Как электричество передает информацию. Беспроводное электричество поразило своих создателей. К достоинствам относятся

Мы презентуем устройство передачи электроэнергии без проводов с коэффициентом полезного действия (КПД) около 100%. В дальнейшем будет обоснована величина КПД ≈ 100% и, разумеется, мы демонстрируем эту величину нашим экспериментальным устройством.

Важность проблемы беспроводной передачи электроэнергии не подлежит сомнению – преодоление естественных преград (реки, горы и долины); резервное электроснабжение, электротранспорт, решение ряда задач беспроводного электропитания бытовых и промышленных устройств и т.д. – всё это элементы названной проблемы.

Немного истории

Впервые проблему беспроводной передачи электроэнергии обозначил на заре прошлого века Н. Тесла. В основе его демонстрационного устройства был положен метод излучения и приема электромагнитных волн открытым резонансным контуром, который содержит антенну – емкость и катушку провода – индуктивность. Характерные показатели устройства Теслы сводятся к следующим: КПД = 4%, дальность передачи – 42 км, максимальный габарит башни-антенны – 60 м, длина волны – 2000 м. Существенно, что в устройстве Теслы планета Земля рассматривается как один из проводов в передаче электроэнергии, поскольку излучение и прием столь длинных волн без заземления не эффективны.

После экспериментов Теслы, на протяжении прошлого ХХ века все попытки осуществить беспроводную передачу электроэнергии с приемлемым КПД оказались безрезультатными.

В текущем десятилетии прямо или косвенно сообщается о работах в Масачуссетском Технологическом Университете под руководством М. Соля-чича. В основе их работ лежит известный индукционный, при помощи магнитного поля, метод передачи электроэнергии, который реализован резонансными плоскими катушками индуктивности. Этот метод в идеале обеспечивает КПД = 50%, при дальности передачи соизмеримой с габаритами катушек-антенн. Характерные показатели их демонстрационного устройства сводятся к следующим: КПД ≈ 40%, дальность передачи – 2 м, габарит катушек-антенн – 0,6 м, длина волны – 30 м.

Энергетически замкнутая система

В нашем устройстве, как и в устройстве Теслы, переносчиком энергии являются электромагнитные волны, т.е. действует общеизвестный вектор Пойнтинга.

Теоретически обосновано и экспериментально подтверждено следующее: передающая и приемная антенны устройства беспроводной передачи электроэнергии образуют энергетически замкнутую систему, частично включающую в себя и энергию электромагнитного поля Земли; через возбуждение (активацию) электромагнитного поля Земли в этой системе происходит передача электроэнергии от передающей антенны к приемной с КПД ≈ 100% (фиг. 1).

Фиг. 1

Фиг. 2

Пользуясь этой антенной, несложно сформулировать задачу, решение которой обеспечит передачу электроэнергии без проводов:

1. Передающая и приемная антенны должны возбуждать (активировать) электромагнитное поле Земли в локальной (ограниченной) области пространства;

2. Возбужденное электромагнитное поле Земли должно быть также локальным в пространстве и не потреблять энергии (должно представлять собой стоячую электромагнитную волну между передающей и приемной антеннами).

Решение этой задачи нереально с антеннами, созданными на основе пространственных представлений геометрии Эвклида с ее знаменитым 5ым постулатом – постулатом о параллельных прямых. Этот постулат в школьных учебниках гласит: через точку, не лежащую на данной прямой, можно провести только одну прямую параллельную данной.

фиг. 3

Знаменитость этого постулата состоит в том, что, начиная с І ст. до н.э., на протяжении 2000 лет лучшие умы мира безуспешно пытались доказать его как теорему. И вот в 1826 г. россиянин Лобачевский изложил основы своей геометрии, в которой 5й постулат геометрии Эвклида формулировался, по сути, своим отрицанием: через точку, не лежащую на данной прямой, можно провести минимум две прямые, параллельные данной.


фиг. 4

И хотя этот постулат не очень согласуется с нашими пространственными представлениями, геометрия Лобачевского непротиворечива и исправно служит физикам в последнее время. Например, геометрия Лобачевского причастна к описанию громадного ряда явлений от колебаний в механических передаточных линиях до взаимодействия элементарных частиц и процессов в мембране живой клетки.

Псевдосфера

Правда, до 1863 г., на протяжении почти 40 лет, геометрия Лобачевского воспринималась как нечто, не имеющее отношение к реальности. Но, в 1863 г. итальянский математик Бельтрами установил, что все свойства плоскости геометрии Лобачевского реализуются на поверхности псевдосферы – геометрического тела, свойства которого совпадают либо противоположны свойствам сферы. На фиг. 5 изображена псевдосфера, а на фиг. 6 ее образующая – трактриса с асимптотой X’X. При равенстве радиусов больших окружностей (параллелей) псевдосферы и сферы можно количественно сравнивать объемы и площади поверхностей их.


фиг. 5


фиг. 6

Именно в форме полупсевдосфер изготавливаются антенны нашего устройства; нами демонстрируется устройство со следующими характеристиками: КПД = 100%, дальность передачи – 1,8 м, максимальный габарит катушек антенн – 0,2 м, длина волны – 500 м, заземление не обязательно.

Здесь следует отметить, что совокупность названных характеристик демонстрационного устройства противоречит основам классической электродинамики – радиотехники.

Какие же свойства антенн-полупсевдосфер обеспечивают такие характеристики нашего устройства?

Среди более десятка экстраординарных свойств псевдосферы заслуживает внимания прежде всего следующее:

бесконечно протяженное в пространстве тело псевдосферы имеет конечный объем и конечную площадь поверхности.

Именно это свойство псевдосферы позволяет при помощи антенн-полупсевдосфер создать конечную, ограниченную в пространстве, энергетически замкнутую систему, что является необходимым условием для передачи энергии из КПД = 100%.

Вторая фундаментальная задача, которая решается в нашем устройстве, касается среды, заполняющей упомянутую энергетически замкнутую систему. Суть в том, что только в квантовой электродинамике, плодом которой являются лазеры и мазеры, среда рассматривается активной. Напротив, в классической электродинамике среда относится к пассивным объектам; с ней связывается затухание, потери электромагнитной энергии при распространении.

Невероятно, но факт, в нашем устройстве происходит активация электрического и магнитного полей Земли. Эти поля являются объектами среды в нашем устройстве, поскольку заполняют упомянутую энергетически замкнутую систему. Активизация этой среды является также следствием свойств псевдосферы.

Суть в том, что все точки на поверхности псевдосферы являются, как утверждают математики, гиперболическими, разрывными в пространстве. Применительно к антеннам-полупсевдосферам нашего устройства это равносильно разрывам, квантованию электрического и магнитного полей в каждой точке провода намотки катушек антенн-полупсевдосфер. Это ведет к электромагнитным возмущениям – волнам, длина которых соизмерима с диаметром провода намотки катушек антенн-полупсевдосфер, т.е. практически длина таких волн составляет величину порядка 1 мм и меньше. Такие электромагнитные волны, как свидетельствует теория и практика, способны, через поляризацию молекул воздуха или непосредственно, активизировать электромагнитное поле Земли и тем самым компенсировать потери электромагнитной энергии на пути передачи ее в нашем устройстве. Это также необходимо для объяснения КПД = 100%.

Мало этого, нами заявлен генератор избыточной электромагнитной энергии, коэффициент преобразования энергии (КПЭ) которого составляет величину более 400%; т.е. сравнимо из КПЭ известных тепловых насосов.

И о последней, третьей задаче, которая решается в нашем устройстве.

Общеизвестно, что энергия переносится в пространстве только бегущей электромагнитной волной, волной, в которой электрическое и магнитное поле синфазны. Это условие невозможно реализовать на расстоянии 1,8 м при длине волны 500 м. Но, общеизвестно также, что скорость движения бегущей электромагнитной волны вдоль прямолинейного или криволинейного проводника замедляется, уменьшается в сравнении со скоростью в свободном пространстве; уменьшается также длина волны. Этот эффект широко применяется в электрорадиотехнике в так называемых замедляющих системах. Уменьшение длины волны в этих системах составляет от десятых долей единицы с прямолинейными проводами до 30 единиц с криволинейными (спиральными).

Именно эффект замедления, уменьшения длины волны позволяет формировать бегущую волну на небольших расстояниях в нашем устройстве.

Действительно, длина волны нашего демонстрационного устройства уменьшается до длины упомянутой выше длины , которая и формирует бегущую, переносящую энергию электромагнитную волну в нашем устройстве. Коэффициент уменьшения волны при этом составляет величину единиц. Такое громадное уменьшение длины волны объясняет и тот экспериментальный факт, что наше устройство эффективно работает и без заземления передатчика и приемника электроэнергии.

В работе нашего устройства задействовано еще одно удивительное свойство псевдосферы:

объем псевдосферы составляет половину объема сферы, при этом площади их поверхностей равны.

Из этого свойства следует, что объем сферы, ограниченный собственной площадью поверхности, содержит два объема псевдосферы, ограниченные двумя совмещенными собственными площадями поверхности и третьей площадью упомянутой сферы. Это позволяет представить объем сферы вокруг Земли , заполненный электрическим и магнитным полями Земли, двумя объемами псевдосферы и , каждый из которых ограничен площадями и содержит половины электрического и магнитного полей Земли (фиг. 7). Учитывая этот факт и факт неизбежного нахождения нашего устройства только на одной стороне земли, утверждается что антенны нашего устройства взаимодействуют только из половинами электрического и магнитного полей Земли. При этом, не следует полагать, что вторые половины этих полей бездействуют. В этом убеждает ниже следующее.


фиг. 7

Вспомним, что большинство законов физики сформулированы для инерциальных систем отсчета, в которых время безотносительное (абсолютное), пространство изотропно, скорость прямолинейного движения электромагнитных волн (света) абсолютна и т.д. В рамках инерциальных систем отсчета общеизвестно, что в свободном пространстве при отражении бегущей электромагнитной волны образуется стоячая, в которой различаются отдельно стоячая электрическая волна и отдельно стоячая магнитная волна. При длине бегущей волны, равной , длины стоячих электрической и магнитной волн равны половине длины бегущей, т.е. . Существенно также, что период этих стоячих волн равен периоду бегущей волны, т.е. , поскольку период стоячей волны состоит из суммы двух полупериодов прямой и отраженной полуволн.

Факт вычисления, а не экспериментального определения, величины с точностью, зависящей от точности определения длительности суток на Земле, позволяет совершенно по-новому взглянуть на ряд проблем физики.

В 1968 году американский специалист в области космических исследований Питер Е. Глэйзер (Peter E. Glaser) предложил размещать крупные панели солнечных батарей на геостационарной орбите, а вырабатываемую ими энергию (уровня 5-10 ГВт) передавать на поверхность Земли хорошо сфокусированным пучком СВЧ-излучения, преобразовывать её затем в энергию постоянного или переменного тока технической частоты и раздавать потребителям.


Такая схема позволяла использовать интенсивный поток солнечного излучения, существующий на геостационарной орбите (~ 1,4 кВт/кв.м.), и передавать полученную энергию на поверхность Земли непрерывно, вне зависимости от времени суток и погодных условий . За счёт естественного наклона экваториальной плоскости к плоскости эклиптики с углом 23,5 град., спутник, расположенный на геостационарной орбите, освещён потоком солнечной радиации практически непрерывно за исключением небольших отрезков времени вблизи дней весеннего и осеннего равноденствия, когда этот спутник попадает в тень Земли. Эти промежутки времени могут точно предсказываться, а в сумме они не превышают 1% от общей продолжительности года.

Частота электромагнитных колебаний СВЧ-пучка должна соответствовать тем диапазонам, которые выделены для использования в промышленности, научных исследованиях и медицине. Если эта частота выбрана равной 2,45 ГГц, то метеорологические условия, включая густую облачность и интенсивные осадки, практически не влияют на КПД передачи энергии. Диапазон 5,8 ГГц заманчив, поскольку дает возможность уменьшить размеры передающей и приемной антенн. Однако влияние метеорологических условий здесь уже требует дополнительного изучения.

Современный уровень развития СВЧ-электроники позволяет говорить о довольно высоком значении КПД передачи энергии СВЧ пучком с геостационарной орбиты на поверхность Земли - порядка 70-75%. При этом диаметр передающей антенны обычно бывает выбран равным 1 км, а наземная ректенна имеет размеры 10 км х 13 км для широты местности 35 град. СКЭС с уровнем выходной мощности 5 ГВт имеет плотность излучаемой мощности в центре передающей антенны 23 кВт/кв.м., в центре приемной – 230 Вт/кв.м.


Были исследованы различные типы твёрдотельных и вакуумных СВЧ-генераторов для передающей антенны СКЭС. Вильям Браун показал, в частности, что хорошо освоенные промышленностью магнетроны, предназначенные для СВЧ-печей, могут быть использованы также и в передающих антенных решётках СКЭС, если каждый из них снабдить собственной цепью отрицательной обратной связи по фазе по отношению к внешнему синхронизирующему сигналу (так называемый, Magnetron Directional Amplifier - MDA).

Наиболее активно и планомерно исследования в области СКЭС проводила Япония. В 1981 году под руководством профессоров М.Нагатомо (Makoto Nagatomo) и С.Сасаки (Susumu Sasaki) в Институте космических исследований Японии были начаты исследования по разработке прототипа СКЭС с уровнем мощности 10 МВт, который мог бы быть создан с использованием существующих ракетоносителей. Создание такого прототипа позволяет накопить технологический опыт и подготовить основу для формирования коммерческих систем.


Проект был назван СКЭС2000 (SPS2000) и получил признание во многих странах мира.

В 2008 доцент кафедры физики Массачусетского Технологического Института (МИТ) Марин Солджачич (Marin Soljačić) был пробуждён от сладкого сна настойчивым пиканьем мобильного телефона. «Телефон не умолкал, требуя, чтобы я поставил его заряжаться», - рассказывает Солджачич. Уставший и не собиравшийся вставать, он стал мечтать о том, чтобы телефон, оказавшись дома, начинал заряжаться сам по себе .

В 2012-2015 гг. инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали PoWiFi (от Power Over WiFi).


На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На каверзные вопросы о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер, во время своей работы, по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным. И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии .

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику и военную технику, чтобы управлять ими беспроводным способом и осуществлять дистанционную зарядку/подзарядку.

Актуальным является передача энергии для БПЛА (вероятнее всего уже по технологии PoWiMax или от радиолокатора самолёта носителя):


Для БПЛА негатив от закона обратных квадратов (изотропно-излучающая антенна) частично «компенсирует» ширина луча антенны и диаграмма направленности:

Ведь БРЛС ЛА в импульсе может выдавать под 17 кВт энергии ЭМИ.

Это не сотовая связь -где ячейка должна обеспечить связь конечным элементам на 360 градусов.
Допустим такая вариация:
Самолёт носитель (для Perdix) это F-18 обладает (сейчас) БРЛС AN/APG-65:


максимальная средняя излучаемая мощность по 12000 Вт

Или в перспективе будет иметь AN/APG-79 AESA:


в импульсе должен выдавать под 15 кВт энергии ЭМИ

Этого вполне достаточно, что бы продлить активную жизнь Perdix Micro-Drones с нынешних 20 минут до часа, а может и больше.

Скорее всего будет использоваться промежуточный дрон Perdix Middle, которого будет облучать на достаточном расстоянии БРЛС истребителя, а он в свою очередь осуществит «раздачу» энергии для младших братьев Perdix Micro-Drones по PoWiFi/PoWiMax, параллельно обмениваясь с ними информацией (полётно -пилотажной, целевыми задачами, координацией роя).

Возможно вскоре дело дойдет и до зарядки сотовых телефонов, и других мобильных устройств, которые находятся в зоне действия Wi-Fi, Wi-Max или 5G?

Послесловие: 10-20 лет, после широкого внедрения в повседневную жизнь многочисленных электромагнитных излучателей СВЧ (Мобильные телефоны, Микроволновые печи, Компьютеры,WiFi,Blu tools и т.д.) внезапно тараканы в больших городах вдруг превратились в раритет! Теперь таракан- насекомое, которое можно встретить разве что в зоопарке. Они неожиданно исчезли из домов, которые раньше так любили.

ТАРАКАНЫ КАРЛ!
Эти монстры лидеры списка «радиорезистентных организмов» бесстыдно капитулировали!
Справка
LD 50 - средняя летальная доза, то есть доза убивает половину организмов в эксперименте; LD 100 - летальная доза убивает всех организмов в эксперименте.

Кто следующий на очереди?

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
Украина: 2,5 мкВт/см². (самая жесткая санитарная норма в Европе)
Россия, Венгрия: 10 мкВт/см².
Москва: 2,0 мкВт/см². (норма существовала до конца 2009 года)
США, Скандинавские страны: 100 мкВт/см².
Временно допустимый уровень (ВДУ) от мобильных радиотелефонов (МРТ) для пользователей радиотелефонов в РФ определён 10 мкВт/см² (Раздел IV - Гигиенические требования к подвижным станциям сухопутной радиосвязи СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи»).
В США Сертификат выдается Федеральной комиссией по связи (FCC) на сотовые аппараты, максимальный уровень SAR которых не превышает 1,6 Вт/кг (причем поглощенная мощность излучения приводится к 1 грамму ткани органов человека).
В Европе, согласно международной директиве Комиссии по защите от неионизирующего излучения (ICNIRP), значение SAR мобильного телефона не должно превышать 2 Вт/кг (при этом поглощенная мощность излучения приводится к 10 граммам ткани органов человека).
Сравнительно недавно в Великобритании безопасным уровнем SAR считался уровень равный 10 Вт/кг. Такая же примерно картина наблюдалась и в других странах.
Принятую в стандарте максимальную величину SAR (1,6 Вт/кг) даже нельзя с уверенностью отнести к «жестким» или к «мягким» нормам.
Принятые и в США и в Европе стандарты определения величины SAR (все нормирование микроволнового излучения от сотовых телефонов, о котором идет речь базируется только на термическом эффекте, то есть связанном с нагреванием тканей органов человека).

ПОЛНЫЙ ХАОС.
Медицина до сих пор пока не дала внятного ответа на вопрос: вреден ли мобильный/WiFi и насколько?
А как будет с беспроводной передачей электроэнергии СВЧ технологиями?
Тут мощности не ватты и мили ватты, а уже кВт…

Прим: Типичная WiMAX базовая станция излучает мощность на уровне приблизительно +43 дБм (20 Вт), а станция мобильной связи обычно передает на +23 дБм (200 мВт).


Теги:

  • Электроэнергия
  • СВЧ
  • PoWiFi
  • дроны
  • БПЛА
Добавить метки

Экология потребления.Технологии:Учёные в американской Исследовательской лаборатории Диснея (Disney Research) разработали метод беспроводной зарядки, сделавший ненужными провода и зарядные устройства.

Сегодняшние смартфоны, планшеты, ноутбуки и другие портативные устройства имеют огромную мощность и производительность. Но, помимо всех преимуществ мобильной электроники, у нее есть и обратная сторона – постоянная необходимость подзарядки через провода. Несмотря на все новые технологии батарей, эта необходимость уменьшает удобство устройств и ограничивает их перемещение.

Учёные в американской Исследовательской лаборатории Диснея (Disney Research) нашли решение этой проблемы. Они разработали метод беспроводной зарядки, сделавший ненужными провода и зарядные устройства. Причём их метод позволяет одновременно заряжать не только гаджеты, но и, к примеру, бытовую технику и освещение.

«Наш инновационный метод делает электрический ток таким же вездесущим, как и Wi-Fi, - говорит один из директоров лаборатории и её ведущий научный специалист Алансон Сэмпл. - Он открывает дорогу для дальнейших разработок в сфере робототехники, ранее ограниченных ёмкостью батарей. Пока мы продемонстрировали работу установки в небольшой комнате, но нет никаких препятствий к тому, чтобы увеличить её мощность до размеров склада».

Систему беспроводной передачи электроэнергии разработал ещё в 1890-х годах известный учёный Никола Тесла, однако массового распространения изобретение не получило. Сегодняшние системы передачи тока без проводов работают в основном на крайне ограниченных пространствах.

Метод, названный квазистатическим полостным резонансом (quasistatic cavity resonance, QSCR), заключается в подаче тока в стены, пол и потолок помещения. Они, в свою очередь, генерируют магнитные поля, которые воздействуют на подсоединённый к заряжаемому устройству приёмник, содержащий катушку. Выработанная таким образом электроэнергия передаётся батарее, предварительно пройдя через исключающие воздействие других полей конденсаторы.

Испытания показали, что таким образом через обычную электрическую сеть можно передавать до 1,9 киловатт мощности. Этой энергии хватает для того, чтобы одновременно заряжать до 320 смартфонов. Причем, по словам ученых, такая технология не дорогостоящая и может быть легко налажен ее коммерческий выпуск.

Испытания проходили в специально созданной из алюминиевых конструкций комнате размером 5 на 5 метров. Сэмпл подчеркнул, что в будущем наличие металлических стен может быть не обязательным. Можно будет использовать токопроводящие панели или специальную краску.

Разработчики уверяют, что их способ передачи энергии по воздуху не представляет никакой угрозы для здоровья человека и любых других живых существ. Их безопасность обеспечивается за счет дискретных конденсаторов, которые выполняют роль изолятора для потенциально опасных электрических полей. опубликовано

Беспроводная передача для доставки электричества имеет возможность поставлять основные достижения в области промышленности и приложениях, зависящих от физического контакта разъема. Оно, в свою очередь, может быть ненадежным и привести к неудачам. Передача беспроводной электроэнергии была впервые продемонстрирована Никола Тесла в 1890-х годах. Однако только в последнее десятилетие технология была использована до такой степени, что она предлагает реальные, ощутимые преимущества для приложений реального мира. В частности, развитие резонансной беспроводной системы питания для рынка бытовой электроники показало, что зарядка по индукции обеспечивает новые уровни удобства для миллионов повседневных устройств.

Рассматриваемая мощность широко известна многими терминами. Включая индуктивную передачу, связь, резонансную беспроводную сеть и такую же отдачу напряжения. Каждое из этих условий, по существу, описывает один и тот же фундаментальный процесс. Беспроводную передачу электроэнергии или мощности от источника питания до напряжения нагрузки без разъемов через воздушный зазор. Основой являются две катушки - передатчика и приемника. Первая возбуждается переменным током для генерации магнитного поля, которое, в свою очередь, индуцирует напряжение во второй.

Как работает рассматриваемая система

Основы беспроводной мощности включают раздачу энергии от передатчика к приемнику через колебательное магнитное поле. Для достижения этого постоянный ток, подаваемый источником питания, преобразуется в высокочастотный переменный. С помощью специально разработанной электроники, встроенной в передатчик. Переменный ток активирует катушку медного провода в раздатчике, которая генерирует магнитное поле. Когда вторая (приемная) обмотка размещается в непосредственной близости. Магнитное поле может вызывать переменный ток в принимающей катушке. Электроника в первом устройстве затем преобразует переменный обратно в постоянный, который становится потребляемой мощностью.

Схема беспроводной передачи электроэнергии

Напряжение «сети» преобразуется в сигнал переменного тока, который затем посылается на катушку передатчика через электронную цепь. Протекающий через обмотку раздатчика, индуцирует магнитное поле. Оно, в свою очередь, может распространяться на катушку приемника, которая находится в относительной близости. Затем магнитное поле генерирует ток, протекающий через обмотку приемного устройства. Процесс, посредством которого энергия распространяется между передающей и приемной катушками, также упоминается как магнитная или резонансная связь. И достигается с помощью обеих обмоток, функционирующих на той же частоте. Ток, текущий в катушке приемника, преобразуется в постоянный с помощью схемы приемника. Затем может использоваться для питания устройства.

Что значит резонанс

Расстояние, на которое может передаваться энергия (или мощность), увеличивается, если катушки передатчика и приемника резонируют на одной и той же частоте. Подобно тому, как настраиваемая вилка колеблется на определенной высоте и может достигать максимальной амплитуды. Это относится к частоте, с которой объект естественным образом вибрирует.

Преимущества беспроводной передачи

В чем заключаются преимущества? Плюсы:

  • сокращаются расходы, связанные с поддержанием прямых соединителей (например, в традиционном промышленном скользком кольце);
  • большее удобство для зарядки обычных электронных устройств;
  • безопасная передача в приложения, которые должны оставаться герметически закрытыми;
  • электроника может быть полностью скрыта, что снижает риск коррозии из-за таких элементов как кислород и вода;
  • надежная и последовательная подача питания на вращающееся, высокомобильное промышленное оборудование;
  • обеспечивает надежную передачу мощности в критически важные системы во влажной, грязной и движущейся среде.

Независимо от приложения, ликвидация физического соединения обеспечивает ряд преимуществ по сравнению с традиционными разъемами питания кабеля.

Эффективность рассматриваемой передачи энергии

Общая эффективность беспроводной системы питания является самым важным фактором в определении ее производительности. Результативность системы измеряет количество мощности, передаваемой между источником питания (то есть, настенной розеткой) и принимающим устройством. Это, в свою очередь, определяет такие аспекты как скорость зарядки и дальность распространения.

Системы беспроводной связи различаются в зависимости от их уровня эффективности, основанного на таких факторах, как конфигурация и дизайн катушки, расстояние передачи. Менее результативное устройство будет генерировать больше выбросов и приведет к меньшей мощности, проходящей через приемное устройство. Как правило, беспроводные технологии передачи электроэнергии для таких устройств как смартфоны, могут достигать 70% производительности.

Как измеряется эффективность

В смысле, как количество мощности (в процентах), которое передается от источника питания к приемному устройству. То есть, беспроводная передача электроэнергии для смартфона с КПД 80% означает, что 20% входной мощности потеряно между настенной розеткой и батареей для заряжаемого гаджета. Формула для измерения эффективности работы: производительность = постоянный ток исходящий, деленный на входящий, полученный результат умножить на 100%.

Беспроводные способы передачи электроэнергии

Мощность может распространяться по рассматриваемой сети почти по всем неметаллическим материалам, включая, но не ограничиваясь ими. Это такие твердые вещества, как древесина, пластмасса, текстиль, стекло и кирпич, а также газы и жидкости. Когда металлический или электропроводящий материал (то есть, помещается в непосредственной близости от электромагнитного поля, объект поглощает мощность из него и в результате нагревается. Это, в свою очередь, влияет на эффективность системы. Вот как работают индукционные приготовления, к примеру, неэффективная передача мощности из варочной панели создает тепло для приготовления пищи.

Чтобы создать систему беспроводной передачи электроэнергии, необходимо вернуться к истокам рассматриваемой темы. А,точнее, к успешному ученому и изобретателю Никола Тесла, который создал и запатентовал генератор, способный брать питание без различных материалистических проводников. Итак, для реализации беспроводной системы необходимо собрать все важные элементы и части, в результате будет реализована небольшая Это устройство, которое создает электрическое поле высокого напряжения в воздухе, вокруг него. При этом имеется небольшая входная мощность, она обеспечивает беспроводную передачу энергии на расстоянии.

Одним из наиболее важных способов передачи энергии является индуктивная связь. Он в основном используется для ближнего поля. Охарактеризован на том факте, что при прохождении тока по одному проводу на концах другого индуцируется напряжение. Передача мощности осуществляется путем взаимности между двумя материалами. Общий пример - это трансформатор. Микроволновая передача энергии, как идея, была разработана Уильямом Брауном. Вся концепция включает в себя преобразование питания переменного тока в радиочастотное и передачу его в пространстве и повторное в переменную мощность на приемнике. В этой системе напряжение генерируется с использованием микроволновых источников энергии. Таких как клистрон. И эта мощность передается через волновод, который защищает от отраженной мощности. А также тюнер, который соответствует импедансу микроволнового источника с другими элементами. Приемная секция состоит из антенны. Она принимает мощность микроволн и схему согласования импеданса и фильтра. Эта приемная антенна вместе с выпрямляющим устройством может быть диполем. Соответствует выходному сигналу с подобным звуковым оповещением выпрямительного блока. Блок приемника также состоит из подобной секции, состоящей из диодов, которые используются для преобразования сигнала в оповещение постоянного тока. Эта система передачи использует частоты в диапазоне от 2 ГГц до 6 ГГц.

Беспроводная передача электроэнергии с помощью который реализовал генератор с применением подобных магнитных колебаний. Суть заключается в том, что это устройство работало благодаря трем транзисторам.

Использование пучка лазера для передачи мощности в виде световой энергии, которая преобразуется в электрическую на приемном конце. Непосредственно сам материал получает питание с использованием источников, таких как Солнце или любой генератор электроэнергии. И, соответственно, реализует фокусированный свет высокой интенсивности. Размер и форма пучка определяются набором оптики. И этот передаваемый лазерный свет принимается фотогальваническими ячейками, которые преобразуют его в электрические сигналы. Он обычно использует оптоволоконные кабели для передачи. Как и в базовой солнечной энергетической системе, приемник, используемый в распространении на основе лазера, представляет собой массив фотоэлектрических элементов или солнечной панели. Они, в свою очередь, могут преобразовывать бессвязный в электричество.

Сущностные особенности работы устройства

Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией. То есть, изменяющееся поле создает потенциал. Он заставляет протекать ток. Когда электричество течет через катушку провода, он генерирует магнитное поле, которое заполняет область вокруг обмотки определенным образом. В отличие от некоторых других экспериментов с высоким напряжением, катушка Тесла выдержала множество проверок и проб. Процесс был достаточно трудоемким и длительным, но результат был успешным, потому и удачно запатентован ученым. Создать подобную катушку можно при наличии определенных составляющих. Для реализации потребуются следующие материалы:

  1. длина 30 см ПВХ (чем больше, тем лучше);
  2. медная эмалированная проволока (вторичный провод);
  3. березовая доска для основания;
  4. 2222A транзистор;
  5. подсоединение (первичный) провод;
  6. резистор 22 кОм;
  7. переключатели и соединительные провода;
  8. аккумулятор 9 вольт.

Этапы реализации устройства Тесла

Для начала необходимо поместить небольшой слот в верхнюю часть трубы, чтобы обернуть один конец провода вокруг. Медленно и осторожно обматывать катушку, следя за тем, чтобы не перекрывать провода и, при этом, не создавать пробелов. Этот шаг - самая сложная и утомительная часть, но потраченное время даст очень качественную и хорошую катушку. Каждые 20, или около того, поворотов помещаются кольца маскирующей ленты вокруг обмотки. Они выступают в качестве барьера. В случае, если катушка начнет распутываться. По завершении нужно обернуть плотную ленту вокруг верхней и нижней части обмотки и распылить ее 2 или 3 слоями эмали.

Затем необходимо подключить первичный и вторичный аккумулятор к батарее. После - включить транзистор и резистор. Меньшая обмотка является основной, а более длительная обмотка - вторичной. Можно дополнительно установить алюминиевую сферу сверху трубы. Кроме того, соединить открытый конец вторичной с добавленной, которая будет действовать как антенна. Необходимо создавать все с тщательной осторожностью, чтобы не дотрагиваться до вторичного устройства при включении питания.

При самостоятельной реализации существует опасность возгорания. Нужно перевернуть выключатель, установить лампу накаливания рядом с беспроводным устройством передачи энергии и наслаждаться световым шоу.

Беспроводная передача через систему солнечной энергии

Традиционные проводные конфигурации реализации энергии обычно требуют наличия проводов между распределенными устройствами и потребительскими единицами. Это создает множество ограничений как стоимость системных затрат на кабели. Потери, понесенные в передаче. А также растраты в распределении. Только сопротивление линии передачи приводит к потере около 20-30% генерируемой энергии.

Одна из самых современных беспроводных систем передачи энергии основана на передаче солнечной энергии с использованием микроволновой печи или луча лазера. Спутник размещен на геостационарной орбите и состоит из фотоэлектрических элементов. Они преобразуют солнечный свет в электрический ток, который используется для питания микроволнового генератора. И, соответственно, реализует мощность микроволн. Это напряжение передается с использованием радиосвязи и принимается на базовой станции. Она представляет собой комбинацию антенны и выпрямителя. И преобразуется обратно в электричество. Требует питания переменного или постоянного тока. Спутник может передавать до 10 МВт мощности радиочастоты.

Если говорить о системе распространения постоянного тока, то даже это невозможно. Так как для этого требуется разъем между источником питания и устройством. Существует такая картина: система полностью лишена проводов, где можно получить мощность переменного тока в домах без каких-либо дополнительных устройств. Там, где есть возможность зарядить свой мобильный телефон без необходимости физически подключаться к гнезду. Конечно, такая система возможна. И множество современных исследователей пытаются создать нечто модернизированное, при этом, изучив роль разработки новых способов беспроводной передачи электроэнергии на расстоянии. Хотя, с точки зрения экономической составляющей, для государств это будет не совсем выгодно, если внедрять такие устройства повсеместно, и заменять стандартное электричество на природное.

Истоки и примеры беспроводных систем

Эта концепция, на самом деле, не является новой. Вся эта идея была разработана Николасом Тесла в 1893 году. Когда он разработал систему освещающих вакуумных ламп с использованием техники беспроводной передачи. Невозможно себе представить, чтобы мир существовал без различных источников зарядки, которые выражены в материальном виде. Чтобы стали возможными мобильные телефоны, домашние роботы, MP3-плееры, компьютер, ноутбуки и другие транспортируемые гаджеты, которые заряжались бы самостоятельно, без каких-либо дополнительных подключений, освобождая пользователей от постоянных проводов. Некоторые из этих устройств могут даже не требовать большого количества элементов. История беспроводной передачи энергии достаточно насыщена, причем, в основном, благодаря разработкам Тесла, Вольта и др. Но, сегодня это остается лишь данными в физической науке.

Основной принцип заключается в преобразовании питания переменного тока в постоянное напряжение с помощью выпрямителей и фильтров. А затем - в возращение в исходное значение на высокой частоте с использованием инверторов. Эта низковольтная с высшими колебаниями мощность переменного тока затем переходит от первичного трансформатора к вторичному. Преобразуется в постоянное напряжение с использованием выпрямителя, фильтра и регулятора. Сигнал переменного тока становится прямым благодаря звуку тока. А также использованию секции выпрямителя моста. Полученный сигнал постоянного тока проходит через обмотку обратной связи, которая действует как схема генератора. При этом заставляет транзистор его проводить в первичный преобразователь в направлении слева направо. Когда ток проходит через обмотку обратной связи, соответствующий ток протекает к первичной части трансформатора в направлении справа налево.

Таким образом работает ультразвуковой способ передачи энергии. Сигнал формируется через первичный преобразователь для обоих полупериодов оповещения переменного тока. Частота звука зависит от количественных показателей колебаний цепей генератора. Этот сигнал переменного тока появляется на вторичной обмотке трансформатора. А когда он подключен к первичному преобразователю другого объекта, напряжение переменного тока составляет 25 кГц. Появляется показание через него в понижающем трансформаторе.

Это напряжение переменного тока выравнивается с помощью мостового выпрямителя. И затем фильтруется и регулируется, чтобы получить выход 5 В для управления светодиодом. Выходное напряжение 12 В от конденсатора используется для питания двигателя вентилятора постоянного тока для его работы. Итак, с точки зрения физики, передача электроэнергии - достаточно развитая область. Однако, как показывает практика, беспроводные системы не до конца развиты и усовершенствованы.

До сих пор не решена проблема передачи энергии на расстояние. Хотя была поставлена на рубеже веков. Первым, кто смог осуществить эту мечту стал Никола Тесла: "Передача энергии без проводов - не теория и не просто вероятность, как это представляется большинству людей, но явление, которое я экспериментально демонстрировал в течение ряда лет. Сама идея появилась у меня не сразу, а в результате длительного и постепенного развития и стала логическим следствием моих исследований, которые были убедительно продемонстрированы в 1893 году, когда я впервые представил миру схему моей системы беспроводной передачи энергии для всевозможных целей. Мои опыты с токами высокой частоты были первыми за всё время, проведенными публично, и они вызвали острейший интерес по причине тех возможностей, которые они открывали, а также поразительной природы самих явлений. Немногие из специалистов, знакомых с современной аппаратурой, по достоинству оценят трудность задачи, когда у меня в распоряжении были примитивные устройства”.

В 1891 Никола Тесла сконструировал резонансный трансфоpматоp (тpансфоpматоp Тесла), позволяющий получать высокочастотные колебания напряжения с амплитудой до миллиона вольт, и первым указал на физиологическое воздействие токов высокой частоты. Наблюдаемые во время грозы стоячие волны электрического поля привели Тесла к идее о возможности создания системы для обеспечения электроэнеpгией удаленных от генеpатоpа потребителей энергии без использования проводов. Изначально катушка Тесла использовалась с целью передачи энергии на большие расстояния без проводов, но вскоре эта идея отошла на последний план, так как передать таким образом энергию на расстояние практически невозможно, причиной этому является маленький КПД катушки Тесла.

Трансформатор Тесла, или катушка Тесла, - единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Это устройство использовалось ученым в нескольких размерах и вариациях для его экспериментов. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала».

Существует 3 вида катушек Тесла:

SGTC-spark gap Tesla coil - катушка Тесла на искровом промежутке.
VTTC-vacuum tube Tesla coil - катушка Тесла на радиолампе.
SSTC-solid state Tesla coil - катушка тесла на более сложных деталях.

Описание конструкции трансформатора. В элементарной форме состоит из двух катушек - первичной и вторичной, а также обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора и терминала (на схеме показан как «выход»). В отличие от многих других трансформаторов, здесь нет никакого ферримагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферримагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент - разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов.

Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Тесла сильно влияют на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.

Ещё одно интересное устройство - генератор Ван де Граафа. Это генератор высокого напряжения, принцип действия которого основан на электризации движущейся диэлектрической ленты. Первый генератор был разработан американским физиком Робертом Ван де Граафом в 1929 и позволял получать разность потенциалов до 80 киловольт. В 1931 и 1933 были построены более мощные генераторы, позволившие достичь напряжения до 7 миллионов вольт. Схема генератора Ван де Граафа:


Большой полый металлический электрод, имеющий вид полусферического купола, установлен на высоковольтной изолирующей колонне. В полость электрода заходит верхний конец ленточного транспортера электрических зарядов, представляющий собой бесконечный резиновый ремень на текстильной основе, натянутый на два металлических шкива и движущийся обычно со скоростью 20 - 40 м/сек. Нижний шкив, установленный на металлической плите, вращается электродвигателем. Верхний шкив размещается под высоковольтным электродом-куполом и находится под полным напряжением машины. Там же находится система питания источника ионов и сам источник. Нижний конец ленты проходит мимо электрода поддерживаемого обычным высоковольтным источником под высоким относительно земли напряжением до 100 кВ. В результате коронного разряда электроны с ленты переносятся на электрод. Положительный заряд поднимаемой транспортером ленты компенсируется вверху электронами купола, который получает положительный заряд. Максимально достижимый потенциал ограничивается изолирующими свойствами колонны и воздуха вокруг нее. Чем больше электрод, тем выше потенциал он может выдержать. Если установка герметически закрыта и внутреннее пространство наполнено сухим сжатым газом, размеры электрода для данного потенциала могут быть уменьшены. Заряженные частицы ускоряются в откачанной трубке, расположенной между высоковольтным электродом и «землей» или между электродами, если их два. С помощью генератора Ван-де-Граафа может быть получен очень высокий потенциал, что позволяет ускорять электроны, протоны и дейтроны до энергии 10 Мэв, а альфа-частицы, несущие двойной заряд до 20 Мэв. Энергию заряженных частиц на выходе генератора можно легко контролировать с большой точностью, что делает возможными точные измерения. Ток пучка протонов в постоянном режиме 50 мкА, а в импульсном режиме может быть доведен до 5 мА.




Top