Разница между аналоговым и цифровым сигналом. Цифровой и аналоговый сигнал. Аналоговые и цифровые сигналы

Отличие аналоговой и цифровой связи.
Имея дело с радиосвязью, очень часто приходится сталкиваться с такими терминами, как «аналоговый сигнал» и «цифровой сигнал» . Для специалистов в этих словах нет никакой тайны, но для людей несведущих разница между «цифрой» и «аналогом» может быть совсем неведомой. А между тем разница есть и весьма существенная.
Итак. Радиосвязь это всегда передача информации (речевой, СМС, телесигнализации) между двумя абонентами источником сигнала передатчиком (Радиостанцией, репитером, базовой станцией) и приемником.
Когда мы говорим о сигнале, то обычно подразумеваем электромагнитные колебания, наводящие ЭДС и вызывающие колебания тока в антенне приемника. Далее приемное устройство – переводит полученные колебания обратно в сигнал звуковой частоты и выводит на динамик.
В любом случае сигнал передатчика можно представить как в цифровой, так и в аналоговой форме. Ведь, к примеру, сам по себе звук – это аналоговый сигнал. На радиостанции звук, воспринимаемый микрофоном, преобразуется в уже упоминавшиеся электромагнитные колебания. Чем выше частота звука – тем выше частота колебаний на выходе, а чем громче говорит диктор – тем больше амплитуда.
Получившиеся электромагнитные колебания, или волны, распространяются в пространстве с помощью передаточной антенны. Чтобы эфир не забивался низкочастотными помехами, и чтобы у разных радиостанций была возможность работать параллельно, не мешая друг другу, колебания, получившиеся от воздействия звука, суммируют, то есть «накладывают» на другие колебания, имеющие постоянную частоту. Последнюю частоту принято называть «несущей», и именно на ее восприятие мы настраиваем свой радиоприемник, чтобы «поймать» аналоговый сигнал радиостанции.
В приемнике происходит обратный процесс: несущая частота отделяется, а электромагнитные колебания, полученные антенной, преобразуются в колебания звука, и из динамика слышится информация которую хотел сообщить передавший сообщение.
В процессе передачи звукового сигнала от радиостанции к приемнику могут возникнуть сторонние помехи, частота и амплитуда могут измениться, что, конечно же, отразится на звуках, издаваемых радиоприемником. Наконец, и сами передатчик и приемник во время преобразования сигнала вносят некоторую погрешность. Поэтому звук, воспроизводимый аналоговым радиоприемником, всегда имеет некоторые искажения. Голос может вполне воспроизводиться, несмотря на изменения, но фоном будет шипение или даже какие-то хрипы, вызванные помехами. Чем менее уверенным будет прием, тем громче и отчетливее будут эти посторонние шумовые эффекты.

Вдобавок эфирный аналоговый сигнал имеет очень слабую степень защиты от постороннего доступа. Для общественных радиостанций это, конечно, не имеет никакого значения. Но во время пользования первыми мобильными телефонами был один неприятный момент, связанный с тем, что почти любой посторонний радиоприемник мог быть легко настроен на нужную волну для подслушивания вашего телефонного разговора.

Для защиты от этого используют так называемое «тонирование» сигнала или по другому система CTCSS (Continuous Tone-Coded Squelch System) система шумоподавления, кодированная непрерывным тоном или система идентификации сигнала «свой/чужой», предназначенная разделять пользователей, работающих в одном частотном диапазоне, на группы. Пользователи (корреспонденты) из одной группы могут слышать друг друга благодаря идентификационному коду. Объясняя доступно, принцип действия данной системы таков. Вместе с передаваемой информацией в эфир отправляют также дополнительный сигнал (или по другому тон). Приемник, помимо несущей, распознает при соответствующей настойке этот тон и принимает сигнал. Если же в рации –приемнике тон не настроен, то приема сигнала не происходит. Стандартов шифрования существует достаточное большое количество отличающаяся для различных производителей.
Такие недостатки есть у аналогового эфирного вещания. Из-за них, к примеру, телевидение в относительно скором времени обещает стать полностью цифровым.

Цифровая связь и вещания считаются более защищенными от помех и от внешних воздействий. Все дело в том, что при использовании «цифры» аналоговый сигнал с микрофона на передающей станции зашифровывается в цифровой код. Нет, конечно, в окружающее пространство не распространяется поток цифр и чисел. Просто звуку определенной частоты и громкости присваивается код из радиоимпульсов. Продолжительность и частота импульсов задана заранее – она одна и у передатчика, и у приемника. Наличие импульса соответствует единице, отсутствие – нулю. Поэтому такая связь и получила название «цифровая».
Устройство, преобразующее аналоговый сигнал в цифровой код, называется аналого-цифровым преобразователем (АЦП) . А устройство, установленное в приемнике, и преобразующее код в аналоговый сигнал, соответствующий голосу вашего знакомого в динамике сотового телефона стандарта GSM, называется цифро-аналоговый преобразователь (ЦАП).
Во время передачи цифрового сигнала ошибки и искажения практически исключены. Если импульс станет немного сильнее, продолжительнее, или наоборот, то он все равно будет распознан системой как единица. А нуль останется нулем, даже если на его месте возникнет какой-то случайный слабый сигнал. Для АЦП и ЦАП не существует других значений, как 0,2 или 0,9 – только нуль и единица. Поэтому помехи на цифровую связь и вещание почти не оказывают влияния.
Более того, «цифра» является и более защищенной от постороннего доступа. Ведь, чтобы ЦАП устройства смог расшифровать сигнал, необходимо, чтобы он «знал» код расшифровки. АЦП вместе с сигналом может передавать и цифровой адрес устройства, выбранного в качестве приемника. Таким образом, даже если радиосигнал и будет перехвачен, он не сможет быть распознан из-за отсутствия как минимум части кода. Это особенно актуально для связи.
Итак, отличия цифрового и аналогового сигналов :
1) Аналоговый сигнал может быть искажен помехами, а цифровой сигнал может быть или забит помехами совсем, или приходить без искажений. Цифровой сигнал или точно есть, или полностью отсутствует (или нуль, или единица).
2) Аналоговый сигнал доступен для восприятия всеми устройствами, работающими по тому же принципу, что и передатчик. Цифровой сигнал надежно защищен кодом, его трудно перехватить, если вам он не предназначается.

Помимо чисто аналоговых и чисто цифровых станций, существуют и радиостанции поддерживающие как аналоговый так и цифровой режим. Они предназначены для перехода с аналоговой на цифровую связь.
Итак имея в распоряжении парк аналоговых радиостанций, вы можете постепенно перейти на цифровой стандарт связи.
Например, изначально вы строили систему связи на Радиостанциях Байкал 30.
Напомню, что это аналоговая станция с 16 каналами.

Но идет время, и станция перестает устраивать Вас, как пользователя. Да, она надежная, да мощная, да с хорошим аккумулятором до 2600 мА/ч. Но при расширении парка радиостанций более чем на 100 человек, а особенно при работе в группах её 16 каналов начинает не хватать.
Вам совершенно не обязательно сразу бежать и покупать радиостанции цифрового стандарта. Большинство производителей, намеренно вводят модель с наличием аналогового режима передачи.
То есть вы можете поэтапно переходить на например Байкал -501 или Vertex-EVX531 сохраняя существующую систему связи в рабочем состоянии.

Плюсы такого перехода неоспоримы.
Вы получаете станцию работающую
1) дольше (в цифровом режиме меньше потребление.)
2) Имеющую большее количество функций (групповой вызов, одинокий работник)
3) 32 канала памяти.
То есть вы фактически создаете изначально 2 базы каналов. Под новые закупленные станции (цифровые каналы) и базу каналов содействия с существующими станциями (аналоговые каналы). Постепенно по мере закупки оборудования вы будете сокращать парк радиостанций второго банка и увеличивать – первого.
В конечном итоге вы достигнете поставленной задачи – перевести полностью вашу базу на цифровой стандарт связи.
Хорошим дополнением и расширением к любой базе может послужить цифровой ретранслятор Yaesu Fusion DR-1


Это двухдиапазонный (144/430MHz) ретранслятор, который поддерживает аналоговую FM связь, а также одновременно цифровой протокол System Fusion в пределах частотного диапазона 12.5кГц. Мы уверены, что внедрение новейшей DR-1X станет рассветом нашей новой и впечатляющей многофункциональной системы System Fusion.
Одной из ключевых возможностей System Fusion является функция AMS (автоматический выбор режима) , которая мгновенно распознает принимается ли сигнал в режиме V/D, режиме голосовой связи или режиме данных FR аналоговом FM или цифровом C4FM, и автоматически переключается на соответствующий. Таким образом, благодаря нашим цифровым трансиверам FT1DR и FTM-400DR System Fusion ,чтобы поддерживать связь с аналоговыми FM радиостанциями больше нет необходимости каждый раз вручную переключать режимы,.
На репитере DR-1X, AMS можно настроить так, чтобы входящий цифровой C4FM сигнал преобразовывался в аналоговый FM и ретранслировался, таким образом позволяя поддерживать связь между цифровым и аналоговым трансиверами. AMS также можно настроить на автоматическую ретрансляцию входящего режима на выход, позволяя цифровым и аналоговым пользователям совместно использовать один ретранслятор.
До сих пор, FM ретрансляторы использовались только для традиционной FM связи, а цифровые ретрансляторы только для цифровой. Однако, теперь просто заменив обычный аналоговый FM репитер на DR-1X, вы можете продолжать пользоваться обычной FM связью, а также использовать ретранслятор для более продвинутой цифровой радиосвязи System Fusion . Другие периферийные устройства, такие как дуплексер и усилитель и т.д. можно продолжать использоваться как обычно.

Более подробные характеристики оборудование можно увидеть на сайте в разделе продукция

Сигналами называют информационные коды, которые применяются людьми для того, чтобы передавать сообщения в информационной системе. Сигнал может подаваться, но его получение не обязательно. Тогда как сообщением можно считать только такой сигнал (или совокупность сигналов), который был принят и декодирован получателем (аналоговый и цифровой сигнал).

Одними из первых методов передачи информации без участия людей или других живых существ были сигнальные костры. При возникновении опасности последовательно разводились костры от одного поста к другому. Далее мы будем рассматривать способ передачи информации при помощи электромагнитных сигналов и подробно остановимся на рассмотрении темы аналоговый и цифровой сигнал .

Любой сигнал может быть представлен в виде функции, которая описывает изменения его характеристик. Такое представление удобно для изучения устройств и систем радиотехники. Помимо сигнала в радиотехнике есть еще шум, который является его альтернативой. Шум не несет полезной информации и искажает сигнал, взаимодействуя с ним.

Само понятие дает возможность отвлечься от конкретных физических величин при рассмотрении явлений, связанных с кодированием и декодированием информации. Математическая модель сигнала в исследованиях позволяет опираться на параметры функции времени.

Типы сигналов

Сигналы по физической среде носителя информации делятся на электрические, оптические, акустические и электромагнитные.

По методу задания сигнал может быть регулярным и нерегулярным. Регулярный сигнал представляется детерминированной функцией времени. Нерегулярный сигнал в радиотехнике представлен хаотической функцией времени и анализируется вероятностным подходом.

Сигналы в зависимости от функции, которая описывает их параметры могут быть аналоговыми и дискретными. Дискретный сигнал, который был подвергнут квантованию называется цифровым сигналом.

Обработка сигнала

Аналоговый и цифровой сигнал обрабатывается и направлен на то, чтобы передать и получить информацию, закодированную в сигнале. После извлечения информации ее можно применять в разных целях. В частных случаях информация подвергается форматированию.

Аналоговые сигналы подвергаются усилению, фильтрации, модуляции и демодуляции. Цифровые же помимо этого еще могут подвергаться сжатию, обнаружению и др.

Аналоговый сигнал

Наши органы чувств воспринимают всю поступающую в них информацию в аналоговом виде. К примеру, если мы видим проезжающий мимо автомобиль, мы видим его движение непрерывно. Если бы наш мозг мог получать информацию о его положении раз в 10 секунд, люди бы постоянно попадали под колеса. Но мы можем оценивать расстояние куда быстрее и это расстояние в каждый момент времени четко определено.

Абсолютно то же самое происходит и с другой информацией, мы можем оценивать громкость в любой момент, чувствовать какое давление наши пальцы оказывают на предметы и т.п. Иными словами, практически вся информация, которая может возникать в природе имеет аналоговый вид. Передавать подобную информацию проще всего аналоговыми сигналами, которые являются непрерывными и определены в любой момент времени.

Чтобы понять, как выглядит аналоговый электрический сигнал, можно представить себе график, на котором будет отображена амплитуда по вертикальной оси и время по горизонтальной оси. Если мы, к примеру, замеряем изменение температуры, то на графике появится непрерывная линия, отображающая ее значение в каждый момент времени. Чтобы передать такой сигнал с помощью электрического тока, нам надо сопоставить значение температуры со значением напряжения. Так, например, 35.342 градуса по Цельсию могут быть закодированы как напряжение 3.5342 В.

Аналоговые сигналы раньше использовались во всех видах связи. Чтобы избежать помех такой сигнал нужно усиливать. Чем выше уровень шума, то есть помех, тем сильнее надо усиливать сигнал, чтобы его можно было принять без искажения. Такой метод обработки сигнала затрачивает много энергии на выделение тепла. При этом усиленный сигнал может сам стать причиной помех для других каналов связи.

Сейчас аналоговые сигналы еще применяются в телевидении и радио, для преобразования входного сигнала в микрофонах. Но, в целом, этот тип сигнала повсеместно вытеснен или вытесняется цифровыми сигналами.

Цифровой сигнал

Цифровой сигнал представлен последовательностью цифровых значений. Чаще всего сейчас применяются двоичные цифровые сигналы, так как они используются в двоичной электронике и легче кодируются.

В отличие от предыдущего типа сигнала цифровой сигнал имеет два значения «1» и «0». Если мы вспомним наш пример с измерением температуры, то тут сигнал будет сформирован иначе. Если напряжение, которое подается аналоговым сигналом соответствует значению измеряемой температуры, то в цифровом сигнале для каждого значения температуры будет подаваться определенное количество импульсов напряжения. Сам импульс напряжения тут будет равен «1», а отсутствие напряжения – «0». Приемная аппаратура будет декодировать импульсы и восстановит исходные данные.

Представив, как будет выглядеть цифровой сигнал на графике, мы увидим, что переход от нулевого значения к максимальному производится резко. Именно эта особенность позволяет принимающей аппаратуре более четко «видеть» сигнал. Если возникают какие-либо помехи, приемнику проще декодировать сигнал, нежели чем при аналоговой передаче.

Однако цифровой сигнал с очень большим уровнем шума восстановить невозможно, тогда как из аналогового типа при большом искажении еще есть возможность «выудить» информацию. Это связано с эффектом обрыва. Суть эффекта в том, что цифровые сигналы могут передаваться на определенные расстояния, а затем просто обрываются. Этот эффект возникает повсеместно и решается простой регенерацией сигнала. Там, где сигнал обрывается, нужно вставить повторитель или уменьшить длину линии связи. Повторитель не усиливает сигнал, а распознает его изначальный вид и выдает его точную копию и может использоваться сколь угодно в цепи. Такие способы повторения сигнала активно применяются в сетевых технологиях.

Помимо всего прочего аналоговый и цифровой сигнал различается и возможность кодирования и шифрования информации. Это является одной из причин перехода мобильной связи на «цифру».

Аналоговый и цифровой сигнал и цифро-аналоговое преобразования

Следует еще немного рассказать о том, как аналоговая информация передается по цифровым каналам связи. Вновь прибегнем к примерам. Как уже говорилось звук – это аналоговый сигнал.

Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Звук, попадая в микрофон подвергается аналого-цифровому преобразованию (АЦП). Этот процесс состоит из 3 ступеней. Берутся отдельные значения сигнала через одинаковые отрезки времени, этот процесс называется дискретизация. По теореме Котельникова о пропускной способности каналов, частота взятия этих значений должна быть вдвое выше, чем самая высокая частота сигнала. То есть, если в нашем канале стоит ограничение на частоту в 4 кГц, то частота дискретизации будет составлять 8 кГц. Далее все выбранные значения сигнала округляются или, иначе говоря, квантуются. Чем больше уровней при этом будет создано, тем выше будет точность восстановленного сигнала на приемнике. Затем все значения преобразуются в двоичный код, который передается на базовую станцию и затем доходит до другого абонента, являющегося приемником. В телефоне приемника происходит процедура цифро-аналогового преобразования (ЦАП). Это обратная процедура, цель которой на выходе получить сигнал как можно более идентичный исходному. Далее уже аналоговый сигнал выходит в виде звука из динамика телефона.

Этими словами Иоанн начал своё Евангелие, описывая времена, выходящие за пределы нашей эры. Мы начинаем эту статью не менее пафосно, и со всей серьёзностью заявляем, что в деле вещания «в начале был сигнал».

В телевидении, как и во всей электронике, сигнал является основой. Говоря о нем, мы имеем в виду электромагнитные колебания, которые распространяются в воздухе с помощью передающей антенны и вызывают колебания тока в антенне-приёмнике. Эфирная волна может быть представлена как в непрерывной, так и в импульсной форме, что значительно сказывается на конечном результате – качестве приёма ТВ.

Что такое аналоговое телевидение? Это телевидение, знакомое каждому, которое застали ещё родители наших родителей. Оно транслируется незакодированным способом, его основой выступает аналоговый сигнал, и принимает его обычный, знакомый нам с детства, аналоговый телевизор. В настоящее время во многих странах осуществляется процесс оцифровки аналогового сигнала, а стало быть, эфирного телевидения. В некоторых странах Европы этот процесс уже завершён и наземное аналоговое ТВ отключено. На это есть причины, в которых предлагает разобраться эта статья.

Отличия цифрового сигнала от аналогового

Для большинства людей различие между аналоговым и цифровым сигналом может быть совершенно неявным. И все же их разница значительна и заключается не просто в качестве подачи телеэфира.

Аналоговым сигналом являются полученные данные, которые мы видим, слышим и воспринимаем, как мир, который нас окружает. Этот метод генерирования, обработки, передачи и записи сигналов – традиционный и пока очень распространённый. Данные преобразовываются в электромагнитные колебания, отражающие частоту и интенсивность явлений по принципу полного соответствия.

Цифровой сигнал представляет собой совокупность координат, описывающих электромагнитную волну, которая не недоступна для восприятия напрямую, без декодирования, т.к. является последовательностью электромагнитных импульсов. Говоря о дискретности и непрерывности сигналов, подразумевают соответственно «принятие значений из конечного набора» и «принятие значений из бесконечно множества».

Примером дискретности могут быть школьные оценки, которые принимают значения из набора 1,2,3,4,5. Фактически, цифровой видеосигнал часто создаётся путём оцифровки аналогового сигнала.

Уходя от теории, на деле можно выделить следующие ключевые отличия между аналоговыми и цифровыми сигналами:

  1. аналоговое телевидение уязвимо для помех, вносящих в него шумы, в то время как цифровой импульс либо вовсе перекрыт помехами и отсутствует, либо поступает в первоначальном виде.
  2. принять и считать аналоговый сигнал может любое устройство, работа которого базируется на том же принципе, что и вещание передатчика. Цифровая волна предназначена определённому «адресату», а стало быть, устойчива к перехвату, т.к. надёжно закодирована.

Качество изображения

Качество картинки в телевизоре, которую предоставляет аналоговое ТВ во многом обусловлено ТВ стандартом. Кадр, который несёт с собой аналоговое вещание, включает 625 строк с соотношением сторон 4×3. Таким образом, старый кинескоп демонстрирует изображение из телевизионных линий, в то время как цифровое изображение составлено из пикселей.

При слабом приёме и помехах телевизор будет «снежить» и шипеть, недодавая зрителю изображение и звук. В попытках внести улучшения в эту ситуацию, в своё время, было реализовано .

Другие возможности

Несмотря на быстрое развитие электронных технологий и преимущества цифрового сигнала перед аналоговым, все ещё существуют области, в которых аналоговая технология незаменима, как, к примеру, профессиональная обработка звука. Но, хотя оригинальная запись может быть не хуже «цифры», после редактирования и копирования она неизбежно будет зашумлена.

Вот набор основных операций, которые можно выполнять с аналоговым потоком:

  • усиление и ослабление;
  • модуляция, направленная на снижение его восприимчивости к помехам, и демодуляция;
  • фильтрация и обработка частоты;
  • умножение, суммирование и логарифмирование;
  • обработка и изменение параметров его физических величин.

Особенности аналогового и цифрового телевидения

Обывательское суждение о крахе эфирного ТВ и переходе на технологии вещания будущего несколько несправедливо, уже потому, что телезрители подменяют понятия: эфирное и аналоговое ТВ. Ведь под эфирным принято понимать любое телевидение, транслируемое по наземному радиоканалу.

И «аналог» и «цифра» – это разновидности эфирного ТВ. Невзирая на то, что аналоговое телевидение отличается от цифрового, их общий принцип вещания идентичен – телевизионная вышка транслирует каналы и гарантирует качественный сигнал лишь в ограниченном радиусе. При этом цифровой радиус охвата короче, чем дальность незакодированного потока, а значит, ретрансляторы должны устанавливаться ближе друг к другу.

А вот мнение о том, что «цифра» обойдёт «аналог» в конечном счёте, правдиво. Телезрители многих стран уже стали «очевидцами» преобразования аналогового сигнала в цифровой и вовсю наслаждаются просмотром телепрограмм в HD качестве.

Особенности эфирного телевидения

Существующая эфирная телесистема использует для передачи телевизионного продукта аналоговые сигналы. Они распространяются посредством волн с высоким уровнем колебаний, достигая наземных антенн. Для того чтобы увеличить площадь вещательного покрытия устанавливают ретрансляторы. Их функция – сконцентрировать и усилить сигнал, передавая его удалённым приёмникам. Сигналы передаются с фиксированной частотой, поэтому каждый канал соответствует своей частоте и в телевизоре закреплён в порядке нумерации.

Преимущества и недостатки цифрового телевещания

Информация, передаваемая с помощью цифрового кода, практически не содержит ошибок и искажений. Устройство, которое оцифровывает исходный сигнал, называется аналого-цифровым преобразователем (АЦП).

Для кодирования импульсов используют систему единиц и нулей. Чтобы считывать и преобразовывать двоично-десятичный код, в приёмник встроено устройство, именуемое цифро-аналоговым преобразователем» (ЦАП). Ни для АЦП, ни для ЦАП не существует половинных значений, к примеру, 1,4 или 0,8.

Этот способ зашифровки и передачи данных подарил нам новый формат ТВ, у которого есть много достоинств:

  • изменение силы или длины импульса не влияет на его распознавание декодером;
  • равномерное покрытие вещания;
  • в отличие от аналогового вещания, отражения от препятствий преобразованного эфира складываются и улучшают приём;
  • частоты вещания используются эффективнее;
  • возможен приём на аналоговом телевизоре.

Отличие цифрового телевидения от аналогового

Разницу между аналоговым и цифровым вещанием проще всего заметить, представив итоговые характеристики обеих технологий в виде таблицы.

Цифровое ТВ Аналоговое телевидение
Разрешение цифрового изображения составляет 1280×720, что даёт в общей сложности 921600 пикселей. В случае формата развёртки 1080i разрешение изображения составляет 1920×1080, что даёт впечатляющий итог: более 2 миллионов 70 тысяч пикселей. Максимальное разрешение аналоговой «картинки» составляет приблизительно 720×480, что даёт в общей сложности более 340 000 пикселей.
Звук
Аудио, как и видео, передаётся без искажений. Многие программы сопровождаются объёмным стереосигналом. Качество звука варьируется.
Приёмник
Стоимость телевизора, адаптированного для цифрового приёма, в несколько раз выше, чем цена обычного телевизора. Аналоговый телевизор имеет умеренную стоимость.
Телеканалы
Просмотр цифровых каналов даёт зрителю обширный выбор: большое количество и тематическая направленность телеканалов. Количество программ до 100.
Другое
Приём программ на одном телевизоре. Дополнительные услуги, такие как «частная трансляция», «виртуальный кинозал», «хранение программ» и др. Возможность подключения большего количества приёмников и одновременного просмотра нескольких программ.
Итог
Новое телевидение несёт с собой отличное качество изображения и звука, возможность создания мультимедийной домашней станции для игры, работы и обучения. Однако высокая стоимость адаптированных телевизоров и неспешное внедрение технологии кодирования ТВ на российском рынке пока что оставляют его позади имеющегося телевидения. Старое доброе ТВ уступает цифровому в качестве изображения и звука. Тем не менее, цена приёмников и возможность распределения сигнала на большее количество телевизоров (возможность смотреть несколько программ одновременно) – весомый плюс.

Чувствительность антенны для телевизора

Нет универсального рецепта для выбора идеальной антенны, но есть обязательные требования, которые должны выполняться, чтобы она принимала аналоговые и цифровые сигналы. С увеличением расстояния от объекта вещания эти требования возрастают. В частности к чувствительности приёмника – его способности улавливать слабые по интенсивности телесигналы. Часто именно они становятся причиной нечёткого изображения. Эта проблема решается с помощью , который существенно повышает чувствительность антенны и снимает вопрос: как подключить её к цифровому телевидению? Тот же телевизор, и та же самая антенна, только возле телевизора появится эфирный цифровой тюнер.

Что такое диаграмма направленности антенны

Помимо чувствительности антенны, есть параметр, определяющий, в какой степени она способна фокусировать энергию. Он называется направленным усилением или направленностью, и являет собой отношение плотности излучения в заданном направлении к средней плотности излучения.
Графическая интерпретация этой характеристики представляет собой диаграмму направленности антенны. По своей сути это трёхмерная фигура, но для удобства работы её выражают в двух плоскостях, расположенных перпендикулярно друг к другу. Имея под рукой такую плоскую диаграмму и сопоставляя её с картой местности, можно спланировать зону приёма антенной аналогового видеосигнала. Также из этого графика можно извлечь ряд полезных практических характеристик телеантенны, таких как интенсивность бокового и обратного излучения и коэффициент защитного действия.

Какой сигнал лучше

Следует признать, что, несмотря на множество улучшений, реализованных в области аналогового представления информации, этот способ трансляции сохранил свои недочёты. Среди них – искажения во время передачи и шумы при воспроизведении.

Также необходимость преобразования аналогового сигнала в цифровой вызвана непригодностью имеющегося метода записи для хранения информации в полупроводниковой памяти.

К сожалению, существующее ТВ практически не имеет очевидных плюсов перед цифровым, исключая возможность принимать сигнал обычной ТВ-антенной, и делить его между телевизорами.

Сегодня попытаемся разобраться, что такое аналоговый и цифровой сигналы? Их преимущества и недостатки. Не будем кидаться различными научными терминами и определениями, а попытаемся разобраться в ситуации на пальцах.

Что такое аналоговый сигнал?

Аналоговый сигнал основан на аналогии электрического сигнала (значений тока и напряжения) значению исходного сигнала (цвету пикселя, частоте и амплитуде звука и т.п). Т.е. определенные значения тока и напряжения соответствуют передаче определенного цвета пикселя или звукового сигнала.

Приведу пример на аналоговом видеосигнале.

Напряжение на проводе 5 вольт соответствует синему цвету, 6 вольт – зеленому, 7 вольт красному.

Для того чтобы на экране появились красные, синие и зеленые полосы нужно поочередно подавать на кабель напряжения 5, 6, 7 вольт. Чем быстрее мы проводим смену напряжений, тем тоньше полоски получаются у нас на мониторе. Сократив интервал между сменой напряжений до минимума, мы получим уже не полоски, а чередующиеся друг за другом цветные точки.

Важной особенностью аналогового сигнала является то обстоятельство, что он передается строго от передатчика к приемнику (например, от антенны к телевизору), обратной связи нет. Поэтому если в передачу сигнала вмешается помеха (например, вместо шести вольт придет четыре), цвет пикселя исказится, и на экране появится рябь.
Аналоговый сигнал непрерывен.
Что такое цифровой сигнал?

Передача данных осуществляется также с помощью электрического сигнала, но значений этих сигналов всего два и они соответствуют 0 и 1. Т.е. по проводам передается последовательность из нулей и единиц. Примерно так: 01010001001 и т. д. Для того чтобы приемное устройство (например, телевизор) не запутался в передаваемых данных, цифры передаются пачками. Это происходит примерно так: 10100010 10101010 10100000 10111110. Каждая такая пачка несет какую-нибудь информацию, например - цвет пикселя. Важной особенностью цифрового сигнала, является то, что передающие и принимающее устройство могут общаться между собой и исправлять друг за другом ошибки, которые могут возникнуть при передаче.

Примеры передачи цифрового и аналогового сигналов

Для цифрового сигнала передача происходит примерно так:

  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу!
  • Видеомагнитофон: Зеленый!
  • Телевизор: Ага, понял! Рисую зеленый.
  • Телевизор: Прошу подтвердить, что цвет красный.
  • Видеомагнитофон: подтверждаю.
  • Телевизор: Ок! рисую.

Передача для аналогового сигнала:

  • Видеомагнитофон: Эй, телевизор, цвет пикселя с координатами 120х300 - зеленый.
  • Помеха: АААААААААААААА!
  • Телевизор: Какой? Не слышу! Блин, нарисую синий.
  • Видеомагнитофон: Следующий цвет красный!
  • Помеха: БАХ! БУМ!
  • Телевизор: Красный вроде! Рисую.
  • Видеомагнитофон: Лопата!
  • Помеха: ПШШШШШШ!
  • Телевизор: ?!. Надо что-то рисовать?! Пусть будет лопата!

Преимущества и недостатки цифрового и аналогового сигналов

Из вышесказанного можно сделать вывод, что при прочих равных условиях качество передачи информации с помощью цифры будет выше, чем при аналоговом представлении сигнала. В то же время при хорошей помехозащищенности две технологии могут конкурировать на равных.

Цифровая схемотехника – важнейшая дисциплина, которую изучают во всех высших и средних учебных заведениях, готовящих специалистов в электронике. Настоящий радиолюбитель тоже должен хорошо разбираться в этом вопросе. Но большинство книг и учебных пособий написаны очень сложным для понимания языком, и начинающему электронщику (возможно, школьнику) будет тяжело освоить новую информацию. Цикл новых обучающих материалов от Мастер Кит призван восполнить этот пробел: в наших статьях о сложных понятиях рассказывается самыми простыми словами.


8.1. Аналоговые и цифровые сигналы

Сначала надо разобраться, чем вообще аналоговая схемотехника отличается от цифровой. И главное отличие – в сигналах, с которыми работают эти схемы.
Все сигналы можно разделить на два основных вида: аналоговые и цифровые.

Аналоговые сигналы

Аналоговые сигналы наиболее привычны для нас. Можно сказать, что весь окружающий природный мир вокруг нас – аналоговый. Наши зрение и слух, а также все остальные органы чувств воспринимают поступающую информацию в аналоговой форме, то есть непрерывно во времени. Передача звуковой информации – речь человека, звуки музыкальных инструментов, рёв животных, звуки природы и т.п. – также осуществляется в аналоговом виде.
Чтобы ещё лучше понять этот вопрос, нарисуем аналоговый сигнал (рис.1.):

Рис.1. Аналоговый сигнал

Мы видим, что аналоговый сигнал непрерывен во времени и по амплитуде. Для любого момента времени можно определить точное значение амплитуды аналогового сигнала.

Цифровые сигналы

Давайте будет анализировать амплитуду сигнала не постоянно, а дискретно, через фиксированные промежутки времени. Например, раз в секунду, или чаще: десять раз в секунду. То, как часто мы будем это делать, называется частотой дискретизации: один раз в секунду – 1 Гц, тысячу раз в секунду – 1000 Гц или 1 кГц.

Для наглядности нарисуем графики аналогового (вверху) и цифрового (внизу) сигналов (рис.2.):

Рис.2. Аналоговый сигнал (вверху) и его цифровая копия (внизу)

Мы видим, что в каждый мгновенный промежуток времени можно узнать мгновенное цифровое значение амплитуды сигнала. Что происходит с сигналом (по какому закону он меняется, какова его амплитуда) между интервалами «проверки», мы не знаем, эта информация потеряна для нас. Чем реже мы проверяем уровень сигнала (чем ниже частота дискретизации), тем меньше имеем информации о сигнале. Разумеется, справедливо и обратное: чем выше частота дискретизации, тем лучше качество представления сигнала. В пределе, увеличивая частоту дискретизации до бесконечности, мы получаем практически тот же аналоговый сигнал.
Значит ли это, что аналоговый сигнал в любом случае качественнее цифрового? В теории, пожалуй, да. Но на практике современные аналого-цифровые преобразователи (АЦП) работают с такой высокой частотой дискретизации (до нескольких миллионов выборок в секунду), так качественно описывают аналоговый сигнал в цифровой форме, что органы чувств человека (глаза, уши) уже не могут почувствовать разницу между оригинальным сигналом и его цифровой моделью. Цифровой сигнал обладает очень существенным достоинством: его легче передавать по проводам или радиоволне, помехи не оказывают на такой сигнал существенного влияния. Поэтому вся современная мобильная связь, теле- и радиовещание - цифровая.

Нижний график на рис. 2 легко представить и в другом виде – как длинную последовательность пары цифр: время/амплитуда. А цифры – это как раз то, что нужно цифровым схемам. Правда, цифровые схемы предпочитают работать с цифрами в особом представлении, но об этом мы поговорим в следующем уроке.

Сейчас мы можем сделать важные выводы:

Цифровой сигнал дискретен, его можно определить только для отдельных моментов времени;
- чем выше частота дискретизации – тем лучше точность представления цифрового сигнала.




Top