Расписание работы почты в новогодние праздники. Обобщим все вышесказанное. Узнать график работы почты можно с мобильного

Длина связи - межъядерное расстояние. Чем это расстояние короче, чем прочнее химическая связь . Длина связи зависит от радиусов атомов , образующих ее: чем меньше по размеру атомы, тем более короткая между ними связь. Например, длина связи Н-О меньше, чем длина связи H-N (из-за меньшего размена атома кислорода).

Ионная связь является крайним случаем полярной ковалентной связи.

Металлическая связь.

Предпосылкой образования данного вида связи является:

1) наличие на внешних уровнях атомов относительного небольшого числа электронов ;

2) наличие на внешних уровнях атомов металлов пустых (вакантных орбиталей)

3) относительно низкая энергия ионизации.

Рассмотрим образование металлической связи на примере натрия. Валентный электрон натрия, который находится на 3s-подуровне может относительно легко перемещаться по пустым орбиталям внешнего слоя: по 3р и 3d. При сближении атомов в результате образовании кристаллической решетки валентные орбитали соседних атомов перекрываются, благодаря чему электроны свободно перемещаются с одной орбитали на другую, осуществляя связь между ВСЕМИ атомами кристалла металла.

В узлах кристаллической решетки находятся положительно заряженные ионы и атомы металлов, а между ними - электроны, которые могут свободно перемещаться по всей кристаллической решетке. Эти электроны становятся общими для всех атомов и ионов металла и называются «электронным газом». Связь между всеми положительно заряженными ионами металлов и свободными электронами в кристаллической решетке металлов называется металлической связью .

Наличием металлической связи обусловлены физические свойства металлов и сплавов: твердость, электропроводность, теплопроводность, ковкость, пластичность, металлический блеск. Свободные электроны могут переносить теплоту и электричество, поэтому они являются причиной главных физических свойств, отличающих металлы от неметаллов, - высокой электро- и теплопроводности.

Водородная связь.

Водородная связь возникает между молекулами, в состав которых входит водород и атомы с высокой ЭО (кислород, фтор, азот). Ковалентные связи H-O, H-F, H-N являются сильно полярными, за счет чего на атоме водорода скапливается избыточный положительный заряд, а на противоположных полюсах - избыточный отрицательный заряд. Между разноименно заряженными полюсами возникают силы электростатического притяжения - водородные связи.

Водородные связи могут быть как межмолекулярными, так и внутримолекулярными. Энергия водородной связи примерно в десять раз меньше энергии обычной ковалентной связи, но тем не менее водородные связи играют большую роль во многих физико-химических и биологических процессах. В частности, молекулы ДНК представляют собой двойные спирали, в которых две цепи нуклеотидов связаны между собой водородными связями. Межмолекулярные водородные связи между молекулами воды и фтороводорода можно изобразить (точками) следующим образом:

Вещества с водородной связью имеют молекулярные кристаллические решетки. Наличие водородной связи приводит к образованию ассоциатов молекул и, как следствие, к повышению температур плавления и кипения.

Кроме перечисленных основных видов химической связи существуют также универсальные силы взаимодействия между любыми молекулами, которые не приводят к разрыву или образованию новых химических связей. Эти взаимодействия называются вандерваальсовыми силами. Они обусловливают притяжение молекул данного вещества (или различных веществ) друг к другу в жидком и твердом агрегатном состояниях.

Различные виды химической связи обусловливают существование различных типов кристаллических решеток (табл.).

Вещества, состоящие из молекул, имеют молекулярное строение . К таким веществам относятся все газы, жидкости, а также твердые вещества с молекулярной кристаллической решеткой, например йод. Твердые вещества с атомной, ионной или металлической решеткой имеют немолекулярное строение , в них нет молекул.

Таблица

Особенность кристаллической решетки Тип кристаллической решетки
Молекулярная Ионная Атомная Металлическая
Частицы в узлах решетки Молекулы Kатионы и анионы Атомы Kатионы и атомы металлов
Характер связи между частицами Силы межмолекулярного взаимодействия (в том числе водородные связи) Ионные связи Kовалентные связи Металлическая связь
Прочность связи Слабая Прочная Очень прочная Разной прочности
Отличительные физические свойства веществ Легкоплавкие или возгоняющиеся, небольшой твердости, многие растворимы в воде Тугоплавкие, твердые, хрупкие, многие растворимы в воде. Растворы и расплавы проводят электрический ток Очень тугоплавкие, очень твердые, практически нерастворимы в воде Высокая электро- и теплопроводность, металлический блеск, пластичность.
Примеры веществ Простые вещества - неметаллы (в твердом состоянии): Cl 2 , F 2 , Br 2 , О 2 , О 3 , Р 4 , сера, йод, (кроме кремния, алмаза, графита); сложные вещества, состоящие из атомов неметаллов (кроме солей аммония): вода, сухой лед, кислоты, галогениды неметаллов: PCl 3 , SiF 4 , CBr 4 , SF 6 , органические вещества: углеводороды, спирты, фенолы , альдегиды и т.д. Соли: хлорид натрия, нитрат бария и т.д.; щелочи: гидроксид калия, гидроксид кальция, соли аммония: NH 4 Cl, NH 4 NO 3 и т.д., оксиды металлов, нитриды, гидриды и т.д. (соединения металлов с неметаллами) Алмаз, графит, кремний, бор, германий, оксид кремния (IV) - кремнезем, SiC (карборунд), черный фосфор (Р). Медь, калий, цинк, железо и др. металлы
Сравнение веществ по температурам плавления и кипения.
Из-за слабых сил межмолекулярного взаимодействия такие вещества имеют самые низкие температуры плавления и кипения. Причем, чем больше молекулярная масса вещества, тем более высокую t 0 пл. оно имеет. Исключения составляют вещества, между молекулами которых могут образовываться водородные связи. Например, HF имеет более высокую t 0 пл., чем HCl. Вещества имеют высокие t 0 пл., но ниже, чем вещества с атомной решеткой. Чем выше заряды ионов, которые находятся в узлах решетки и чем короче расстояние между ними, тем более высокую температуру плавления имеет вещество. Например, t 0 пл. CaF 2 выше, чем t 0 пл. KF. Имеют самые высокие t 0 пл. Чем прочнее связь между атомами в решетке, тем более высокую t 0 пл. имеет вещество. Например, Si имеет менее высокую t 0 пл., чем С. Металлы имеют различные t0 пл.: от -37 0 С у ртути до 3360 0 С у вольфрама.

Типы связей.

В химии различают следующие типы связей: ковалентная, ионная, металлическая, водородная связь, связь Ван-дер-Ваальса, донорно-акцепторная связь, дативная связь.

Ковалентная связь

При образовании ковалентной связи атомы делятся друг с другом электронами. Примером ковалентной связи является химическая связь в молекуле Cl 2 . Впервые Льюис (1916 г.) предположил, что в такой связи каждый из двух атомов хлора делится одним из своих внешних электронов с другим атомом хлора. Для перекрывания атомных орбиталей два атома должны подойти друг к другу как можно ближе. Общая пара электронов образует ковалентную связь. Эти электроны занимают одну и туже орбиталь, а их спины направлены в противоположные стороны.

Таким образом, ковалентная связь осуществляется обобществлением электронов от разных атомов в результате спаривания электронов с противоположными спинами.

Ковалентная связь является широко распространенным типом связи. Ковалентная связь может возникать не только в молекулах, но и кристаллах. Она возникает между одинаковыми атомами (в молекулах Н 2 , Cl 2 , алмазе) и между разными атомами (в молекулах Н 2 О, NH 3 …)

Механизм возникновения ковалентной связи

Механизм рассмотрим на примере образования молекулы Н 2 .

Н+Н=Н 2 , ∆Н=-436 кДж/моль

Ядро свободного атома водорода окружено сферически симметричным электронным облаком, образованным 1s-электроном. При сближении атомов до определенного расстояния, происходит частичное перекрывание их электронных облаков (орбиталей) (рис. 4).

Рис. 4. Механизм образования связи в молекуле водорода.

Если у сблизившихся до касания атомов водорода расстояние между ядрами 0,106 нм, то после перекрывания электронных облаков, это расстояние составляет 0,074 нм.

В результате между центрами ядер возникает молекулярное двухэлектронное облако, обладающее максимальной электронной плотностью в пространстве между ядрами. Увеличение плотности отрицательного заряда между ядрами благоприятствует сильному возрастанию сил притяжения между ядрами, что приводит к выделению энергии. Химическая связь тем прочнее, чем больше перекрывание электронных орбиталей. В результате возникновения химической связи между двумя атомами водорода каждый из них достигает электронной конфигурации атома благородного газа - гелия.

Существует два метода, объясняющих с квантово-механических позиций образование области перекрытия электронных облаков, и образования соответственно ковалентной связи. Один из них называется метод ВС (валентных связей), другой МО (молекулярных орбиталей).

В методе валентных связей рассматривается перекрывание атомных орбиталей выделенной пары атомов. В методе МО молекулу рассматривают как целое и распределение электронной плотности (от одного электрона) размазано по всей молекуле. С позиции МО 2Н в Н 2 связаны за счет притяжения ядер к электронному облаку, расположенному между этими ядрами.

Изображение ковалентной связи

Связи изображают по-разному:

1). С помощью электронов в виде точек

В этом случае образование молекулы водорода показывают схемой

Н∙ + Н∙ → Н: Н

2). С помощью квадратных ячеек (орбиталей), как размещение двух электронов с противоположными спинами в одной молекулярной квантовой ячейке

Эта схема показывает, что молекулярный энергетический уровень ниже исходных атомных уровней, а значит молекулярное состояние вещества более устойчивое, чем атомное.

3). Ковалентную связь изображают чертой

Например, Н – Н. эта черта символизирует пару электронов.

Если между атомами возникла одна ковалентная связь (одна общая электронная пара), то она называется одинарной , если больше, то кратной двойной (две общие электронные пары), тройной (три общие электронные пары). Одинарная связь изображается одной чертой, двойная – двумя, тройная – тремя.

Черточка между атомами показывает, что у них пара электронов обобщена.

Классификация ковалентных связей

В зависимости от направления перекрывания электронных облаков различают σ-, π-, δ-связи. σ-связь возникает при перекрывании электронных облаков вдоль оси, соединяющей ядра взаимодействующих атомов.

Примеры σ-связи:

Рис. 5. Образование σ-связи между s-, p-, d- электронами.

Пример образования σ-связи при перекрывании s-s-облаков наблюдается в молекуле водорода.

π-связь осуществляется при перекрывании электронных облаков по обе стороны от оси, соединяющий ядра атомов.

Рис. 6. Образование π-связи между p-, d- электронами.

δ- связь возникает при перекрывании двух d-электронных облаков, расположенных в параллельных плоскостях. δ-связь менее прочная, чем π-связь, а π-связь менее прочная чем σ-связь.

Свойства ковалентной связи

а). Полярность.

Различают две разновидности ковалентной связи: неполярную и полярную.

В случае неполярной ковалентной связи электронное облако, образованное общей парой электронов, распределяется в пространстве симметрично относительно ядер атомов. Примером являются двухатомные молекулы, состоящие из атомов одного элемента: Н 2 , Cl 2 , О 2 , N 2 , F 2 . У них электронная пара в одинаковой мере принадлежит обоим атомам.

В случае полярной связи электронное облако, образующее связь, смещено к атому с большей относительной электроотрицательностью.

Примерами являются молекулы: НCl, Н 2 О, Н 2 S, N 2 S, NH 3 и др. Рассмотрим образование молекулы HCl, которое можно представить следующей схемой

Электронная пара смещена к атому хлора, т.к. относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1).

б). Насыщаемость.

Способность атомов участвовать в образовании ограниченного числа ковалентных связей называется насыщаемостью ковалентной связи. Насыщаемость ковалентных связей обусловлена тем, что в химическом взаимодействии участвуют электрона только внешних энергетических уровней, то есть ограниченное число электронов.

в). Направленность и гибридизация ковалентной связи.

Ковалентная связь характеризуется направленностью в пространстве. Это объясняется тем, что электронные облака имеют определенную форму и их максимальное перекрывание возможно при определенной пространственной ориентации.

Направленность ковалентной связи определяет геометрическое строение молекул.

Например, для воды она имеет треугольный вид.



Рис. 7. Пространственная структура молекулы воды.

Экспериментально установлено, что в молекуле воды H 2 O расстояние между ядрами водорода и кислорода составляет 0,096 нм (96 пм). Угол между линиями, проходящими через ядра, составляет 104,5 0 . Таким образом, молекула воды имеет угловую форму и ее строение можно выразить в виде представленного рисунка.

Гибридизация

Как показывают экспериментальные и теоретические исследования (Слейтер, Полинг) при образовании некоторых соединений, таких как BeCl 2 , BeF 2 , BeBr 2 состояние валентных электронов атома в молекуле описываются не чистыми s-, p-, d- волновыми функциями, а их линейными комбинациями. Такие смешанные структуры называются гибридными орбиталями, а процесс смешивания гибридизацией.

Как показывают квантово-химические расчеты смешивание s- и p- орбиталей атома – процесс благоприятный для образования молекулы. В этом случае выделяется больше энергии, чем при образовании связей с участием чистых s- и p- орбиталей. Поэтому гибридизация электронных орбиталей атома приводит к большому понижению энергии системы и соответственно повышению устойчивости молекулы. Гибридизированная орбиталь отличается большей вытянутостью по одну сторону от ядра, чем по другую. Поэтому электронная плотность в области перекрывания гибридного облака будет больше электронной плотности в области перекрывания отдельно s- и p- орбиталей, вследствие чего связь, образованная электронами гибридной орбитали, характеризуется большей прочностью.

Имеют место несколько типов гибридных состояний. При гибридизации s- и p- орбиталей (называется sp-гибридизация), возникают две гибридные орбитали, расположенные относительно друг друга под углом 180 0 . В этом случае образуется линейная структура. Такая конфигурация (структура) известна для большинства галогенидов щелочноземельных металлов (например, ВеX 2 , где X=Cl, F, Br), т.е. угол связи равен 180 0 С.

Рис. 8. sp-гибридизация

Другой тип гибридизации, называемый sp 2 -гибридизацией (образуется из одной s и двух p-орбиталей), приводит к образованию трех гибридных орбиталей, которые располагаются друг к другу под углом 120 0 . При этом в пространстве образуется тригональная структура молекулы (или правильного треугольника). Такие структуры известны для соединений ВX 3 (X=Cl, F, Br).

Рис. 9. sp 2 -гибридизация.

Не менее часто встречается sp 3 -гибридизация, которая образуется из одного s- и трех p- орбиталей. При этом образуется четыре гибридные орбитали ориентированные в пространстве симметрично четырем вершинам тетраэдра, то есть они расположены под углом 109 0 28 " . Такое пространственное положение называется тетраэдрическим. Такая структура известна для молекул NH 3 , Н 2 О и вообще для элементов II периода. Схематично её вид в пространстве можно отобразить следующим рисунком

Рис. 10. Пространственное расположение связей в молекуле аммиака,

спроецированное на плоскость.

Образование тетраэдрических связей за счет sp 3 -гибридизации можно представить в виде следующего (рис. 11):

Рис. 11. Образование тетраэдрических связей при sp 3 -гибридизации.

Образование тетраэдрических связей при sp 3 – гибридизации на примере молекулы CCl 4 представлено на рис. 12.

Рис.12. Образование тетраэдрических связей при sp 3 – гибридизации в молекулы CCl 4

Гибридизация касается не только s- и p-орбиталей. Для объяснения стереохимических элементов III и последующих периодов возникает необходимость в построении гибридных орбиталей одновременно включающих s-, p-, d- орбитали.

К веществам с ковалентной связью относятся:

1. органические соединения;

2. твердые и жидкие вещества, у которых связи образуются между парами атомов галогенов, а также между парами атомов водорода, азота и кислорода, например, Н 2 ;

3. элементы VI группы (например, спиральные цепочки теллура), элементы V группы (например, мышьяк), элементы IV группы (алмаз, кремний, германий);

4. соединения, подчиняющиеся правилу 8-N (такие как InSb, CdS, GaAs, CdTe), когда образующие их элементы расположены в периодической таблице Менделеева в II-VI, III-V группах.

В твердых телах с ковалентной связью могут для одного и того же вещества образовываться различные кристаллические структуры, энергия связи которых практически одинакова. Например, структура ZnS может быть кубической (цинковая обманка) или гексагональной (вюрцит). Расположение ближайших соседей в цинковой обманке и вюрците одинаково, а единственное и небольшое отличие в энергиях этих двух структур определяется расположением атомов, следующих за ближайшими. Подобная способность некоторых веществ называется аллотропией или полиморфизмом. Другим примером аллотропии является карбид кремния, который имеет целый ряд полититпов различной структуры от чисто кубической до гексагональной. Эти многочисленные кристаллические модификации ZnS, SiC существуют при комнатной температуре.

Ионная связь

Ионная связь представляет собой электростатическую силу притяжения между ионами с зарядами противоположного знака (т.е. + и −).

Представление об ионной связи сформировалось на основе идей В.Косселя. Он предположил (1916 г.), что при взаимодействии двух атомов один их них отдает, а другой принимает электроны. Таким образом, ионная связь образуется в результате переноса одного или нескольких электронов от одного атома к другому. Например, в хлориде натрия ионная связь образуется в результате переноса электрона от атома натрия к атому хлора. Вследствие такого переноса образуется ион натрия с зарядом +1 и ион хлора с зарядом -1. Они притягиваются друг к другу электростатическими силами, образуя устойчивую молекулу. Модель электронного переноса, предложенная Косселем, позволяет объяснить образование таких соединений как фторид лития, оксид кальция, оксид лития.

Наиболее типичные ионные соединения состоят из катионов металлов, принадлежащих к I и II группам периодической системы, и анионов неметаллических элементов, принадлежащих к VI и VII группам.

Легкость образования ионного соединения зависит от легкости образования входящих в него катионов и анионов. Легкость образования тем выше, чем меньшую энергию ионизации имеет атом, отдающий электроны (донор электронов), а атом, присоединяющий электроны (акцептор электронов), обладает большим сродством к электрону. Сродство к электрону – это мера способности атома присоединять электрон. Её количественно определяют как изменение энергии, происходящее при образовании одного моля однозарядных анионов из одного моля атомов. Это так называемое понятие «первое сродство к электрону». Второе сродство к электрону – это изменение энергии, происходящее при образовании одного моля двухзарядных анионов из одного моля однозарядных анионов. Данные понятия, то есть энергия ионизации и сродство к электрону, относятся к газообразным веществам и являются характеристиками атомов и ионов в газообразном состоянии. Но следует иметь в виду, что большинство ионных соединений наиболее устойчивы в твердом состоянии. Данное обстоятельство объясняется существованием у них в твердом состоянии кристаллической решетки. Возникает вопрос. Почему же все-таки ионные соединения более устойчивы в виде кристаллических решеток, а не в газообразном состоянии? Ответом на этот вопрос служит расчет энергии кристаллической решетки, основанный на электростатической модели. В дополнении к этому данный расчет является и проверкой теории ионной связи.

Для расчета энергии кристаллической решетки необходимо определить работу, которую нужно затратить на разрушение кристаллической решетки с образованием газообразных ионов. Для проведения расчета используется представление о силах притяжения и отталкивания. Выражение для потенциальной энергии взаимодействия однозарядных ионов получается суммированием энергии притяжения и энергии отталкивания

Е = Е прит + Е отт (1).

В качестве Е прит берется энергия кулоновского притяжения ионов разноименных знаков, например, Na + и Cl - для соединения NaCl

Е прит = -е 2 /4πε 0 r (2),

поскольку распределение электронного заряда в заполненной электронной оболочке сферически-симметрично. Благодаря отталкиванию, возникающему вследствие принципа Паули при перекрытии заполненных оболочек аниона и катиона, расстояние, на которое могут сблизиться ионы, ограниченно. Энергия отталкивания быстро изменяется с межъядерным расстоянием, и её можно записать в виде следующих двух приближенных выражений:

Е отт = А/r n (n≈12) (3)

Е отт = В∙ехр(-r/ρ) (4),

где А и В – константы, r-расстояние между ионами, ρ - параметр (характерная длина).

Следует заметить, что ни одно из этих выражений не соответствует сложному квантово-механическому процессу, который приводит к отталкиванию.

Несмотря на приближенность данных формул, они позволяют достаточно точно рассчитать и соответственно описать химическую связь в молекулах таких ионных соединений, как NaCl, KCl, CaO.

Так как электрическое поле иона имеет сферическую симметрию (рис. 13), то ионная связь в отличие от ковалентной не обладает направленностью. Взаимодействие двух противоположно заряженных ионов компенсируется силами отталкивания только в направлении, соединяющим центры ядер ионов, в других направлениях компенсация электрических полей ионов не происходит. Поэтому они способны взаимодействовать и с другими ионами. Таким образом, ионная связь не обладает насыщаемостью.

Рис. 13. Сферическая симметрия электростатического поля

разноименнозаряженных зарядов.

Вследствие ненаправленности и ненасыщаемости ионной связи энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака. Благодаря этому наиболее предпочтительная форма существования ионного соединения – кристалл. Например, в кристалле NaCl каждый катион имеет в качестве ближайших соседей шесть анионов.

Только при высоких температурах в газообразном состоянии ионные соединения существуют в виде неассоциированных молекул.

В ионных соединениях координационное число не зависит от специфики электронной структуры атомов, как в ковалентных соединениях, а определяется соотношением размеров ионов. При соотношении ионных радиусов в пределах 0,41 – 0,73 наблюдается октаэдрическая координация ионов, при соотношении 0,73-1,37 – кубическая координация и т.д..

Таким образом, в обычных условиях ионные соединения представляют собой кристаллические вещества. Понятие двухионных молекул, например, NaCL, CsCl к ним не применимо. Каждый кристалл состоит из большого числа ионов.

Ионную связь можно представить как предельную полярную связь, для которой эффективный заряд атома близок к единице. Для чисто ковалентной неполярной связи эффективный заряд атомов равен нулю. В реальных веществах чисто ионных и чисто ковалентных связей встречается мало. Большинство соединений имеет характер связи промежуточный между неполярной ковалентной и полярной ионной. То есть в данных соединениях ковалентная связь имеет частично ионный характер. Характер ионной и ковалентной связи в реальных веществах представлен на рисунке 14.

Рис. 14. Ионный и ковалентный характер связи.

Долю ионного характера связи называют степенью ионности. Она характеризуется эффективными зарядами атомов в молекуле. Степень ионности возрастает с увеличением разности электроотрицательностей образующих её атомов.

Металлическая связь

В атомах металлов внешние валентные электроны удерживаются значительно слабее, чем в атомах неметаллов. Это обуславливает потерю связи электронов с отдельными атомами на достаточно большой промежуток времени и их обобществление. Образуется обобществленный ансамбль из внешних электронов. Существование подобной электронной системы приводит к возникновению сил, которые удерживают положительные ионы металла в сближенном состоянии, несмотря на их одноименную заряженность. Такая связь называется металлической. Подобная связь характерна только для металла и существует в твердом и жидком состоянии вещества. Металлическая связь является одним из видов химической связи. Она основана на обобществлении внешних электронов, которые теряют связь с атомом и поэтому называются свободными электронами (рис. 15).

Рис. 15. Металлическая связь.

Подтверждением существования металлической связи являются следующие факты. Все металлы имеют высокую теплопроводность и высокую электропроводность, которая обеспечивается за счет наличия свободных электронов. Кроме того, это же обстоятельство определяет хорошую отражательную способность металлов к световому облучению, их блеск и непрозрачность, высокую пластичность, положительный температурный коэффициент электросопротивления.

Стабильность кристаллической решетки металлов невозможно объяснить такими видами связи как ионная и ковалентная. Ионная связь между атомами металла, находящихся в узлах кристаллической решетки, невозможна, так как они имеют один и тот же заряд. Ковалентная связь между атомами металла также маловероятна, поскольку каждый атом имеет от 8 до 12 ближайших соседей, а образование ковалентных связей с таким количеством обобществленных пар электронов неизвестно.

Металлические структуры характеризуются тем, что они имеют довольно редкое расположение атомов (межъядерные расстояния большие) и большое число ближайших соседей у каждого атома в кристаллической решетке. В таблице 1 указаны три типичные металлические структуры.

Таблица 1

Характеристики структур трех наиболее распространенных металлов

Видим, что каждый атом участвует в образовании большого числа связей (например, с 8 атомами). Столь большое число связей (с 8 или с 12 атомами) не может быть одновременно локализованы в пространстве. Связь должна осуществляться за счет резонанса колебательного движения внешних электронов каждого атома, в результате которого происходит коллективизация всех внешних электронов кристалла с образованием электронного газа. Во многих металлах для образования металлической связи достаточно взять по одному электрону от каждого атома. Именно это наблюдается для лития, у которого на внешней оболочке имеется всего один электрон. Кристалл лития представляет собой решетку ионов Li + (шаров радиусом 0,068 нм), окруженных электронным газом.

Рис. 16. Различные типы кристаллической упаковки: а-гексагональная плотная упаковка; б- гранецентрированная кубическая упаковка; в-объёмноцентрированная кубическая упаковка.

Между металлической и ковалентной связью имеется сходство. Оно заключается в том, что оба типа связи основаны на обобществлении валентных электронов. Однако ковалентная связь соединяет только два соседних атома, и общие электроны находятся в непосредственной близости от соединенных атомов. В металлической связи несколько атомов участвуют в обобществлении валентных электронов.

Таким образом, понятие металлической связи неразрывно связано с представлением о металлах как совокупности положительно заряженных ионных остовов с большими промежутками между ионами, заполненными электронным газом, при этом на макроскопическом уровне система остается электрически нейтральной.

Кроме вышерассмотренных типов химической связи существуют и другие типы связи, которые являются межмолекулярными: водородная связь, вандерваальсово взаимодействие, донорно-акцепторное взаимодействие.

Донорно-акцепторное взаимодействие молекул

Механизм образования ковалентной связи за счет двухэлектронного облака одного атома и свободной орбитали другого называется донорно-акцепторным. Атом или частица, предоставляющие для связи двухэлектронное облако называется донором. Атом или частица со свободной орбиталью, принимающие эту электронную пару называется акцептором.

Основные виды межмолекулярного взаимодействия. Водородная связь

Между молекулами, валентно-насыщенными, на расстояниях, превышающих размеры частиц, могут проявляться электростатические силы межмолекулярного притяжения. Их называют силы Ван-дер-Ваальса. Вандерваальсово взаимодействие всегда существует между близко расположенными атомами, но играет важную роль лишь в отсутствие более сильных механизмов связи. Это слабое взаимодействие с характерной энергией 0,2 эВ/атом имеет место между нейтральными атомами и между молекулами. Название взаимодействия связывается с именем Ван-дер-Ваальса, поскольку именно он впервые предположил, что уравнение состояния с учетом слабого взаимодействия между молекулами газа описывает свойства реальных газов много лучше, чем уравнение состояния идеального газа. Однако природа этой силы притяжения была объяснена лишь в 1930 году Лондоном. В настоящее время к Ван-дер-Ваальсову притяжению относят следующие три типа взаимодействий: ориентационное, индукционное, дисперсион-ное(эффект Лондона). Энергия Ван-дер-Ваальсова притяжения определяется суммой ориентационного, индукционного и дисперсионного взаимодействий.

Е прит = Е ор +Е инд + Е дисп (5).

Ориентационное взаимодействие (или диполь-дипольное взаимодействие) проявляется между полярными молекулами, которые при приближении поворачиваются (ориентируются) друг к другу разноименными полюсами так, чтобы потенциальная энергия системы молекул стала минимальной. Энергия ориентационного взаимодействия тем существеннее, чем больше дипольный момент молекул μ и меньше расстояние l между ними:

Е ор = -(μ 1 μ 2) 2 / (8π 2 ∙ε 0 ∙l 6) (6),

где ε 0 – электрическая постоянная.

Индукционное взаимодействие связано с процессами поляризации молекул окружающими диполями. Оно тем значительнее, чем выше поляризуемость α неполярной молекулы и больше дипольный момент μ полярной молекулы

Е инд = -(αμ 2)/ (8π 2 ∙ε 0 ∙l 6) (7).

Поляризуемость α неполярной молекулы называется деформационной, так как она связана с деформацией частицы, при этом μ характеризует смещение электронного облака и ядер относительно прежних положений.

Дисперсионное взаимодействие (эффект Лондона) возникает у любых молекул независимо от их строения и полярности. Вследствие мгновенного несовпадения центров тяжести зарядов электронного облака и ядер образуется мгновенный диполь, который индуцирует мгновенные диполи в других частицах. Движение мгновенных диполей становится согласованным. В результате соседние частицы испытывают взаимное притяжение. Энергия дисперсионного взаимодействия зависит от энергии ионизации Е I и поляризуемости молекул α

Е дисп = - (Е I 1 ∙Е I 2)∙ α 1 α 2 /(Е I 1 +Е I 2) l 6 (8).

Промежуточный характер между валентным и межмолекулярным взаимодействием имеет водородная связь. Энергия водородной связи невелика 8 – 80 кДж/моль, но больше энергии взаимодействия Ван-дерВаальса. Водородная связь характерна для таких жидкостей как вода, спирты, кислоты и обусловлена положительно поляризованным атомом водорода. Малые размеры и отсутствие внутренних электронов позволяют атому водорода, присутствующему в жидкости в каком-либо соединении, вступать в дополнительное взаимодействие с ковалентно с ним не связанным отрицательно поляризованным атомом другой или той же самой молекулы

А δ- - Н δ+ …. А δ- - Н δ+ .

То есть происходит ассоциация молекул. Ассоциация молекул приводит к уменьшению летучести, повышению температуры кипения и теплоты испарения, увеличению вязкости и диэлектрической проницаемости жидкостей.

Вода особенно подходящее вещество для образования водородной связи, так как её молекула имеет два атома водорода и две неподелённые пары у атома кислорода. Это обуславливает высокий дипольный момент молекулы (μ D = 1,86 D) и способность образовывать четыре водородные связи: две – как донор протонов и две – как акцептор протонов

(Н 2 О….Н – О…Н 2 О) 2 раза.

Из экспериментов известно, что с изменением молекулярной массы в ряду водородных соединений элементов третьего и последующего периодов температура кипения растет. Если данную закономерность применить к воде, то температура кипения у неё должна быть не 100 0 С, а 280 0 С. Данное противоречие подтверждает существование водородной связи в воде.

Эксперименты показали, что в воде формируются молекулярные ассоциаты в жидкой и особенно в твердой воде. Лед имеет тетраэдрическую кристаллическую решетку. В центре тетраэдра расположен атом кислорода одной молекулы воды, в четырех вершинах находятся атомы кислорода соседних молекул, которые соединены водородными связями с ближайшими соседями. В жидкой воде водородные связи частично разрушены, в её структуре наблюдается динамическое равновесие между ассоциатами молекул и свободными молекулами.

Электроотрицательность - способность атомов смещать в свою сторону электроны при образовании химической связи. Это понятие было введено американским химиком Л. Полингом (1932 г.). Электроотрицательность характеризует способность атома данного элемента притягивать к себе общую электронную пару в молекуле. Величины электроотрицательности, определенные различными способами, отличаются друг от друга. В учебной практике чаще всего пользуются не абсолютными, а относительными значениями электроотрицательности. Наиболее распространенной является шкала, в которой электроотрицательности всех элементов сравниваются с электроотрицательностью лития , принятой за единицу.

Среди элементов групп IA - VIIA:

электроотрицательность с увеличением порядкового номера, как правило, в периодах увеличивается («слева направо»), а в группах - уменьшается («сверху вниз»).

Закономерности изменения электроотрицательности среди элементов d-блока имеют значительно более сложный характер.

Элементы с высокой электроотрицательностью, атомы которых имеют большое сродство к электрону и высокую энергию ионизации, т. е. склонные к присоединению электрона или смещению пары связывающих электронов в свою сторону, называются неметаллами.

К ним относятся: водород , углерод , азот , фосфор , кислород , сера , селен , фтор , хлор , бром и иод . По ряду признаков к неметаллам относят также особняком стоящую группу благородных газов (гелий -радон).

К металлам относится большинство элементов Периодической системы.

Для металлов характерны низкая электроотрицательность, т. е. низкие значения энергии ионизации и сродства к электрону. Атомы металлов либо отдают электроны атомам неметаллов, либо смешают от себя пары связывающих электронов. Металлы отличаются характерным блеском, высокой электрической проводимостью и хорошей теплопроводностью. Они в большинстве своем обладают прочностью и ковкостью.

Такой набор физических свойств, отличающих металлы от неметаллов, объясняется особым типом связи, существующей в металлах. Все металлы имеют четко выраженную кристаллическую решетку. В ее узлах наряду с атомами находятся катионы металлов, т.е. атомы, потерявшие свои электроны. Эти электроны образуют обобществленное электронное облако, так называемый электронный газ. Эти электроны находятся в силовом поле многих ядер. Такая связь называется металлической. Свободная миграция электронов по объему кристалла и обусловливает особые физические свойства металлов.

К металлам относятся все d и f-элементы. Если из Периодической системы мысленно выделить только блоки s- и p-элементов, т. е. элементы группы А и провести диагональ из левого верхнего угла в правый нижний угол, то окажется, что неметаллические элементы располагаются в правой стороне от этой диагонали, а металлические - в левой. К диагонали примыкают элементы, которые нельзя отнести однозначно ни к металлам, ни к неметаллам. К этим промежуточным по свойствам элементам относятся: бор , кремний , германий , мышьяк , сурьма , селен , полоний и астат .

Представления о ковалентной и ионной связи сыграли важную роль в развитии представлений о строении вещества, однако создание новых физико-химических методов исследования тонкой структуры вещества и их использование показали, что феномен химической связи значительно сложнее. В настоящее время считается, что любая гетероатомная связь является одновременно и ковалентной, и ионной, но в разных соотношениях. Таким образом вводится понятие о ковалентной и ионной составляющих гетероатомной связи. Чем больше разница в электроотрицательности связывающихся атомов, тем больше полярность связи. При разнице больше двух единиц преобладающей практически всегда является ионная составляющая. Сравним два оксида: оксид натрия Na 2 O и оксид хлора(VII) Cl 2 O 7 . В оксиде натрия частичный заряд на атоме кислорода составляет -0,81, а в оксиде хлора -0,02. Это фактически означает, что связь Na-O на 81% является ионной и на 19% - ковалентной. Ионная составляющая связи Cl-O равна только 2%.

Список использованной литературы

  1. Попков В. А. , Пузаков С. А. Общая химия: учебник. - М.: ГЭОТАР-Медия, 2010. - 976 с.: ISBN 978-5-9704-1570-2. [с. 35-37]
  2. Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. - Мн.: Современная школа, 2005. - 608 с ISBN 985-6751-04-7.

Интерактивный список. Начните вводить искомое слово.

СВЯЗЬ

Синонимы:

логичность, связность, непрерывность, складность, последовательность, стройность, взаимодействие, соединение, сочленение, конкатенация, сцепление, коммуникация, средство сообщения, сношение, общение, контакт, ассоциация, касательство, отношение, зависимость, привязка, узы, роман, соединительное звено, союз, причинность, паблик рилейшнз, томба, интимные отношения, интрига, соотношение, дуплекс, пуповина, сношения, бондинг, религия, сожительство, паратаксис, связующая нить, преемственность, спайка, взаимосвязанность, корреляция, обусловленность, связишка, родство, замазка, скрепа, амуры, интрижка, синапс, контекст, любовь, нить, почта, сообщение, квадруплекс. Ant. разрозненность

СВЯЗЬ синонимы, что такое СВЯЗЬ , СВЯЗЬ это, значение слова СВЯЗЬ , происхождение (этимология) СВЯЗЬ , СВЯЗЬ ударение, формы слова в других словарях

+ СВЯЗЬ синоним - Словарь русских синонимов 4

Лекция для учителей

Химическую связь (в дальнейшем – связь) можно определить как взаимодействие двух или нескольких атомов, в результате которого образуется химически устойчивая многоатомная микросистема (молекула, кристалл, комплекс и др.).

Учение о связи занимает центральное место в современной химии, поскольку химия как таковая начинается там, где кончается изолированный атом и начинается молекула. В сущности, все свойства веществ обусловлены особенностями связей в них. Главное отличие химической связи от других видов взаимодействия между атомами заключается в том, что ее образование определяется изменением состояния электронов в молекуле по сравнению с исходными атомами.

Теория связи должна дать ответы на ряд вопросов. Почему образуются молекулы? Почему одни атомы вступают во взаимодействие, а другие – нет? Почему атомы соединяются в определенных соотношениях? Почему атомы располагаются в пространстве определенным образом? И наконец, надо рассчитать энергию связи, ее длину и другие количественные характеристики. Соответствие теоретических представлений экспериментальным данным должно рассматриваться как критерий истинности теории.

Существует два основных метода описания связи, которые позволяют ответить на поставленные вопросы. Это методы валентных связей (ВС) и молекулярных орбиталей (МО). Первый более нагляден и прост. Второй более строг и универсален. По причине большей наглядности основное внимание здесь будет уделено методу ВС.

Квантовая механика позволяет описать связь, исходя из самых общих законов. Хотя различают пять видов связи (ковалентная, ионная, металлическая, водородная и связь межмолекулярного взаимодействия), связь едина по своей природе, а различия между ее видами – относительны. Суть связи в кулоновском взаимодействии, в единстве противоположностей – притяжения и отталкивания. Деление связи на виды и различие в методах ее описания указывает скорее не на разнообразие связи, а на недостаточность знаний о ней на современном этапе развития науки.

В этой лекции будет рассмотрен материал, относящийся к таким темам, как энергия химической связи, квантово-механическая модель ковалентной связи, обменный и донорно-акцепторный механизмы образования ковалентной связи, возбуждение атомов, кратность связи, гибридизация атомных орбиталей, электроотрицательность элементов и полярность ковалентной связи, понятие о методе молекулярных орбиталей, химическая связь в кристаллах.

Энергия химической связи

Согласно принципу наименьшей энергии, внутренняя энергия молекулы по сравнению с суммой внутренних энергий образующих ее атомов должна понижаться. Внутренняя энергия молекулы включает сумму энергий взаимодействия каждого электрона с каждым ядром, каждого электрона с каждым другим электроном, каждого ядра с каждым другим ядром. Притяжение должно превалировать над отталкиванием.

Важнейшей характеристикой связи является энергия, определяющая ее прочность. Мерой прочности связи может служить как количество энергии, затрачиваемой на ее разрыв (энергия диссоциации связи), так и величина, которая при суммировании по всем связям дает энергию образования молекулы из элементарных атомов. Энергия разрыва связи всегда положительна. Энергия образования связи по величине та же, но имеет отрицательный знак.

Для двухатомной молекулы энергия связи численно равна энергии диссоциации молекулы на атомы и энергии образования молекулы из атомов. Например, энергия связи в молекуле НВr равна количеству энергии, выделяющейся в процессе Н + Вr = НВr. Очевидно, что энергия связи НВr больше количества энергии, выделяющейся при образовании НВr из газообразного молекулярного водорода и жидкого брома:

1/2Н 2 (г.) + 1/2Вr 2 (ж.) = НBr (г.),

на величину энергии испарения 1/2 моль Вr 2 и на величины энергий разложения 1/2 моль Н 2 и 1/2 моль Вr 2 на свободные атомы.

Квантово-механическая модель ковалентной связи по методу валентных связей на примере молекулы водорода

В 1927 г. уравнение Шрёдингера было решено для молекулы водорода немецкими физиками В.Гейтлером и Ф.Лондоном. Это была первая удачная попытка применения квантовой механики к решению проблем связи. Их работа заложила основы метода валентных связей, или валентных схем (ВС).

Результаты расчета можно представить графически в виде зависимостей сил взаимодействия между атомами (рис. 1, а) и энергии системы (рис. 1, б) от расстояния между ядрами атомов водорода. Ядро одного из атомов водорода поместим в начало координат, а ядро второго будем приближать к ядру первого атома водорода вдоль оси абсцисс. Если спины электронов антипараллельны, силы притяжения (см. рис. 1, а, кривая I) и силы отталкивания (кривая II) будут нарастать. Результирующая этих сил представлена кривой III. Сначала преобладают силы притяжения, затем – отталкивания. Когда расстояние между ядрами становится равным r 0 = 0,074 нм, сила притяжения уравновешивается силой отталкивания. Равновесию сил соответствует минимальная энергия системы (см. рис. 1, б, кривая IV) и, следовательно, наиболее устойчивое состояние. Глубина «потенциальной ямы» представляет энергию связи Е 0 Н–Н в молекуле Н 2 при абсолютном нуле. Она составляет 458 кДж/моль. Однако при реальных температурах на разрыв связи требуется несколько меньшая энергия Е Н–Н, которая при 298К (25 °С) равна 435 кДж/моль. Разность этих энергий в молекуле Н2 является энергией колебаний атомов водорода (Е кол = Е 0 Н–Н – Е Н–Н = 458 – 435 = 23 кДж/моль).

Рис. 1. Зависимость сил взаимодействия атомов (а) и энергии системы (б)
от расстояния между ядрами атомов в молекуле Н 2

При сближении двух атомов водорода, содержащих электроны с параллельными спинами, энергия системы постоянно увеличивается (см. рис. 1, б, кривая V) и связь не образуется.

Таким образом, квантово-механический расчет дал количественное объяснение связи. При наличии у пары электронов противоположных спинов электроны двигаются в поле обоих ядер. Между ядрами появляется область с высокой плотностью электронного облака – избыточного отрицательного заряда, который стягивает положительно заряженные ядра. Из квантово-механического расчета следуют положения, являющиеся основой метода ВС:

1. Причиной связи является электростатическое взаимодействие ядер и электронов.
2. Связь образуется электронной парой с антипараллельными спинами.
3. Насыщаемость связи обусловлена образованием электронных пар.
4. Прочность связи пропорциональна степени перекрывания электронных облаков.
5. Направленность связи обусловлена перекрыванием электронных облаков в области максимальной электронной плотности.

Обменный механизм образования ковалентной связи по методу ВС. Направленность и насыщаемость ковалентной связи

Одним из важнейших понятий метода ВС является валентность. Численное значение валентности в методе ВС определяется числом ковалентных связей, которые атом образует с другими атомами.

Рассмотренный для молекулы Н 2 механизм образования связи парой электронов с антипараллельными спинами, принадлежавших до образования связи разным атомам, называется обменным. Если учитывать только обменный механизм, валентность атома определяется числом его неспаренных электронов.

Для молекул более сложных, чем Н 2 , принципы расчета остаются неизменными. К образованию связи приводит взаимодействие пары электронов с противоположными спинами, но с волновыми функциями одинакового знака, которые суммируются. Результатом этого является увеличение электронной плотности в области перекрывания электронных облаков и стягивание ядер. Рассмотрим примеры.

В молекуле фтора F 2 связь образована 2р-орбиталями атомов фтора:

Наибольшая плотность электронного облака у 2р-орбитали в направлении оси симметрии. Если неспаренные электроны атомов фтора находятся на 2р х -орбиталях, связь осуществляется в направлении оси х (рис. 2). На 2р y - и 2р z -орбиталях находятся неподеленные электронные пары, не участвующие в образовании связей (на рис. 2 заштрихованы). В дальнейшем такие орбитали изображать не будем.


Рис. 2. Образование молекулы F 2

В молекуле фтороводорода НF связь образована 1s-орбиталью атома водорода и 2р х -орбиталью атома фтора:

Направленность связи в этой молекуле определяется ориентацией 2рх-орбитали атома фтора (рис. 3). Перекрывание происходит в направлении оси симметрии х. Любой другой вариант перекрывания энергетически менее выгоден.


Рис. 3. Образование молекулы НF

Более сложные d- и f-орбитали также характеризуются направлениями максимальной электронной плотности вдоль осей их симметрии.

Таким образом, направленность – одно из основных свойств ковалентной связи.

Направленность связи хорошо иллюстрирует пример молекулы сероводорода Н 2 S:

Поскольку оси симметрии валентных 3р-орбиталей атома серы взаимно перпендикулярны, то следует ожидать, что молекула Н 2 S должна иметь уголковую структуру с углом между связями S–Н 90° (рис. 4). Действительно, угол близок к расчетному и равен 92°.


Рис. 4. Образование молекулы Н 2 S

Очевидно, что число ковалентных связей не может превышать числа образующих связи электронных пар. Однако насыщаемость как свойство ковалентной связи означает также, что если атом имеет некоторое количество неспаренных электронов, то все они должны участвовать в образовании ковалентных связей.

Это свойство объясняется принципом наименьшей энергии. При образовании каждой дополнительной связи выделяется дополнительная энергия. Поэтому все валентные возможности реализуются полностью.

Действительно, устойчива молекула Н 2 S, а не НS , где имеется нереализованная связь (неспаренный электрон обозначают точкой). Частицы, содержащие неспаренные электроны, называют свободными радикалами. Они чрезвычайно реакционноспособны и вступают в реакции с образованием соединений, содержащих насыщенные связи.

Возбуждение атомов

Рассмотрим валентные возможности по обменному механизму некоторых элементов 2-го и 3-го периодов периодической системы.

Атом бериллия на внешнем квантовом уровне содержит два спаренных 2s-электрона. Неспаренных электронов нет, поэтому бериллий должен иметь нулевую валентность. Однако в соединениях он двухвалентен. Это можно объяснить возбуждением атома, заключающимся в переходе одного из двух 2s-электронов на 2р-подуровень:

При этом затрачивается энергия возбуждения Е*, соответствующая разности энергий 2р- и 2s-подуровней.

При возбуждении атома бора его валентность увеличивается от 1 до 3:

а у атома углерода – от 2 до 4:

На первый взгляд может показаться, что возбуждение противоречит принципу наименьшей энергии. Однако в результате возбуждения возникают новые, дополнительные связи, за счет чего энергия выделяется. Если эта дополнительно выделяющаяся энергия больше, чем затраченная на возбуждение, принцип наименьшей энергии в конечном итоге выполняется. Например, в молекуле метана СН 4 средняя энергия связи С–Н составляет 413 кДж/моль. На возбуждение затрачивается энергия Е* = 402 кДж/моль. Выигрыш энергии за счет образования двух дополнительных связей составит:

D E = E доп.св – Е* = 2 413 – 402 = 424 кДж/моль.

Если принцип наименьшей энергии не соблюдается, т. е. E доп.св < Е*, то возбуждение не происходит. Так, энергетически невыгодным оказывается возбуждение атомов элементов 2-го периода за счет перехода электронов со второго на третий квантовый уровень.

Например, кислород по этой причине только двухвалентен. Однако электронный аналог кислорода – сера – имеет большие валентные возможности, поскольку на третьем квантовом уровне есть 3d-подуровень, а разность энергии между 3s-, 3р- и 3d-подуровнями несравненно меньше, чем между вторым и третьим квантовыми уровнями атома кислорода:

По этой же причине элементы 3-го периода – фосфор и хлор – проявляют переменную валентность в отличие от их электронных аналогов во 2-м периоде – азота и фтора. Возбуждением на соответствующий подуровень можно объяснить образование химических соединений элементов VIIIа группы 3-го и последующих периодов. У гелия и неона (1-й и 2-й периоды), имеющих завершенный внешний квантовый уровень, химических соединений не обнаружено, и только они являются истинно инертными газами.

Донорно-акцепторный механизм образования ковалентной связи

Пара электронов с антипараллельными спинами, образующая связь, может быть получена не только по обменному механизму, предусматривающему участие электронов обоих атомов, но и по иному механизму, называемому донорно-акцепторным: один атом (донор) предоставляет для образования связи неподеленную пару электронов, а другой (акцептор) – вакантную квантовую ячейку:

Результат по обоим механизмам получается одинаковый. Часто образование связи можно объяснить и тем, и другим механизмом. Например, молекулу НF можно получить не только в газовой фазе из атомов по обменному механизму, как показано выше (см. рис. 3), но и в водном растворе из ионов Н + и F – по донорно-акцепторному механизму:

Вне сомнений, молекулы, полученные по разным механизмам, неразличимы; связи совершенно равноценны. Поэтому правильнее не выделять донорно-акцепторное взаимодействие в особый вид связи, а считать его лишь особым механизмом образования ковалентной связи.

Когда хотят подчеркнуть механизм образования связи именно по донорно-акцепторному механизму, ее обозначают в структурных формулах стрелкой от донора к акцептору (D ® А). В других случаях такую связь не выделяют и обозначают черточкой, как и по обменному механизму: D–А.

Связи в ионе аммония, образующегося по реакции: NH 3 + H + = NH 4 + ,

выражаются следующей схемой:

Структурную формулу NН 4 + можно представить как

.

Вторая форма записи предпочтительней, поскольку отражает экспериментально установленную равноценность всех четырех связей.

Образование химической связи по донорно-акцепторному механизму расширяет валентные возможности атомов: валентность определяется не только числом неспаренных электронов, но и числом неподеленных электронных пар и вакантных квантовых ячеек, участвующих в образовании связей. Так, в приведенном примере валентность азота равна четырем.

Донорно-акцепторный механизм успешно используется для описания связи в комплексных соединениях по методу ВС.

Кратность связи. s- и p -Связи

Связь между двумя атомами может осуществляться не только одной, но и несколькими электронными парами. Именно числом этих электронных пар и определяется в методе ВС кратность – одно из свойств ковалентной связи. Например, в молекуле этана С 2 Н 6 связь между атомами углерода одинарная (однократная), в молекуле этилена С 2 Н 4 – двойная, а в молекуле ацетилена С 2 Н 2 – тройная. Некоторые характеристики этих молекул приведены в табл. 1.

Таблица 1

Изменения параметров связи между атомами C в зависимости от ее кратности

С увеличением кратности связи, как и следовало ожидать, уменьшается ее длина. Кратность связи увеличивается дискретно, т. е. в целое число раз, поэтому, если бы все связи были одинаковы, энергия также увеличилась бы в соответствующее число раз. Однако, как видно из табл. 1, энергия связи растет менее интенсивно, чем кратность. Следовательно, связи неравноценны. Это можно объяснить различием геометрических способов перекрывания орбиталей. Рассмотрим эти различия.

Связь, образованная перекрыванием электронных облаков по оси, проходящей через ядра атомов, называется s -связью.

Если в связи участвует s-орбиталь, то может образоваться только s -связь (рис. 5, а, б, в). Отсюда она и получила свое название, т. к. греческая буква s является синонимом латинской s.

При участии в образовании связи р-орбитали (рис. 5, б, г, д) и d-орбитали (рис. 5, в, д, е) перекрывание по s-типу осуществляется в направлении наибольшей плотности электронных облаков, которое и является наиболее энергетически выгодным. Поэтому при образовании связи такой способ всегда реализуется в первую очередь. Следовательно, если связь одинарная, то это обязательно s -связь, если кратная, то одна из связей непременно s -связь.


Рис. 5. Примеры s -связей

Однако из геометрических соображений понятно, что между двумя атомами может быть только одна s -связь. В кратных связях вторая и третья связи должны быть образованы другим геометрическим способом перекрывания электронных облаков.

Связь, образованная перекрыванием электронных облаков по обе стороны от оси, проходящей через ядра атомов, называется p -связью. Примеры p -связи приведены на рис. 6. Такое перекрывание энергетически менее выгодно, чем по s -типу. Оно осуществляется периферийными частями электронных облаков с меньшей электронной плотностью. Увеличение кратности связи означает образование p -связей, которые имеют меньшую энергию по сравнению с s -связью. В этом и есть причина нелинейного увеличения энергии связи в сравнении с увеличением кратности.


Рис. 6. Примеры p -связей

Рассмотрим образование связей в молекуле N 2 . Как известно, молекулярный азот химически весьма инертен. Причиной этого является образование очень прочной тройной связи NєN:

Схема перекрывания электронных облаков приведена на рис. 7. Одна из связей (2рх–2рх) образована по s-типу. Две другие (2рz–2рz, 2рy–2рy) – по p-типу. Для того чтобы не загромождать рисунок, изображение перекрывания 2рy-облаков вынесено отдельно (рис. 7, б). Для получения общей картины рис. 7, а и 7, б следует совместить.

На первый взгляд может показаться, что s -связь, ограничивая сближение атомов, не дает возможности перекрывания орбиталей по p -типу. Однако изображение орбитали включает лишь определенную долю (90%) электронного облака. Перекрывание происходит периферийной областью, находящейся вне такого изображения. Если представить орбитали, включающие большую долю электронного облака (например, 95%), то их перекрывание становится очевидным (см. штриховые линии на рис. 7, а).


Рис. 7. Образование молекулы N 2

Продолжение следует

В.И.Елфимов,
профессор Московского
государственного открытого университета




Top