление потоком не используется, и поэтому, сигналы RTS и CTS в данном случае не оказывают влияние на темп информационного обмена. Темп обмена при синхронном взаимодействии определяется DCE-источниками данных для обоих направлений передачи. Синхронное взаимодействие по протоколу V.24 может быть реализовано, например, с использованием синхронных интерфейсов RS-232-C. Стандарт RS-232-C определяет необходимое подмножество управляющих сигналов для реализации данного взаимодействия со скоростями до 128 Кбит/с.

Сигналы TRXC «Синхронизация элементов передаваемого сигнала»

Источником сигналов TRXC (Transmit Signal Element Timing) является устройство DTE. Этот сигнал может быть использован в тех случаях, когда источником синхронизирующих импульсов является аппаратура DTE. Переход сигнала TRXC из состояния «включен» в состояние «выключен» соответствует середине информационной позиции сигнала TXD.

Симметричные и несимметричные цепи

Сигнальное напряжение обычной, несимметричной цепи формируется относительно общего сигнального провода. Диапазоны изменения сигнальных напряжений интерфейса EIA-232 приведены в таблице:

Диапазон от − 3 до + 3 Вольт образует зону изменения сигнала.

При передаче по кабелю, который соединяет DCE и DTE информационный сигнал подвергается воздействию помех и искажается из-за несогласованности параметров линии и генератора. Это может затруднить или сделать невозможным его правильное распознавание приемником. Поэтому даже при использовании синхронного режима обмена скорость передачи сигналов через физические интерфейсы не может превышать сотни килобит в секунду. Для того чтобы преодолеть это ограничения для соединения DCE и DTE применяют специальные симметричные цепи.

Диапазоны изменения сигнальных напряжений между сигнальными проводами пары U ab для интерфейса, который использует сбалансированные сигналы (EIA-422) приведены в таблице:

Современные последовательные высокоскоростные интерфейсы используют сбалансированные цепи для передачи как отдельных, так и всех информационных сигналов. В качестве примера можно рассмотреть интерфейс, который построен в соответствии со стандартом V.35.

Добавить в:

Описание интерфейса RS-232, формат используемых разъемов и назначение выводов, обозначения сигналов, протокол обмена данными.

Общее описание

Интерфейс RS-232, совсем официально называемый "EIA/TIA-232-E", но более известный как интерфейс "COM-порта", ранее был одним из самых распространенных интерфейсов в компьютерной технике. Он до сих пор встречается в настольных компьютерах, несмотря на появление более скоростных и "интеллектуальных" интерфейсов, таких как USB и FireWare. К его достоинствам с точки зрения радиолюбителей можно отнести невысокую минимальную скорость и простоту реализации протокола в самодельном устройстве.

Физический интерфейс реализуется одним из двух типов разъемов: DB-9M или DB-25M, последний в выпускаемых в настоящее время компьютерах практически не встречается.

Назначение выводов 9-контактного разъема


9-контактная вилка типа DB-9M
Нумерация контактов со стороны штырьков
Направление сигналов указано относительно хоста (компьютера)
Контакт Сигнал Направление Описание
1 CD Вход Обнаружена несущая
2 RXD Вход Принимаемые данные
3 TXD Выход Передаваемые данные
4 DTR Выход Хост готов
5 GND - Общий провод
6 DSR Вход Устройство готово
7 RTS Выход Хост готов к передаче
8 CTS Вход Устройство готово к приему
9 RI Вход Обнаружен вызов

Назначение выводов 25-контактного разъема

Контакт Сигнал Направление Описание
1 SHIELD - Экран
2 TXD Выход Передаваемые данные
3 RXD Вход Принимаемые данные
4 RTS Выход Хост готов к передаче
5 CTS Вход Устройство готово к приему
6 DSR Вход Устройство готово
7 GND - Общий провод
8 CD Вход Обнаружена несущая
9 - - Резерв
10 - - Резерв
11 - - Не используется
12 SCD Вход Обнаружена несущая #2
13 SCTS Вход Устройство готово к приему #2
Контакт Сигнал Направление Описание
14 STXD Выход Передаваемые данные #2
15 TRC Вход Тактирование передатчика
16 SRXD Вход Принимаемые данные #2
17 RCC Вход Тактирование приемника
18 LLOOP Выход Локальная петля
19 SRTS Выход Хост готов к передаче #2
20 DTR Выход Хост готов
21 RLOOP Выход Внешняя петля
22 RI Вход Обнаружен вызов
23 DRD Вход Определена скорость данных
24 TRCO Выход Тактирование внешнего передатчика
25 TEST Вход Тестовый режим

Из таблиц видно, что 25-контактный интерфейс отличается наличием полноценного второго канала приема-передачи (сигналы, обозначенные "#2"), а также многочисленных дополнительных управляющих и контрольных сигналов. Однако, часто, несмотря на наличие в компьютере "широкого" разъема, дополнительные сигналы на нем просто не подключены.

Электрические характеристики

Логические уровни передатчика: "0" - от +5 до +15 Вольт, "1" - от -5 до -15 Вольт.

Логические уровни приемника: "0" - выше +3 Вольт, "1" - ниже -3 Вольт.

входное сопротивление приемника не менее 3 кОм.

Данные характеристики определены стандартом как минимальные, гарантирующие совместимость устройств, однако реальные характеристики обычно существенно лучше, что позволяет, с одной стороны, питать маломощные устройства от порта (например, так спроектированы многочисленные самодельные data-кабели для сотовых телефонов), а с другой - подавать на вход порта инвертированный TTL-уровень вместо двуполярного сигнала.

Описание основных сигналов интерфейса

CD - Устройство устанавливает этот сигнал, когда обнаруживает несущую в принимаемом сигнале. Обычно этот сигнал используется модемами, которые таким образом сообщают хосту о обнаружении работающего модема на другом конце линии.

RXD - Линия приема хостом данных от устройства. Подробно описана в разделе "Протокол обмена данными".

TXD - Линия передачи хостом данных к устройству. Подробно описана в разделе "Протокол обмена данными".

DTR - Хост устанавливает этот сигнал, когда готов к обмену данными. Фактически сигнал устанавливается при открытии порта коммуникационной программой и остается в этом состоянии все время, пока порт открыт.

DSR - Устройство устанавливает этот сигнал, когда включено и готово к обмену данными с хостом. Этот и предыдущий (DTR) сигналы должны быть установлены для обмена данными.

RTS - Хост устанавливает этот сигнал перед тем, как начать передачу данных устройству, а также сигнализирует о готовности к приему данных от устройства. Используется при аппаратном управлении обменом данными.

CTS - Устройство устанавливает этот сигнал в ответ на установку хостом предыдущего (RTS), когда готово принять данные (например, когда предыдущие присланные хостом данные переданы модемом в линию или есть свободное место в промежуточном буфере).

RI - Устройство (обычно модем) устанавливает этот сигнал при получении вызова от удаленной системы, например при приеме телефонного звонка, если модем настроен на прием звонков.

Протокол обмена данными

В протоколе RS-232 существуют два метода управления обменом данных: аппаратный и программный, а также два режима передачи: синхронный и асинхронный. Протокол позволяет использовать любой из методов управления совместно с любым режимом передачи. Также допускается работа без управления потоком, что подразумевает постоянную готовность хоста и устройства к приему данных, когда связь установлена (сигналы DTR и DSR установлены).

Аппаратный метод управления реализуется с помощью сигналов RTS и CTS. Для передачи данных хост (компьютер) устанавливает сигнал RTS и ждет установки устройством сигнала CTS, после чего начинает передачу данных до тех пор, пока сигнал CTS установлен. Сигнал CTS проверяется хостом непосредственно перед началом передачи очередного байта, поэтому байт, который уже начал передаваться, будет передан полностью независимо от значения CTS. В полудуплексном режиме обмена данными (устройство и хост передают данные по очереди, в полнодуплексном режиме они могут делать это одновременно) снятие сигнала RTS хостом означает его переход в режим приема.

Программный метод управления заключается в передаче принимающей стороной специальных символов остановки (символ с кодом 0x13, называемый XOFF) и возобновления (символ с кодом 0x11, называемый XON) передачи. При получении данных символов передающая сторона должна соответственно остановить передачу или возобновить ее (при наличии данных, ожидающих передачи). Этот метод проще с точки зрения реализации аппаратуры, однако обеспечивает более медленную реакцию и соответственно требует заблаговременного извещения передатчика при уменьшении свободного места в приемном буфере до определенного предела.

Синхронный режим передачи подразумевает непрерывный обмен данными, когда биты следуют один за другим без дополнительных пауз с заданной скоростью. Этот режим COM-портом не поддерживается .

Асинхронный режим передачи состоит в том, что каждый байт данных (и бит контроля четности, в случае его наличия) "оборачивается" синхронизирующей последовательностью из одного нулевого старт-бита и одного или нескольких единичных стоп-битов. Схема потока данных в асинхронном режиме представлена на рисунке.

Один из возможных алгоритмов работы приемника следующий:

  1. Ожидать уровня "0" сигнала приема (RXD в случае хоста, TXD в случае устройства).
  2. Отсчитать половину длительности бита и проверить, что уровень сигнала все еще "0"
  3. Отсчитать полную длительность бита и текущий уровень сигнала записать в младший бит данных (бит 0)
  4. Повторить предыдущий пункт для всех остальных битов данных
  5. Отсчитать полную длительность бита и текущий уровень сигнала использовать для проверки правильности приема с помощью контроля четности (см. далее)
  6. Отсчитать полную длительность бита и убедиться, что текущий уровень сигнала "1".
Сигналы и контакты интерфейса RS232
Разъем 9-ти
пиновый #
Разъем 25
пиновый #
Обозначение Полное наименование Направление Что значит
Передача данных (Transmit Data) Передача данных от компьютера
Прием данных (Receive Data) Прием данных компьютером
Запрос на передачу (Request to Send)
Готовность передачи (Clear to Send) Аппаратный контроль передачи данных типа RTS/CTS
Готовность источника данных (Data Set Ready) Я готов для обмена данными
Готовность приемника данных (Data Terminal Ready) Я готов для обмена данными
Наличие несущей (Carrier Detect) Один модем соединен с другим
Сигнал вызова (Ring Indicator) Звонок (вызов) на телефонной линии
Земля

Замечание: DCD иногда маркируется как CD

Сигналы могут иметь другое значение

Только 3 контакта из 9 имеют строго определенное значение: передача, прием и земля. Это аппаратные линии и вы не можете повлиять изменить из предназначение. Но все другие сигнальные линии управляются программно и могут быть (или подразумевается что могут) в большинстве своем другого назначения. Однако они могут прнимать только два состояния: высокое (установленное) (+12 вольт) и низкое (сброшенное) (-12 вольт). Установленное состояние это "включено" и сброшенное состояние это "выключено". Для примера, Advanced Serial Port Monitor (или точнее пользователь программы) может управлять сигналом DTR, в аппаратная часть в свою очередь подает на него напряжение 12 вольт с той или иной полярностью. Модем (или другое устройство) которое принимает сигнал DTR может интерпретировать его по-разному. В одном случае модем (в зависимости от модели и прошивки) может может занять телефонную линию если сигнал DTR сброшен. В другом случае модем проигнорировать сигнал DTR в сброшенном состоянии.

Это применимо ко всем 6-ти сигнальным линиям. Аппаратная часть только посылает и принимает эти сигналы, но действие зависит (если оно вообще есть) от программы (например, Advanced Serial Port Monitor) и конфигурации того оборудоввания, которое вы подключаете к последовательному порту.

Кабельные соединения между последовательными портами

Работа по последовательному интерфейсу имеет свои преимущества. Одна из причин это то, что все сигналы однонаправленные. Если контакт 2 отправляет данные (и не позволяет принимать другие сигналы) то очевидно, что нельзя подсоединить к контакту 2 контакт того же типа. Если вы все же сделаете это, то вы не смоежет не отсылать, ни принимать сигналы по этой линии. Есть два разных способа соединения устройств. Один из них подразумевает соединение двух устройств разного типа, когда контакт №2 одного отсылает данные на контакт №2 второго (который принимает этот сигнал). Это путь, когда вы соединяете компьютер (DTE) и модем (DCE). Также существует второй путь в котором устройства могут быть одного типа: соедините контакт отправки данных №2 с контактом №3, принимающим данные устройства того же типа. Это путь, когда можно соединять два компьютера (DTE-в-DTE). Тип кабеля, использумый в этом случае называется null-modem cable (нуль-модемный кабель) поскольку он соединяет два компьютера без использования модемов. Нуль-модемный также иногда называют перевернутым кабелем, т.к. провода между контактами 2 иd 3 идут наоборот. Пример выше приведен для контактов 25-ти контактного разъема, но также соответственно можно использовать и 9-ти контактный разъем.

Контроль передачи данных типа RTS/CTS и DTR/DSR

Это так называемый "аппаратный" контроль передачи данных. Контроль передачи данных был раскрыт более подробно на другой странице в разедлее "Контроль передачи данных" , однако контакты и сигналы не были описаны. Advanced Serial Port Monitor поддерживает RTS/CTS и DTR/DSR типы аппаратного контроля передачи данных. Только RTS/CTS тип контроля предачи данных будет рассмотрен здесь, поскольку DTR/DSR тип контроля передачи данных функционирует по тому же принципу. Для того, чтобы активировать RTS/CTS контроль передачи данных необходимо только выбрать эту опцию в настройках Advanced Serial Port Monitor .

Итак, если DTE устройство (такое как компьютер) хочет прекратить передачу данных, оно сбрасывает состояние сигнала RTS. Сброшенный сигнал"Запрос на передачу (Request to Send)" (-12 вольт) означает "не посылать запросы ко мне" (прекратить передачу). Когда компьютер готов для принятия очередного блока данных он устанавливает сигнал RTS (+12 вольт) и поток данных возобновляется. Сигналы контроля передачи данных всегда посылаются в противоположном направлении от потока данных контроль которых они осуществляют. DCE устройства (модемы) работают по тому же принципу, только посылают сигнал на контакте CTS. Поэтому тип контроля передачи даных RTS/CTS использует 2 линии (провода).

Иногда приходится решать задачу связи электронного устройства с компьютером, будь то просто обмен данными или удалённое управление. Эта статья описывает, как это можно реализовать, используя последовательный порт. Главным его преимуществом является то, что стандартный программный интерфейс Windows (API) позволяет производить непосредственное управление выходными линиями, давая прямой контроль над ними, и имеет функцию ожидания некоторого события, связанного с COM-портом. Также стандарт RS-232, по которому выполнены COM-порты, допускает подключение и отключение кабелей во время работы устройств (hot plug).

Описание

COM-порт (последовательный порт) – двунаправленный интерфейс, передающий данные в последовательном виде (бит за битом) по протоколу RS-232. Это довольно-таки распространённый протокол, применяемый для связи одного устройства (например, компьютера) с другими посредством проводов длиной до 30м. Уровни логических сигналов здесь отличаются от стандартных: уровень логической единицы – от +5 до +15В, уровень логического нуля – от -5 до -15В, что требует дополнительных преобразований схемы, но обеспечивает хорошую помехоустойчивость.

Рассмотрим 9-пинововый разъём (DB-9M). Ниже представлена его распиновка:

№ вывода Наименование Характер сигнала Сигнал
1 DCD Входной Data carrier detect
2 RxD Выходной Transmit data
3 TxD Входной Receive data
4 DTR Выходной Data terminal ready
5 GND - Ground
6 DSR Входной Data set ready
7 RTS Выходной Request to send
8 CTS Входной Clear to send
9 RI Входной Ring indicator

Больше всего нас будут интересовать пины 2 (передача данных),3 (приём данных) и 5 (земля). Это минимальный набор для возможности двухстороннего общения приборов.

Подробно останавливаться на описании протокола не буду. Для этого есть ГОСТ’ы и т.п. Поэтому мы пойдём дальше и поговорим о том, как же управлять этим зверем.

Применение

Как уже говорилось, уровни ЛС RS-232 отличаются от стандартных уровней ТТЛ. Следовательно, нам необходимо как-то преобразовывать величины напряжений. Т.е. сделать 5В из +15В и 0В из -15В (и наоборот). Один из способов (и, наверное, самый простой) – использование специальной микросхемы MAX232. Она проста в понимании и одновременно может преобразовывать два логических сигнала.

Ниже приведена схема её включения:


Думаю, трудностей быть не должно. Это один из вариантов использования этой микросхемы: передача данных с микроконтроллера на ЭВМ и наоборот. Передаваемый сигнал поступает на ножки Tx IN с одной стороны и на Rx IN с другой. Входные сигналы снимаются с Tx OUT и Rx OUT соответственно.

Программирование

Для начала поговорим о программировании портов на низком уровне. Так будет более правильно. Я очень много нервов потратил, разбираясь с этим интерфейсом, пока не начал вникать в принцип его работы на более низком уровне, нежели простая передача символов. Если будет понятно это, значит и с языками высокого уровня проблем не будет.

Ниже представлены адреса COM-портов, с которыми нам придётся работать:

Название порта Адрес IRQ
COM 1 3F8h 4
COM 2 2F8h 3
COM 3 3E8h 4
COM 4 2E8h 3

Они могут различаться. Установить значения можно в настройках BIOS’а. Это базовые адреса. От них же и будут зависеть адреса регистров, отвечающие за работу портов:

Адрес DLAB Чтение/Запись Аббревиатура Название регистра
+ 0 =0 Write Transmitter Holding Buffer
=0 Read Receiver Buffer
=1 Read/Write Divisor Latch Low Byte
+ 1 =0 Read/Write IER Interrupt Enable Register
=1 Read/Write Divisor Latch High Byte
+ 2 - Read IIR Interrupt Identification Register
- Write FCR FIFO Control Register
+ 3 - Read/Write LCR Line Control Register
+ 4 - Read/Write MCR Modem Control Register
+ 5 - Read LSR Line Status Register
+ 6 - Read MSR Modem Status Register
+ 7 - Read/Write Scratch Register

Первая колонка – адрес регистра относительно базового. Например, для COM1: адрес регистра LCR будет 3F8h+3=3FB. Вторая колонка – DLAB (Divisor Latch Access Bit) бит, определяющий разное назначение для одного и того же регистра.. Т.е. он позволяет оперировать 12-ю регистрами, используя всего 8 адресов. Например, если DLAB=1, то, обращаясь по адресу 3F8h, мы будем устанавливать значение младшего байта делителя частоты тактового генератора. Если же DLAB=0, то, обращаясь по тому же адресу, в этот регистр будет записан передаваемый или принятый байт.

“Нулевой” регистр

Ему соответствуют регистры приёма/передачи данных и установки коэффициента делителя частоты генератора. Как уже было сказано выше, если DLAB=0, то регистр используется для записи принимаемых/передаваемых данных, если же он равен 1, то устанавливается значение младшего байта делителя частоты тактового генератора. От значения этой частоты зависит скорость передачи данных. Старший байт делителя записывается в следующую ячейку памяти (т.е. для порта COM1 это будет 3F9h). Ниже приведена зависимость скорости передачи данных от коэффициента делителя:

Interrupt Enable Register (IER)

Если DLAB=0, то он используется как регистр управления прерываниями от асинхронного адаптера, если DLAB=1, то в нём задаётся старший байт делителя частоты тактового генератора.

Interrupt Identification Register (IIR)

Прерывание – это событие, при котором останавливается выполнение основной программы и начинается выполнение процедуры прерываний. Этот регистр определяет тип произошедшего прерывания.

Line Control Register (LCR)

Это управляющий регистр.

Бит 7 1 Divisor Latch Access Bit – задание скорости обмена данными
0 Обычнй режим (управление прерываниями, приём/передача данных)
Бит 6 Имитировать обрыв линии (посылает последовательность из нескольких нулей)
Биты 3 – 5 Бит 5 Бит 4 Бит 3 Выбор чётности
X X 0 No Parity
0 0 1 Odd Parity
0 1 1 Even Parity
1 0 1 High Parity (Sticky)
1 1 1 Low Parity (Sticky)
Бит 2 Кол-во стоп-битов
0 1 стоп-бит
1 2 стоп-бита при 6,7 или 8 бит данных или 1.5 стоп-бита при 5 битах данных.
Биты 0 And 1 Бит 1 Бит 0 Число битов данных
0 0 5 бит
0 1 6 бит
1 0 7 бит
1 1 8 бит

Проверка чётности подразумевает под собой передачу ещё одного бита – бита чётности. Его значение устанавливается таким образом, чтобы в пакете битов общее количество единиц (или нулей) было четно или нечетно, в зависимости от установки регистров порта. Этот бит служит для обнаружения ошибок, которые могут возникнуть при передаче данных из-за помех на линии. Приемное устройство заново вычисляет четность данных и сравнивает результат с принятым битом четности. Если четность не совпала, то считается, что данные переданы с ошибкой.

Стоп-бит означает окончание передачи данных.

Modem Control Register (MCR)

Регистр управления модемом.

Бит Значение
0 Линия DTR
1 Линия RTS.
2 Линия OUT1 (запасная)
3 Линия OUT2 (запасная)
4 Запуск диагностики при входе асинхронного адаптера, замкнутом на его выход.
5-7 Равны 0

Line Status Register (LSR)

Регистр, определяющий состояние линии.

Бит Значение
0 Данные получены и готовы для чтения, автоматически сбрасывается при чтении данных.
1 Ошибка переполнения. Был принят новый байт данных, а предыдущий ещё не был считан программой. Предыдущий байт потерен.
2 Ошибка чётности, сбрасывается после чтения состояния линии.
3 Ошибка синхронизации.
4 Обнаружен запрос на прерывание передачи "BREAK" – длинная строка нулей.
5 Регистр хранения передатчика пуст, в него можно записать новый байт для передачи.
6 Регистр сдвига передатчика пуст. Этот регистр получает данные из регистра хранения и преобразует их в последовательный вид для передачи.
7 Тайм-аут (устройство не связано с компьютером).

Modem Status Register (MSR)

Регистр состояния модема.

Ну вот и всё. Оперируя этими регистрами, можно напрямую общаться с COM-портом, управлять передачей и приёмом данных. Если вам не хочется возиться с памятью, можно воспользоваться уже готовыми компонентами для различных сред программирования: C++, VB, Delphi, Pascal и т.д. Они интуитивно понятны, поэтому, думаю, здесь не стоит заострять на них внимание.

У стандартного модемного интерфейса (rs232) кроме линий RxD и TxD есть еще куча разных, их называют “сигналами квитирования”. Я всегда путался в них — во всех этих RTS’ах, CTS’ах и прочих DSR’ах. В этой статье, я попробую систематизировать и кратко описать эти сигналы.

Итак, первое что стоит знать – интерфейс rs232 соединяет два типа устройств

    DTE (Data Terminal Equipment) – это обычно компьютер или заменяющее его устройство. Для простоты, дальше я DTE буду называть компьютер. На компьютер устанавливается разъем типа “папа”

    DCE (Data Circuit-terminating Equipment) – это обычно модем, или его заменяющее оборудование. Для простоты я буду называть DCE модемом. На DCE устанавливается разъем типа “мама”

Сигналы я буду описывать на примере 9-контактного разъема, так как он самый распространенный. Взглянем на него.

Как видно, контакты на разъемах перевернуты. Таким образом, прямой провод соединит контакты с одинаковыми номерами, тоесть, к примеру, контакту 2 на “папе” будет соответствовать контакт 2 на “маме”.

А вот и сводная табличка сигналов. Под названием вывода – номер его штырька в 9-контактном разъеме.

Передача данных компьютером, прием модемом TxD
3
RxD
2
Передача данных модемом, прием компьютером
Компьютер готов передавать данные, либо компьютер разрешает модему передавать данные RTS
7
CTS
8
Модем разрешает компьютеру передавать данные
DSR
6
Готовность модема к работе.
Готовность компьютера к работе. DTR
4
RI
9
Индикатор звонка
DCD
1
Индикатор наличия несущей. Устанавливается после соединения.
Земля SG
5
SG
5
Земля

Ну, и немного подробнее опишем каждый сигнал.

Я буду рассматривать сигналы обычных логических уровней – так, как они выглядят на выходах или входах микроконтроллера.

Сигналы в кабеле (после преобразователя уровня, к примеру max232) перевернуты и уровни сдвинуты. Так, логической 1 на выходе контроллера соответствуют уровни напряжения от –3 до –15 вольт, а логическому нулю – +3…+15 вольт.

TxD (Tramsmit Data)

Сразу скажу, что откуда в сокращении буква “x” – я не знаю.

По этой линии происходит передача данных от компьютера к модему. По умолчанию на ней — высокий уровень. Прием байта начинается по стартовому биту (а точнее, по переходу линии из высокого состояния в низкое). Стартовый бит всегда является логическим нулем.

После этого идет не обязательный бит четности (на картинке его нет). Бит четности дополняет количество единиц до четного (even) или нечетного (odd). К примеру, если в байте было 3 единицы и четность установлена как “even”, то бит четности будет равен 1, чтобы дополнить количество единиц до четырех – четного числа. Четность служит для проверки правильности передачи байта.

После бита четности идет один, один с половиной или два стоп-бита. Стоп бит используется, чтобы правильно отработался старт-бит (чтобы между байтами всегда был перепад из высокого уровня в низкий). Это бит всегда установлен в логическую 1.

К примеру, передача 0xEE будет выглядеть на линии UART’а так:

Параметры последовательного порта обычно пишут так – “9600, 8N1”. 9600 – это скорость передачи бит/с, 8 – количество бит данных в посылке, N – бит четности не используется (может быть E или O, если используется), 1 – один стоп бит.

Заметьте, что количество передаваемых байт в секунду зависит не только от скорости передачи, но и от формата байта. К примеру, один байт в формате 8N1 занимает 10 бит (стартовый + 8 бит данных + стоповый), а в формате 8E1 уже 11бит – добавляется бит четности. Соответственно, байтовая скорость при битовой 9600бод станет 960байт/с в первом случае и 872.7байт/с во втором.

RxD (Receive Data)

Тоже самое, что и TxD, только хозяин этой линии – модем.

CTS (Clear To Send)

Рассмотрим такую ситуацию – компьютер отправляет модему большое количество данных на скорости 38400 бод, а модем подключен к другому модему на скорости 9600 бод.

Буфер внутри модема быстро заполняется, и, для того, чтобы он не переполнился, модем должен сообщить компьютеру “прекрати передачу!”. Для этого и служит линия CTS.

Активный уровень CTS – низкий. Тоесть, модем разрешает передачу данных, когда на ножке контроллера 0.

Пример из руководства по LPC17xx.

Как видно, компьютер передавал данные, пока на ножке был ноль. Когда появился высокий уровень, компьютер закончил передавать текущий байт и остановился.

RTS (Request To Send)

Вот с этой ножкой неразбериха. Проблема в том, что на месте этой ножки по стандарту могут быть два сигнала – RTS (номер цепи по стандарту — 105) и RTR (номер 133).

RTS (Ready To Send) – компьютер сигнализирует модему о том, что он сейчас будет передавать данные. Модем должен приготовиться и активировать CTS, после чего компьютер начинает передавать данные.

RTR (Ready To Receive) – компьютер сообщает модему о том, что он готов принимать данные. Это – аналог CTS, только со стороны компьютера.

Сейчас основная часть оборудования использует RTS как RTR! И даже аппаратное квитирование у LPC17xx, LPC2xxx, AT91SAM7 реализует именно механизм RTR.

Активный уровень как и у CTS – низкий.

Рассмотрим механизм подробнее на примере из руководства по LPC17xx

Сначала — сигнал RTS – низкий, принимаются байты.

Как только буфер приемника заполнился N символами, RTS переходит в высокое состояние, что запрещает модему передавать данные. Но, как видно, модем не успел среагировать на RTS и передал еще один байт, поэтому очень важно оставлять в буфере запас для как минимум одного байта.

DTR (Data Terminal Ready)

Сигнал от компьютера к модему, обозначающий, что компьютер включен и котов к работе с модемом. Активное состояние, как обычно, низкое. Тоесть, если на ножке контроллера 0, то модем должен подготовиться к подключению к линии. Если-же компьютер выставит на этой ножке логическую 1, то модем обязан отключиться от линии (положить трубку, к примеру)

DTR также часто использовался как источник питания для внешнего малопотребляющего оборудования (к примеру, для мышки).

DSR (Data Set Ready)

Сигнал от модема к компьютеру. Говорит о том, что модем включен, проинициализирован, и готов к общению с компьютером. До тех пор, пока этот сигнал не активен нет смысла передавать что-либо в модем. Модем готов, когда на ножке контроллера логический 0.

RI (Ring Indicator)

Сигнал от модема к компьютеру. Как не сложно догадаться, этот сигнал дергается, когда на модем звонят. Скорость переключения сигнала – маленькая, порядка секунд, сигнал довольно точно повторяет огибающую звонка (огибающую того, что вы слышите, когда звонит аналоговый телефон).

На практике, этот сигнал используется редко. Обычно программа просто ждет сообщения “RING” от модема.

Логический 0 на ножке контроллера значит, что идет вызов.

DCD (Data Carrier Detect)

Сигнал от модема к компьютеру. Сообщает компьютеру о том, что модем подключен к удаленному модему. Эта ножка – очень важна, так как дает возможность определить спонтанные отключения.

Логический 0 означает, что связь между модемами активна.

Теперь кратко про кабель

Теперь про кабель. Стандарт определяет максимальную емкость кабеля как 2.5нФ. Это, примерно, 25метров.

Однако, на практике, это ограничение игнорируют, так как целостность сигнала определяется не только емкостью но и скоростью. Вот максимальные длинны, используемые на практике для низких скоростей.

Скорость (бод) Длинна экранированного кабеля, метры Длинна неэкранированного кабеля, метры
110 1500 300
300 1200 300
1200 900 150
2400 600 150
4800 150 75
9600 75 30

Стандарт

Если у вас остались какие-то вопросы, то лучше обратиться непосредственно к стандарту. как оказалось, найти его довольно сложно, поэтому выкладываю еще и у себя.




Top