Фильтр винера при фильтрации промышленной частоты. Оптимальный фильтр Винера. Факультет автоматики и вычислительной техники

В тех случаях, когда на входе системы автоматического управления (см. рис. 9.16) действуют полезный сигнал и помеха которые являются коррелированными между собой стационарными случайными процессами с равными нулю средними значениями, оптимальная импульсная переходная функция системы удовлетворяющая условию физической реализуемости при и обеспечивающая минимум средней квадратической ошибки, должна удовлетворять следующему интегральному уравнению:

где корреляционная функция суммарного входного сигнала - взаимная корреляционная функция воспроизводимого выходного сигнала и суммарного входного сигнала

Уравнение (9.124) было получено Н. Винером в 1949 г. и называется интегральным уравнением Винера - Хопфа.

На основе решения уравнения (9.124) Н. Винером была предложена общая формула для нахождения реализуемой оптимальной частотной передаточной функции (оптимального фильтра Винера)

где - взаимная спектральная плотность воспроизводимого выходного сигнала и суммарного входного сигнала причем

Следует обратить внимание, на то, что в (9.125) нижний предел внешнего интеграла должен быть равен нулю.

Если корреляция между управляющим сигналом и помехой отсутствует, то при применении (9.125) следует учесть, что

На основе общей формулы (9.125) как частные случаи могут быть получены выражения для оптимальных частотных передаточных функций систем (оптимальных фильтров), осуществляющих при наличии помех воспроизведение полезного сигнала, статистическое упреждение (предсказание), дифференцирование и другие линейные преобразования управляющего сигнала в соответствии с (9.107).

Например, если рассматривают задачу воспроизведения полезного сигнала при наличии помех, то преобразующий оператор тогда

В этом случае (9.125) может быть представлено в более простом виде:

Чтобы найти числитель выражения (9.128), разложим на простые дроби:

где - полюсы расположенные в верхней полуплоскости; - полюсы расположенные в нижней полуплоскости; - нули .

Затем, отбрасывая слагаемые, имеющие полюсы в нижней полуплоскости, получим

где коэффициенты определяют по формуле

Формулы (9.129) и (9.131) относятся к тому случаю, когда отношение не имеет кратных полюсов.

Если это отношение имеет кратные полюсы, то методика определения остается прежней, но формулы разложения на простые дроби будут другими.

Частным, но весьма важным и распространенным на практике является случай, когда помеха является белым шумом со спектральной плотностью а спектральная плотность управляющего сигнала описывается дробно-рациональной функцией

где порядок превышает порядой

Полезно запомнить, что в этом случае оптимальная частотная передаточная функция может быть определена следующим образом:

Пример 9.7. Условия задали такие же, как в примере 9.6. Определить оптимальную частотную передаточную функцию системы.

Так как спектральная плотность помехи

а спектральная плотность полезного сигнала

то оптимальная частотная передаточная функция может быть определена по

Подставляя в выражение для значение

найденное в примере 9.6, получаем

Так как (см. пример 9.6)

то второе мнимое слагаемое равно нулю и поэтому оптимальная частотная передаточная функция системы

Найденное выражение для как и следовало ожидать, полностью совпадает с результатом, полученным в примере 9.6.

Основополагающие результаты Н. Винера были получены для случая, когда ко входу линейной системы приложены стационарные случайные воздействия с равными нулю средними значениями (центрированные случайные процессы).

В результате дальнейшего развития и обобщения методов синтеза динамических систем при случайных воздействиях были разработаны, например, методы синтеза при случайных воздействиях, приложенных в разных точках системы; методы синтеза при одновременном воздействии на систему регулярных и случайных сигналов; методы синтеза систем с ограниченной длительностью переходного процесса (с «конечной памятью»); методы синтеза систем, содержащих случайные параметры; методы синтеза систем при нестационарных случайных

воздействиях; методы синтеза нелинейных систем, в том числе с применением цифровых вычислительных машин, и т. д.

В последнее время при расчете систем, находящихся под воздействием случайных (в том числе и нестационарных) процессов, широкое применение нашла теория оптимальных фильтров, разработанная Р. Калманом и Р. Бьюси,

Другая постановка задачи при расчете по критерию минимума дисперсии ошибки заключается в том, что ставится вопрос о нахождении оптимальной структуры и значений параметров системы автоматического управления, при которых обеспечивается получение теоретического минимума среднеквадратичной ошибки при заданных вероятностных характеристиках полезного сигнала (задающего воздействия) и помехи Эта задача будет решена, если найти, например, частотную передаточную функцию замкнутой системы для непрерывной системы или для дискретной системы (рис. 4.1). Передаточной функции может быть поставлена в соответствие передаточная функция а передаточной функции - функция Задача относится к категории вариационных задач в открытой области, т. е. без ограничений на фазовые координаты системы и управляющие воздействия.

Для решения этой задачи требуется знание статистических характеристик полезного входного сигнала (задающего воздействия) и помехи на входе системы (или помехи, пересчитанной на вход системы). При этом предполагается, что на систему управления заранее не налагается никаких ограничений в смысле обязательного использования реальных элементов (чувствительных элементов, усилителей, исполнительных элементов и др.) с заданными Характеристиками.

Запишем критерий оптимальности в задаче Н. Винера. При поступлении на вход системы аддитивной смеси полезного сигнала и помехи (рис. 4.1)

представляющих собой стационарные случайные функции с нулевыми математическими ожиданиями и известными

корреляционными функциями, требуется найти частотную передаточную функцию замкнутой системы или ей соответствующую физически реализуемую весовую функцию осуществляющую требуемое линейное преобразование входного сигнала

где - заданный линейный оператор, и обеспечивающую минимум дисперсии ошибки (4.4):

Если то это будет задача оптимального сглаживания, т. е. выделения сигнала из аддитивной смеси полезного сигнала и помехи. При равенстве помехи нулю решение задачи сглаживания имеет тривиальный вид:

Рис. 4.1. Оптимальный фильтр Винера

В задачах оптимального статистического упреждения где - время упреждения. Решение получается нетривиальным даже в случае отсутствия помехи. В задачах дифференцирования сигнала при наличии помех заданный линейный оператор имеет вид Но где - порядок отыскиваемой производной.

После нахождения оптимальной передаточной функции или конструктор должен попытаться реализовать ее посредством использования тех элементов, которыми он располагает и из которых должна быть построена система управления. Так как в большинстве практических случаев точное воспроизведение оптимальной передаточной функции оказывается невозможным, то приходится использовать квазиоптимальную, или субоптимальную, систему, более или менее близко совпадающую по своим параметрам с оптимальной.

Результаты восстановления расфокусированных изображений

При расфокусировке искажающая система хорошо аппроксимируется цилиндрической функцией рассеяния точки (ФРТ) радиуса r.


Цилиндрическая ФРТ


Ниже приведены результаты восстановления трёх реальных расфокусированных изображений одного и того же объекта (страницы книги). Съёмка проводилась без штатива с расстояния примерно 50 см. Степень расфокусировки объектива вручную увеличивалась от кадра к кадру. Параметры фильтра Винера r и отношение сигнал/шум (SNR) подбирались вручную таким образом, чтобы обеспечить наилучшее визуальное качество восстановления. Для компенсации краевых эффектов производится плавное уменьшение яркости изображения на краях.



Изображение A



Результат восстановления изображения A. r = 53, SNR = 5200



Изображение B



Результат восстановления изображения B. r = 66, SNR = 4400



Изображение C



Результат восстановления изображения C. r = 102, SNR = 7100


Видно, что даже при существенной расфокусировке читаемость текста практически
полностью восстанавливается.

Результаты восстановления смазанных изображений автомобильных номеров

Смаз изображения возникает при взаимном движении камеры и объекта относительно друг друга во время экспозиции. Рассмотрим только тот случай, когда снимаемый объект линейно перемещается относительно неподвижной камеры. В таком случае искажающая система хорошо аппроксимируется ФРТ в виде отрезка, который направлен вдоль движения объекта. Такая ФРТ задаётся двумя параметрами: L длина и THETA угол смаза.



ФРТ при линейном смазе


Ниже представлено искажённое изображение двух легковых автомобилей, полученное при недостаточно короткой экспозиции, приведшей к появлению заметного смаза.



Искажённое изображение двух легковых автомобилей


Ниже представлены результаты восстановления номеров обоих автомобилей с помощью фильтра Винера. Значение параметров L, THETA и SNR подбирались таким образом, чтобы обеспечить наилучшее визуальное качество восстановления номера автомобиля.



Результат восстановления номера светлого автомобиля. L = 78, THETA = 15, SNR = 300



Результат восстановления номера тёмного автомобиля. L = 125, THETA = 0, SNR = 700


Видно, что даже при значительном смазе удаётся восстановить читаемость номеров
автомобилей.


Алгоритм фильтрации реализован на C++ OpenCV в виде консольного приложения.
Исходные коды можно найти по ссылкам ниже.

Литература

  1. R.C. Gonzalez, R.E. Woods. Digital image fundamentals. 1987.
  2. И.С. Грузман, В.С. Киричук, В.П. Косых, Г.И. Перетягин, А.А. Спектор. Цифровая обработка изображений в информационных системах. 2000.

Инверсная фильтрация обладает низкой помехоустойчивостью, потому что этот метод не учитывает зашумленность наблюдаемого изображения. Значительно менее подвержен влиянию помех и сингулярностей, обусловленных нулями передаточной функции искажающей системы, фильтр Винера , т.к. при его синтезе наряду с видом ФРТ используется информация о спектральных плотностях мощности изображения и шума.

Спектральная плотность сигнала определяется соотношением:

где – автокорреляционная функция.

Взаимная спектральная плотность сигнала определяется соотношением:

, (14)

где – функция взаимной корреляции.

При построении фильтра Винера ставится задача минимизации среднеквадратического отклонения обработанного изображения от предмета:

где – математическое ожидание. Преобразуя эти выражения можно показать, что минимум достигается, когда передаточная функция определяется следующим выражением:

.

Дальнейший анализ показывает, что восстановление изображения, формирование которого описывается выражением должно осуществляться с использованием следующего ОПФ восстанавливающего преобразователя:

Если шума на изображении нет, то спектральная плотность функции шума равна 0 и выражение, которое называют фильтром Винера, превращается в обычный обратный фильтр.

При уменьшении спектральной плотности мощности исходного изображения передаточная функция фильтра Винера стремится к нулю. Для изображений это характерно на верхних частотах.

На частотах, соответствующих нулям передаточной функции формирующей системы, передаточная функция фильтра Винера также равна нулю. Таким образом, решается проблема сингулярности восстанавливающего фильтра.

Рис. 1. Примеры фильтров

Примеры восстановления показывают, что фильтр Винера значительно лучше подавляет шумы. Осциллирующая помеха на результатах восстановления изображения вызвана краевыми эффектами. Очевидно, что ее уровень существенно меньше, чем при инверсной фильтрации, однако винеровский фильтр лишь частично компенсирует краевые эффекты, которые делают качество восстановления неудовлетворительным. Компенсацией краевых эффектов занимаются специально. Однако эти методы не являются оптимальными и не всегда обеспечивают эффективную компенсацию искажений и избавление от краевых эффектов одновременно.

Расфокусировка, шум и обрезание краев

Условие оптимальности фильтра. Фильтр Колмогорова-Винера является оптимальным фильтром формирования из входного сигнала x(t) выходного сигнала z(t) при известной форме полезного сигнала s(t), который содержится во входном сигнале в сумме с шумами. В качестве критерия его оптимизации используется среднее квадратическое отклонение сигнала y(t) на выходе фильтра от заданной формы сигнала z(t). Подставим уравнение свертки (12.2.1) в раскрытой форме весового суммирования в выражение (12.2.2") и получим отклонение e 2 выходного сигнала y(k) = h(n)③x(k-n) от заданной формы выходного сигнала z(k) по всем точкам массива данных:

В частном случае воспроизведения формы полезного сигнала в качестве функции z(k) принимается функция s(k). Минимум выражения (12.3.1) определяет значения коэффициентов h(n) оптимального фильтра. Для нахождения их значений продифференцируем выражение (12.3.1) по коэффициентам фильтра и приравняем полученные уравнения нулю. В итоге получаем:

где - корреляционная функция входного сигнала, - взаимная корреляционная функция сигналов z(k) и x(k). Отсюда:

h n R(m-n) = B(m), n = m = 0,1,2, ... , M. (12.3.2)

В краткой форме символической записи:

h(n) ③ R(m-n) = B(m). (12.3.3)

Другими словами, свертка функции отклика оптимального фильтра с функцией автокорреляции входного сигнала должна быть равна функции взаимной корреляции выходного и входного сигналов.

Система линейных уравнений фильтра. Выражение (12.3.2) может быть записано в виде системы линейных уравнений - однострочных равенств левой и правой части для фиксированных значений координаты m коэффициентов фильтра. При расчете симметричных фильтров, не сдвигающих фазы выходного сигнала, фильтр может вычисляться только одной половиной своих значений:

m=0: h o R(0)+ h 1 R(1)+ h 2 R(2)+ h 3 R(3)+ ...+ h M R(M) = B(0), (12.3.3")

m=1: h o R(1)+ h 1 R(0)+ h 2 R(1)+ h 3 R(2)+ ...+ h M R(M-1) = B(1),

m=2: h o R(2)+ h 1 R(1)+ h 2 R(0)+ h 3 R(1)+ ...+ h M R(M-2) = B(2),

..............................................................................................................

m=M: h o R(M)+ h 1 R(M-1)+ h 2 R(M-2)+ .... + h M R(0) = B(M).

Решение данной системы уравнений относительно значений h i дает искомый оператор фильтра.

При расчете каузальных (односторонних) фильтров выходной сигнал z(t) следует задавать со сдвигом вправо по оси координат таким образом, чтобы значимая часть функции взаимной корреляции B(m) полностью располагалась в правой части системы уравнений (12.3.3").

Отметим, что R(m) = R s (m)+R q (m), где R s - функция автокорреляции сигнала, R q - функция автокорреляции шума, а B(m) = B zs (m)+B zq (m), где B zs - функция взаимной корреляции сигналов z(k) и s(k), B zq - функция взаимной корреляции сигнала z(k) и помех q(k). Подставляя данные выражения в (12.3.3), получаем:



h(n) ③ = B zs (m)+B zq (m). (12.3.4)

Частотная характеристика фильтра находится преобразованием Фурье левой и правой части уравнения (12.3.4):

H(w) = W zs (w)+W zq (w),

H(w) = / , (12.3.5)

где W s (w) ó R s (m) и W q (w) ó R q (m) - энергетические спектры (плотности мощности) сигнала и помех, W zs (w) ó B zs (m) - взаимный энергетический спектр входного и выходного сигналов, W zq (w) ó B zq (m) - взаимный энергетический спектр выходного сигнала и помех.

В геофизической практике обычно имеет место статистическая независимость полезного сигнала, а, следовательно, и сигнала z(k), от шумов, при этом B zq = 0 и фильтр называют оптимальным по сглаживанию шумов при заданной форме выходного сигнала:

H(w) = W zs (w) / , (12.3.6)

Фильтр (12.3.6) оптимален в том смысле, что максимизирует отношение мощности сигнала к мощности шума по всему интервалу сигнала, но не в каждой индивидуальной точке.

Выражения (12.3.5-12.3.6), как правило, всегда имеют решение. Однако это не означает возможность формирования фильтром любой заданной формы выходного сигнала. Из чисто практических соображений можно сразу предполагать, что если спектр заданного сигнала z(t) больше значимой части спектра полезного сигнала s(t), то оператор фильтра попытается сформировать требуемые высокие частоты заданного сигнала из незначимых частот спектра полезного сигнала, что может потребовать огромных коэффициентов усиления на этих частотах, под действие которых попадут и частотные составляющие шумов. Результат такой операции непредсказуем. Эти практические соображения можно распространить и на все частотные соотношения входного и выходного сигналов линейных фильтров: значимые гармоники спектров выходных сигналов должны формироваться из значимых гармоник спектров входных сигналов.

Если заданная форма сигнала z(k) совпадает с формой полезного сигнала s(k), то B(m) = B ss = R s и фильтр называют фильтром воспроизведения полезного сигнала :

H(w) = W s (w) / , (12.3.7)

Выражения (12.3.6-12.3.7) достаточно наглядно демонстрируют физический смысл формирования передаточной функции фильтра. При воспроизведении сигнала частотная функция взаимной корреляции входного сигнала с выходным W zs (плотность взаимной мощности) повторяет частотную функцию автокорреляции W s (плотность мощности сигнала). Плотность мощности статистических шумов W q распределена по частотному диапазону равномерно, в отличие от плотности мощности сигнала W s , которая, в зависимости от формы сигнала, может занимать любые частотные интервалы спектрального диапазона. Частотная передаточная функция фильтра воспроизведения сигнала формируется отношением W s (w)/. На частотах, где сосредоточена основная энергия сигнала, имеет место W s (w)>>W q (w) и H(w) Þ 1 (как минимум, больше 0.5). Там, где значение W s (w) становится меньше W q , коэффициент передачи фильтра становится меньше 0.5, и в пределе H(w)=0 на всех частотах, где полностью отсутствуют частотные составляющие сигнала.

Аналогичный процесс имеет место и при формировании произвольного сигнала z(t) на выходе фильтра, только в этом случае из частот входного сигнала устанавливаются на выделение и усиление частоты взаимной мощности входного и выходного сигнала, необходимые для формирования сигнала z(t), причем коэффициент на этих частотах может быть много больше 1, а подавляться могут не только шумы, но и частоты основного сигнала, если их нет в сигнале z(t).

Таким образом, оптимальные фильтры учитывают особенности спектрального состава сигналов и способны формировать передаточные функции любой сложности на выделение полезных частот сигналов из любых диапазонов спектра с максимальных подавлением шумов на всех частотах спектрального диапазона, не содержащих полезных сигналов, при этом границы усиления-подавления устанавливаются автоматически по заданному уровню шумов.

Задание мощности шумов. Следует внимательно относиться к заданию функции шумов Wq(w). При полной неопределенности шума необходимо, как минимум, выполнять оценку его дисперсии s 2 и распространять на весь частотный диапазон с соответствующей нормировкой на его величину (2Wq(w) dw = s 2), т.е. считать его белым шумом. При известной функции полезного сигнала в зарегистрированной реализации значение дисперсии шумов в первом приближении может быть оценено по разности дисперсий реализации и функции полезного сигнала. Можно выполнить и выделение шумов из входного сигнала в отдельный шумовой массив, например, вейвлетным преобразованием. Однако использовать выделенный шум непосредственно для вычисления функции Wq(w) допустимо только по достаточно представительной реализации при условии стационарности и эргодичности шума. В противном случае функция Wq(w) будет отображать только распределение шумов в зарегистрированной реализации сигнала, а соответственно фильтр будет оптимален только к этой реализации, что не гарантирует его оптимальности к любой другой реализации. Но для обработки единичной зарегистрированной реализации сигнала такой метод не только вполне допустим, но и может существенно повысить точность формирования выходного сигнала.

Эффективность фильтра. Из выражений (12.3.5-12.3.7) следует, что с позиции минимального искажения полезного сигнала при максимальном подавлении шумов фильтр Колмогорова-Винера эффективен в тем большей степени, чем больше отношение сигнал/шум на входе фильтра. В пределе, при W q (w)<>W s (w) имеем H(w) Þ 0 и сигнал будет сильно искажен, но никакой другой фильтр лучшего результата обеспечить не сможет.

Пример. Расчет оптимального фильтра воспроизведения сигнала. Выполняется в среде Mathcad.

Форма входного сигнала считается известной и близка к гауссовой. На входной сигнал наложен статистический шум с равномерным распределением мощности по всему частотному диапазону (белый шум), некоррелированный с сигналом, и функцию Wzq принимаем равной нулю. Для наглядного просмотра связи параметров фильтра с параметрами сигнала задаем модели сигналов в двух вариантах:

K:= 1000 k:= 0 .. K A:= 50

s1 k:= A·exp[-0.0005·(k-500) 2 ] s2 k:= A·exp[-0.00003·(k-500) 2 ] Ü информационные сигналы

Q:= 30 q k:= rnd(Q) – Q/2 x1 k:= s1 k + q k x2 k:= s2 k + q k Ü входные сигналы

Рис. 12.3.1. Модельные сигналы.

В качестве выходных сигналов задаем те же самые функции s1 и s2. Быстрым преобразованием Фурье вычисляем спектры сигналов и формируем спектры плотности мощности:

S1:= CFFT(s1) S2:= CFFT(s2) Q:= CFFT(q) Ü спектры сигналов

Ü спектры мощности

Ds1:= var(s1) Ds2:= var(s2) Dx1:= var(x1) Dx2:= var(x2) Dq:= var(q) Ü дисперсии

Ds1 = 124.308 Ds2 = 310.264 Dx1 = 202.865 Dx2 = 386.78 Dq = 79.038 Ü информация

mean(Wq) = 0.079 Wq1:= (Dx1 – Ds1)/(K+1) Wq1 = 0.078 Ü информация

Wq2:= (Dx2 – Ds2)/(K+1) Wq2 = 0.076 Ü информация

Wq k:= Wq1 Ü замена на постоянное распределение

Для воспроизведения сигналов вычисления функций Wzs не требуется, т.к. Wzs = Ws. Вычисление Wq также имеет только информативный характер.

Передаточные функции оптимальных фильтров (приведены на рис. 12.3.2):

Рис. 12.3.2. Передаточные функции оптимальных фильтров

в сопоставлении с нормированными модулями спектров сигналов

Как следует из рисунка 12.3.2, для плавных монотонных функций, основная энергия которых сосредоточена в низкочастотной части спектра, передаточные функции оптимальных фильтров, по существу, представляют собой низкочастотные сглаживающие фильтры с автоматической подстройкой граничной частоты пропускания под основные частоты входного сигнала. Операторы фильтров можно получить обратным преобразованием Фурье:

h1:= ICFFT(H1)/(K+1) h2:= ICFFT(H2)/(K+!) Ü обратное преобразование Фурье

Рис. 12.3.3. Импульсные отклики фильтров.

Оператор фильтра, в принципе, бесконечен. В данном случае, при использовании БПФ максимальное число отсчетов равно К/2 = 500. Усечение размеров оператора может выполняться по типовым методам с применением весовых функций (в расчете операторы нормируются к 1, весовые функции не применяются).

N1:= 160 n1:= 0 .. N1 N2 ;= 500 n2:= 0 .. N2 Ü размеры и нумерация операторов

hm1:= h1 0 + 2·h1 n 1 hm1=0.988 h1:= h1/hm1 Ü нормировка

hm2:= h2 0 + 2·h2 n 2 hm2=1.001 h2:= h2/hm2 Ü нормировка

Ü свертка

Рис. 12.3.4. Проверка действия оптимальных фильтров.

Коэффициент усиления дисперсии помех Þ Kd:= (h 0) 2 + 2·h n Kd1=0.021 Kd2= 0.0066

Среднеквадратическое отклонение воспроизведения сигнала:

e1= 1.238 e2 = 0.701

Проверка действия оператора фильтра приведена на рис. 12.3.4.

Особую эффективность оптимальный фильтр имеет при очистке от шумов сигналов, имеющих достаточно сложный спектральный состав. Оптимальный фильтр учитывает конфигурацию спектра сигнала и обеспечивает максимальное подавление шумов, в том числе внутри интервала основного частотного диапазона сигнала. Это наглядно видно на рис. 12.3.5 для сигнала, близкого к прямоугольному, спектр которого имеет кроме основной низкочастотной части затухающие боковые осцилляции. Расчет фильтра выполнялся по методике, приведенной в примере 1.

Рис. 12.3.5. Оптимальная фильтрация сигнала со сложным спектральным составом.

Рис. 12.3.6. Оптимальная фильтрация радиоимпульса.

На рис. 12.3.6 приведен пример фильтрации оптимальным фильтром радиоимпульса. Основной пик спектра радиоимпульса находится в области несущей частоты, а боковые полосы определяются формой модулирующего сигнала, в данном случае – прямоугольного импульса. На графике модулей сигнала и передаточной функции фильтра можно видеть, что оптимальный фильтр превратился в полосовой фильтр, при этом учитывается форма боковых полос спектра сигнала.

Фильтры прогнозирования и запаздывания. Если в правой части уравнения (12.3.3) желаемым сигналом задать входной сигнал со сдвигом на величину kDt, то при этом B(m) = R(m+k) и уравнение принимает вид:

h(n) ③ R(m-n) = R(m+k). (12.3.8)

При k > 0 фильтр называется фильтром прогнозирования и вычисляет будущие значения сигнала по его предшествующим значениям. При k < 0 фильтр является фильтром запаздывания. Реализация фильтра заключается в решении соответствующих систем линейных уравнений для каждого заданного значения k. Фильтр может использоваться для интерполяции геофизических полей, в том числе в наперед заданные точки, а также для восстановления утраченных данных.




Top