Архитектура сетевой системы. Архитектурный принцип построения сетей. Частные случаи многоуровневой архитектуры

КУРС «КОМПЬЮТЕРНЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ТЕМА 5a

СЕТЕВЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Понятие компьютерных сетей

Компьютерная сеть (КС) – это совокупность нескольких компьютеров или вычислительных систем, объединенных между собой средствами телекоммуникаций в целях эффективного использования вычислительных и информационных ресурсов при выполнении информационно-вычислительных работ.

Задачи, которые решаются с помощью персональных компьютеров, работающих в локальной сети:

1. Разделение файлов. (позволяет многим пользователям одно временно работать с одним и тетм же файлом, который хранится на цен тральном файл-сервере);

2. Передача файлов (позволяет быстро копировать файлы любого размера с одного компьютера на другой);

3. Доступ к информации и файлам (позволяет запускать прикладные программы с любой рабочей станции компьютерной сети);

4. Разделение прикладных программ (дает возможность двум пользователям применять одну и ту же копию программы);

5. Одновременный ввод данных в прикладные программы (сетевые прикладные программы позволяют нескольким пользователям одновременно вводить данные, необходимые для работы этих программ);

6. Разделение принтера, накопителя и т.д.

В глобальном масштабе компьютерные сети позволяют решить следующие задачи:

1. Обеспечение информацией по всем областям человеческой деятельности;

2. Электронные коммуникации (электронная почта, телеконференции и т.д.).

В настоящее время компьютерные сети делят по территориальному размещению на:

1. Локальные компьютерные сети, LAN-сети (Local Area Network);

2. Региональные компьютерные сети, MAN-сети (Metropolitan Area Network);

3. Глобальные компьютерные сети, WAN-сети (Wide Area Network).

Корпоративная сеть – это, как правило, закрытая компьютерная сеть, в состав которой могут входить сегменты LAN-сетей малых, средних и крупных отделений корпорации, объединенные с центральным офисом MAN и WAN компьютерными сетями с использованием сетевых технологий глобальных компьютерных сетей.



Компьютерные сети – это сложный комплекс., включающий в себя технические, программные и информационные средства.

Технические средства составляют:

1. ЭВМ различных типов (от супер до компьютеров малой мощности);

2. Транспортная (телекоммуникационная) среда передачи данных, связывающая вычислительные центры или сервера сети и клиентские машины;

3. Адаптеры (сетевая карта), коммутаторы, концентраторы, шлюзы, маршрутизаторы и другое сетевое оборудование для подключения компьютеров к транспортной телекоммуникационной среде и организации топологии компьютерной сети.

Концентратор (HUB) предназначен для распознавания конфликтов между элементами сети и их ликвидации, а также синхронизации информационных потоков внутри сети.

Коммутатор – аппаратное средство, обеспечивающее прием, контроль поступления и маршрутизацию информационных пакетов.

Маршрутизатор предназначен для организации взаимосвязи между несколькими локальными сетями, объединения их в сети более высокого уровня, распределения потоков информации между сегментами сетей.

Программные средства компьютерных сетей состоят из трех частей: общего, специального и системного программного обеспечения.

Общее программное обеспечение КС включает:

1. Операционную систему (отвечает за распределение потоков заданий и данных между серверами и клиентскими машинами сети, управление подключением и отключением отдельных серверов сети, обеспечение динамики координации работы сети);

2. Систему программирования (включает средства автоматизации составления программ по технологии клиент/сервер, их трансляции и отладки);

3. Систему технического обслуживания (представляет собой комплекс программ для осуществления проверки и профилактики работы технических и программных средств связи).

Архитектура компьютерных сетей

Архитектура компьютерных сетей может рассматриваться с двух точек зрения:

1. С точки зрения топологии КС, т.е. каким образом организована сеть на физическом уровне;

2. С точки зрения ее логической организации, которая включает такие вопросы, как организация доступа пользователей к информационным ресурсам КС, их иерархия, взаимоотношения между компьютерами, сегментами КС, распределения информационных ресурсов по сети (сервера, базы данных и т.д.), управления сетью в целом и др.

При построении компьютерных сетей важным является выбор физической организации связей между отдельными компьютерами, т.е. топологии сети. Топология – описание физических соединений в LAN (или логических связей между узлами), указывающее, какие пары узлов могут связываться между собой.

Наиболее распространены следующие топологии:

1. Шина – кабель, объединяющий узлы в сеть (компьютеры подключаются к одному общему кабелю (шине), по которому и происходит обмен информацией между компьютерами, преимущества - дешевизна и простота разводки кабеля по отдельным помещениям, недостатки - низкая надежность, так как любой дефект общего кабеля полностью парализует всю сеть, а также невысокая производительность, поскольку в любой момент только один компьютер может передавать данные в сеть);

2. Звезда – узлы сети соединены с центром кабелями-лучами (предусматривает подключение каждого компьютера отдельным кабелем к концентратору, который находится в центре сети, преимущества - высокая надежность, недостатки – дороговизна);

3. Кольцо – узлы объединены в сеть замкнутой кривой (данные передаются по кольцу от одного компьютера к другому, как правило, в одном направлении, если компьютер распознает данные как "свои", то он их принимает, такие сети используются, если требуется контроль предаваемой информации, так как данные, сделав полный оборот, возвращаются к компьютеру-источнику);

4. Смешанная топология – комбинация топологий, перечисленных выше.

Наряду с топологией компьютерной сети, определяющей на физическом уровне построение КС, архитектура компьютерной сети определяет на логическом уровне структуру взаимодействия пользователей, компьютеров и ресурсов КС. Именно на этом уровне руководитель концептуально определяет, кто из пользователей или групп пользователей имеет право доступа к тем или иным ресурсам компьютерной сети (компьютерам, сетевым устройствам, файлам и т.д.) и где находятся эти ресурсы. Администратор компьютерной сети реализует выбранную политику с помощью средств администрирования сети.

На логическом уровне локальные сети могут быть:

1. Одноранговые LAN – это сеть, в которой все компьютеры равноправны и могут выступать в роли как пользователей (клиентов) ресурсов, так и их поставщиков (серверов), предоставляя другим узлам право доступа ко всем или к некоторым из имеющихся в их распоряжении локальным ресурсам (файлам, принтерам, программам);

2. LAN с выделенным сервером. Для эффективного администрирования компьютерных сетей используются сети со специальным компьютером (выделенным сервером).

Существует много серверов компьютерной сети, например, сервер печати, сервер баз данных, сервер приложений, файл-сервер и т.д. В отличие от перечисленных выше сервер компьютерной сети осуществляет управление сетью и на нем, в частности, находятся базы данных, содержащие учетные записи пользователей сети, определяющих их политику доступа к ресурсам КС.

В компьютерных сетях с выделенным сервером рабочие станции подключаются к выделенным серверам, а серверы в свою очередь группируются в домены.

Домен (Domain) – группа компьютеров и периферийных устройств, с общей системой безопасности. В OSI (ниже рассматривается эта модель) термин "домен" используется применительно к административному делению сложных распределенных систем. В сети Internet-часть иерархии имен.

Доменная организация сети позволяет:

1. Упростить централизованное управление сетью;

2. Облегчить создание сетей методом объединения существующих сетевых фрагментов;

3. Обеспечить пользователям однократную регистрацию в сети для доступа ко всем серверам и ресурсам информационной системы независимо от места регистрации.

Важным фактором, определяющим архитектуру компьютерной сети, является ее масштабируемость и, в частности, доменной архитектуры.

При объединении доменов следует выделить три основные модели отношений:

1. Модель мастер-домена (один из доменов объявляется главным, и в нем хранятся записи всех пользователей сети, остальные домены являются ресурсными, все ресурсные домены доверяют главному домену, который является главным мастер-доменом, такая архитектура плохо масштабируется (изменяется число доменов));

2. Модель с несколькими мастер-доменами (несколько доменов объявляются главными, и в каждом из них хранятся учетные записи подмножества пользователей сети, остальные домены являются вторичными, данная модель хорошо масштабируется);

3. Модель полностью доверительных отношений (не существует главного домена, и каждый из них может содержать как учетные записи, так и ресурсы, данная модель хорошо подходит для создания сколь угодно больших сетей, однако чрезвычайно сложна для администрирования сети).

5.3. Internet\Intranet технологии

Интернет изначально строилась как сеть, объединяющая большое количество существующих локальных, и ее предшественницей, как уже упоминалось, являлась сеть ARPANET. Идея создания Интернет возникла в связи с необходимостью построения отказоустойчивой сети, которая могла бы продолжать работу, даже если большая часть ее стала неработоспособной. Решение состояло в том, чтобы создать сеть, где информационные пакеты могли бы передаваться от одного узла к другому без какого-либо централизованного контроля. Если основная часть сети не работает, пакеты самостоятельно должны передвигаться по сети до тех пор, пока не достигнут точки своего назначения. Одновременно сеть должна быть достаточно устойчивой к возможным ошибкам при передаче пакетов, т.е. обладать механизмом контроля пакетов и обеспечить наблюдение за доставкой информации.

Основой сети Интернет является стек проколов TCP/IP (Transmission Control Protocol/Internet Protocol). TCP обеспечивает на передающем компьютере разбивку отправляемого сообщения на куски, так называемые дейтаграммы, восстановление на принимающем компьютере сообщения из поступающих дейтаграмм в нужном порядке, повторную отправку не доставленных или поврежденных дейтаграмм. IP выполняет функции маршрутизации и доставки по адресу отдельных дейтаграмм. Стек TCP/IP изначально был разработан для сети ARPANET и рассматривался как экспериментальный протокол для сети с коммутацией пакетов. Эксперимент дал положительный результат и этот протокол был принят в промышленную эксплуатацию, а в дальнейшем расширялся и совершенствовался в течение нескольких лет. В 1983 г. министерство обороны США объявило о переходе к технологии Интернет. Это означало, что с данного момента все компьютеры, присоединенные к глобальной сети, должны использовать стек TCP/IP.

Существует много причин, почему протоколы TCP/IP были выбраны за основы сети Интернет. Это прежде всего возможность работы с указанными протоколами как в локальных, так и глобальных сетях. Кроме того, эти протоколы обеспечивают взаимодействие компьютеров, работающих под управлением различных операционных систем.

Как уже указывалось выше, задачей протокола IP является маршрутизация пакетов сообщений. Маршрутизация между локальными сетями осуществляется в соответствии с IP-адресами. IP-адрес назначается администратором сети во время конфигурации компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера локальной сети и номера хоста в ней. Хост представляет собой объект сети, который может передавать и принимать IP-адреса, например, компьютер или маршрутизатор.

Номер локальной сети как составной части Интернет назначается по рекомендации специального подразделения Интернет- Internet Network Information Center (InterNIC). Обычно диапазоны адресов у InterNIC получают специальные организации, занимающиеся поставкой услуг Интернет, - провайдеры. Последние распределяют IP-адреса между своими абонентами. Номер хоста в локальной сети администратор назначает произвольно. IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значение каждого байта в десятичной форме и разделенных точками (например, 128.9.1.28). Все IP-адрееа, а значит, и подключаемые к Интернет сети, делятся на четыре класса: класс А, класс В, класс D и класс Е. Сети класса А предназначены главным образом для использования крупными организациями, так как количество таких сетей- 126. Но количество хостов в них составляет 16 777 216. Класс В имеет 65 536 сетей и такое же количество хостов. Класс С определяет 16 777 216 сетей и всего лишь по 256 компьютеров в каждой сети. Сети класса D - это особый класс, т.е. такие IP-адреса присваиваются специфическим сетям, а класс Е зарезервирован для будущих применений.

Поскольку при работе в сети Интернет использовать цифровую адресацию сетей крайне неудобно, то вместо цифр используются символьные имена, называемые доменными именами.

Доменом называется группа компьютеров, объединенных одним именем. Символьные имена дают пользователю возможность лучше ориентироваться в киберпро-странстве Интернет, поскольку запомнить имя всегда проще, чем цифровой адрес. Для преобразования имен в цифровой адрес разработана специальная система DNS (Domain Name System), для реализации которой был создан специальный сетевой протокол DNS. Кроме того, в сети созданы специальные информационно-поисковые компьютеры-серверы (DNS-серверы). DNS-серверы обеспечивают однозначное соответствие между символьными адресами и физическими цифровыми IP-адресами, передаваемыми по сети Интернет. Каждый домен должен иметь свой DNS-сервер. В результате этого в сети Интернет функционирует огромное количество DNS-серверов, которые хранят имена хостов (поддоменов) своего домена. Как и цифровой IP-адрес, имя сервера разделяется точками для удобства построения иерархии в домене на основании имен. По правилам построения имени иерархия задается справа налево. Например, в адресе www.microsoft.com домен верхнего уровня com. По имени можно получить информацию о профиле организации или ее местоположении. Шесть доменов высшего уровня определены следующим образом: gov - правительственные организации, mil - военные организации, edu - образовательные организации, com - коммерческие организации, org - общественные организации, net - организации, предоставляющие сетевые услуги, как правило, региональные сетевые организации.

Кроме того, все страны мира имеют свое собственное символьное имя, обозначающее домен верхнего уровня этой страны. Например, by-Беларусь, de-Германия, us-США, ru-Россия и т.д.

Понятие “сетевая архитектура” включает общую структуру сети, т. е. все компоненты, благодаря которым сеть функционирует, в том числе аппаратные средства и системное программное обеспечение. Здесь будут обобщены уже полученные сведения о типах сетей, принципах их работы, средах и топологиях. Сетевая архитектура это комбинация стандартов, топологий и протоколов, необходимых для создания работоспособной сети.

Ethernet

Ethernetсамая популярная в настоящее время архитектура. Она использует узкополосную передачу со скоростью 10 Мбит/с, топологию “шина”, а для регулирования трафика в основном сегменте кабеляCSMA/CD.

Среда (кабель) Ethernet является пассивной, т. е. получает питание от компьютера. Следовательно, она прекратит работу из-за физического повреждения или неправильного подключения терминатора.

Рис. Сеть Ethernet топологии “шина” с терминаторами на обоих концах кабеля

Сеть Ethernet имеет следующие характеристики:

    традиционная топология линейная шина;

    другие топологии звезда-шина;

    тип передачи узкополосная;

    метод доступа CSMA/CD;

    скорость передачи данных 10 и 100 Мбит/c;

    кабельная система толстый и тонкий коаксиальный.

Формат кадра

Ethernet разбивает данные на пакеты (кадры), формат которых отличается от формата пакетов, используемого в других сетях. Кадры представляют собой блоки информации, передаваемые как единое целое. Кадр Ethernet может иметь длину от 64 до 1518 байтов, но сама структура кадра Ethernet использует, по крайней мере, 18 байтов, поэтому размер блока данных Ethernetот 46 до 1500 байтов. Каждый кадр содержит управляющую информацию и имеет общую с другими кадрами организацию.

Например, передаваемый по сети кадр EthernetIIиспользуется для протоколаTCP/IP. Кадр состоит из частей, которые перечислены в таблице.

Ethernet работает с большинством популярных операционных систем, в их числе:

Microsoft Windows 95;

Microsoft Windows NT Workstation;

Microsoft Windows NT Server;

Token Ring

От других сетей Token Ring отличает не только кабельная система, но и использование доступа с передачей маркера.

Рис. Физическизвезда, логическикольцо

Сеть Token Ring имеет следующие характеристики:

Архитектура

Топология типичной сети Token Ring“кольцо”. Однако в версииIBMэто топология “звезда-кольцо”: компьютеры в сети соединяются с центральным концентратором, маркер передается по логическому кольцу. Физическое кольцо реализуется в концентраторе. Пользователичасть кольца, но они соединяются с ним через концентратор.

Формат кадра

Основной формат кадра Token Ring показан на рисунке ниже и описан в следующей таблице. Данные составляют большую часть кадра.

Рис. Кадр данных Token Ring

Поле кадра

Описание

Стартовый разделитель

Сигнализирует о начале кадра

Управление доступом

Указывает на приоритет кадра и на то, что передаетсякадр маркера или кадр данных

Управление кадром

Содержит информацию Управления доступом к средедля всех компьютеров или информацию “конечной станции”только для одного компьютера

Адрес приемника

Адрес компьютера-получателя

Адрес источника

Адрес компьютера-отправителя

Передаваемая информация

Контрольная последовательность кадра

Конечный разделитель

Сигнализирует о конце кадра

Статус кадра

Сообщает, был ли распознан и скопирован кадр (доступен ли адрес приемника)

Функционирование

Когда в сети Token Ring начинает работать первый компьютер, сеть генерирует маркер. Маркер проходит по кольцу от компьютера к компьютеру, пока один их них не сообщит о готовности передать данные и не возьмет управление маркером на себя. Маркерэто предопределенная последовательность битов (поток данных), которая позволяет отправить данные по кабелю. Когда маркер захвачен каким-либо компьютером, другие компьютеры передавать данные не могут.

Захватив маркер, компьютер отправляет кадр данных в сеть (как показано на рис. ниже). Кадр проходит по кольцу, пока не достигнет узла с адресом, соответствующим адресу приемника в кадре. Компьютер-приемник копирует кадр в буфер приема и делает пометку в поле статуса кадра о получении информации.

Кадр продолжает передаваться по кольцу, пока не достигнет отправившего его компьютера, который и удостоверяет, что передача прошла успешно. После этого компьютер изымает кадр из кольца и возвращает туда маркер.

Рис. Маркер обходит логическое кольцо по часовой стрелке

В сети одномоментно может передаваться только один маркер, причем только в одном направлении.

Передача маркерадетерминистический процесс, это значит, что самостоятельно начать работу в сети (как, например, в средеCSMA/CD) компьютер не может. Он будет передавать данные лишь после получения маркера. Каждый компьютер действует как однонаправленный репитер, регенерирует маркер и посылает его дальше.

Мониторинг системы

Компьютер, который первым начал работу, наделяется системой Token Ring особыми функциями: он должен осуществлять текущий контроль за работой всей сети. Он проверяет корректность отправки и получения кадров, отслеживая кадры, проходящие по кольцу более одного раза. Кроме того, он гарантирует, что в кольце одномоментно находится лишь один единственный маркер.

Распознавание компьютера

После появления в сети нового компьютера система Token Ring инициализирует его таким образом, чтобы он стал частью кольца. Этот процесс включает:

проверку уникальности адреса;

уведомление всех сети о появлении нового узла.

Аппаратные компоненты

Концентратор

В сети TokenRingконцентратор, в котором организуется фактическое кольцо, имеет несколько названий, например:

    MAU ;

    MSAU (MultiStation Access Unit);

    SMAU.

Кабели соединяют клиенты и серверы с MSAU, который работает по принципу других пассивных концентраторов. При подсоединении компьютера он включается в кольцо (см. рис. ниже).

Рис. Формирование кольца в концентраторе (указано направление движения маркера)

Емкость

IBMMSAUимеет 10 портов соединения. К нему можно подключить до восьми компьютеров. Однако сетьTokenRingне ограничивается одним кольцом (концентратором). Каждое кольцо может насчитывать до 33 концентраторов.

Сеть на базе MSAU может поддерживать до 72 компьютеров - при использовании неэкранированной витой пары и до 260 компьютеров - при использовании экранированной витой пары.

Другие производители предлагают концентраторы большей емкости (в зависимости от модели).

Когда кольцо заполнено, т.е. к каждому порту MSAU подключен компьютер, сеть можно расширить за счет добавления еще одного кольца (MSAU).

Единственное правило, которого следует придерживаться: каждый MSAU необходимо подключить так, чтобы он стал частью кольца.

Гнезда “вход” и “выход” на MSAU позволяют с помощью кабеля соединить в единое кольцо до 12 MSAU, расположенных стопкой.

Рис. Добавляемые концентраторы не нарушают логического кольца

Виды сетевых архитектур

Сетевая архитектура предоставляет более подробную информацию не только о физическом расположении, но и о спецификациях используемых кабелей, и о методе, посредством которого компьютеры и прочие устройства получают доступ к сети. Сетевые архитектуры определяются строгими спецификациями, предложенными Институтом электротехники и электроники (Institute of Electrical and Electronically Engineer - IEEE), международной организацией, распространяющей по всему миру спецификации в области электротехники и информационных технологий.

Архитектура Ethernet

Как многие компьютерные и сетевые технологии, которыми мы пользуемся, сетевая архитектура Ethernet разработана в научно-исследовательском центре Ра1о А1to Research Center (PARC) компании Xerox в 1972 г. Коммерческая версия Ethernet была выпущена в 1975 г. и обеспечивала скорость передачи данных на уровне 3 Мбит/с.

Ethernet получила всеобщее признание, и компании Xerox, Intel и Digital Equipment Corporation (DEC) объединили свои усилия, чтобы улучшить технические характеристики Ethernet и довести скорость передачи данных до 10 Мбит/с. Именно эта версия Ethernet обеспечивающая скорость передачи данных на уровне 10 Мбит/с, прошла стандартизацию в институте IEEE, и ей была присвоена спецификация 802.3.

Это самая популярная сетевая архитектура в мире. Давайте рассмотрим, как Ethernet управляет доступом компьютеров и прочих устройств к сети.

Рис. 4

Ethernet/Fast Ethernet

Существуют и более быстрые версии Ethernet - гораздо быстрее, чем оригинальная версия со скоростью передачи данных на уровне 10 Мбит/с. Технология Fast Ethernet получила свое название из-за более высокой скорости передачи данных. Fast Ethernet обеспечивает полосу пропускания 100 Мбит/с. Увеличение полосы пропускания связано с тем, что время, требуемое на передачу одного бита информации по сетевым носителям, уменьшено в 10 раз. То есть сеть Fast Ethernet в 10 раз быстрее, чем сеть Ethernet, и обеспечивает скорость передачи данных на уровне 100 Мбит/с.

Технология Fast Ethernet не может быть реализована, если сетевые карты и концентраторы рассчитаны на использование в сети Ethernet со скоростью передачи данных 10 Мбит/с. Однако многие современные концентраторы, коммутаторы и сетевые карты Ethernet: имеют переключатель 10/1001, то есть могут подстраиваться под обе версии.

Gigabit Ethernet

Еще более быстрой версией Ethernet! является Gigabit Ethernet, использующая те же спецификации IEEE и тот же формат данных, что и остальные версии Ethernet. Технология Gigabit Ethernet обеспечивает скорость передачи данных на уровне 1000 Мбит/с.

Если в локальных сетях Fast Ethernet могут применяться и витые пары, и оптоволоконные кабели, то архитектура Gigabit Ethernet изначально рассчитана на использование только оптоволоконных кабелей и требует высокоскоростных коммутаторов и специализированных серверов. Gigabit Ethernet задумывалась как высокоскоростная технология для крупных сетей.

Однако в настоящее время технология Gigabit Ethernet используется в локальных сетях, а сетевые карты, ее поддерживающие, могут устанавливаться в сетевых клиентах и серверах. Также в качестве носителей в сети Gigabit Ethernet могут использоваться кабели пятой категории (о кабелях речь пойдет дальше в этой же главе). Сейчас разрабатывается еще более быстрая версия Gigabit Ethernet - 10Gigabit Ethernet. Она также рассчитана как на оптоволоконные, так и на медные кабели.

Спецификация IEEE и кабели для технологии Ethernet

Институт IEEE разработал спецификации для многих сетевых технологий, включая Ethernet. Перечислим некоторые из этих спецификаций:

802.3 - локальная сеть Ethernet (CSMA/CD); 802.5 - локальная сеть Token-Ring;

802.7 - отчет технической консультативной группы (Technical Advisory Group) по широкополосным сетям;

802.8 - отчет технической консультативной группы по оптоволоконным сетям;

802.10 - сетевая безопасность;

802.11 - беспроводные сети.

Как вы видно, технологии Ethernet соответствует спецификация 802.3. Ethernet действует на уровне канала передачи данных концептуальной модели OSI. Количество существующих типов Ethernet зависит от разновидностей используемых в сети кабелей (более подробно различные кабели будут рассматриваться в разделе «Разновидности кабелей»).

Этим типам Ethernet, Fast E и Gigabit Ethernet присваиваются трех частные наименования, такие как 10Base-T Первая часть названия (10 или 100) отражает скорость передачи данных. Например, 10 означает, что полоса пропускания в сети Ethernet составляет 10 Мбит/с.

Вторая часть названия (Base - для всех типов Ethernet) означает, что в сети Ethernet используется узкополосная (Basebend) передача сигнала. То есть данные передаются по единственному каналу связи. При таком типе передачи сигнал не может поступать по нескольким каналам, как при широкополосной (broadband).

Последняя часть названия отражает используемый кабель. Например, в названии 10Base-Т, буква «Т» означает витую пару, а заодно указывает, что это неэкранированная витая пара (и даже свидетельствует о том, что в такой сети используется неэкранированная витая пара пятой категории). Теперь, когда мы разобрались с наименованиями, пора рассмотреть имеющиеся стандарты Ethernet и Fast Ethernet. Перечислим разновидности Ethernet

10Base-T. В такой сети Ethernet используется кабель «витая пара» (неэкранированная витая пара, UTP). Максимальная длина кабеля (без усиления сигнала) составляет 100 м. 10Base-Т использует топологию «звезда»;

10Base-2. В такой сети Ethernet используется достаточно гибкий коаксиальный кабель (RG-58А/U, который часто называют тонким кабелем) с максимальной длиной 185 м (цифра 2 означает 200 м - округленное значение максимальной длины). В сети 10Base-2 используется шинная топология, причем кабель подключается к сетевой плате компьютера посредством Т-коннектора (без концентратора). Хотя 10Base-2 всегда был самой дешевой реализацией Ethernet, в настоящее время повсеместное распространение получили сети 10Base-Т;

10Base-5. В такой сети Ethernet используется толстый коаксиальный кабель, а компьютеры подключены к основной магистрали. Кабели от сетевых компьютеров подсоединяются к главному магистральному кабелю посредством пронзающих ответвителей, которые и в самом деле прокалывают изоляцию магистрального кабеля (их еще называют «зубами вампира»). Сети 10Base-5 встречаются довольно редко, хотя одно время этот тип сетей Ethernet был популярен у производителей аппаратного обеспечения;

Архитектура сети

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа.Это однопроцессорный компьютер.

К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры - устройства управления периферийными устройствами.

Контроллер - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Сетевая архитектура сродни архитектуре строений. Архитектура здания отражает стиль конструкций и материалы, используемые для постройки. Архитектура сети описывает не только физическое расположение сетевых устройств, но и тип используемых адаптеров и кабелей. Кроме того, сетевая архитектура определяет методы передачи данных по кабелю.

Архитектура сетей

Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию, техническое обеспечение, программное обеспечение, описывает методы кодирования. Архитектура также определяет принципы функционирования и интерфейс пользователя.

В данном курсе будет рассмотрено три вида архитектур:

архитектура терминал – главный компьютер;

одноранговая архитектура;

архитектура клиент – сервер.

Архитектура терминал – главный компьютер

Архитектура терминал – главный компьютер (terminal – host computer architecture) – это концепция информационной сети, в которой вся обработка данных осуществляется одним или группой главных компьютеров.

Рассматриваемая архитектура предполагает два типа оборудования:

Главный компьютер, где осуществляется управление сетью, хранение и обработка данных.

Терминалы, предназначенные для передачи главному компьютеру команд на организацию сеансов и выполнения заданий, ввода данных для выполнения заданий и получения результатов.

Главный компьютер через мультиплексоры передачи данных (МПД) взаимодействуют с терминалами.

Классический пример архитектуры сети с главными компьютерами – системная сетевая архитектура (System Network Architecture – SNA).

Одноранговая архитектура

Одноранговая архитектура (peer-to-peer architecture) – это концепция информационной сети, в которой ее ресурсы рассредоточены по всем системам. Данная архитектура характеризуется тем, что в ней все системы равноправны.

К одноранговым сетям относятся малые сети, где любая рабочая станция может выполнять одновременно функции файлового сервера и рабочей станции. В одноранговых ЛВС дисковое пространство и файлы на любом компьютере могут быть общими. Чтобы ресурс стал общим, его необходимо отдать в общее пользование, используя службы удаленного доступа сетевых одноранговых операционных систем. В зависимости от того, как будет установлена защита данных, другие пользователи смогут пользоваться файлами сразу же после их создания. Одноранговые ЛВС достаточно хороши только для небольших рабочих групп.

Архитектура клиент – сервер

Клиент-сервер (англ. Client-server) - вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами. Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так и программным обеспечением.Содержание

Преимущества

Делает возможным, в большинстве случаев, распределить функции вычислительной системы между несколькими независимыми компьютерами в сети. Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера, не затрагивают клиентов.

Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т.п.

Недостатки

Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.

Поддержка работы данной системы, требует отдельного специалиста - системного администратора.

Высокая стоимость оборудования.

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

Трёхуровневая архитектура

Сеть с выделенным сервером

Сеть с выделенным сервером (англ. Client/Server network) - это локальная вычислительная сеть (LAN), в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Сетевые архитектуры

Сетевые архитектуры разделяются по скорости передачи данных, среде передачи, вариантах реализации, топологии

Ethernet. 10Мбит/с.

  • 10BaseT (Витая пара);
  • 10Base2 (Тонкий коаксиал);
  • 10Base5 (Толстый коаксиал);
  • 10BaseFL (Оптоволокно) .

10Base2 или Тонкий Ethernet

10Base5

IEEE 10Base5 или "толстый" Ethernet - самый старый стандарт среди остальных. В настоящее время затруднительно найти в продаже новое оборудование для построения сети на этом стандарте. Основные его параметры:

10Base-T или Ethernet на витой паре

В 1990 году IEEE опубликовал спецификацию 802.3 для построения сети Ethernet на основе витой пары. l0BaseT (10 - скорость передачи 10 Мбит/с, Base - узкополосная, Т - витая пара) - сеть Ethernet, которая для соединения компьютеров обычно использует неэкранированную витую пару (UTP). Тем не менее и экранированная витая пара (STP) также может применяться в топологии lOBaseT без изменения каких-либо ее параметров. Большинство сетей этого типа строятся в виде звезды, но по системе передачи сигналов представляют собой шину, как и другие конфигурации Ethernet. Обычно концентратор сети lOBaseT выступает как многопортовый (multiport) репитер и часто располагается в распределительной стойке здания. Каждый компьютер подключается к другому концу кабеля, соединенного с концентратором, и использует две пары проводов: одну - для приема, другую - для передачи. Максимальная длина сегмента l0BaseT - 100 м (328 футов). Минимальная длина кабеля - 2,5 м (около 8 футов). Сеть l0BaseT может обслуживать до 1024 компьютеров.

10BaseFL

10BaseFL (10 - скорость передачи 10 Мбит/с, Base - узкополосная передача, FL - оптоволоконный кабель) представляет собой сеть Ethernet, в которой компьютеры и репитеры соединены оптоволоконным кабелем. Основная причина причина популярности 10BaseFL - возможность прокладывать кабель между репитерами на большие расстояния (например между зданиями). Максимальная длина сегмента 10BaseFL - 2000м.

Ethernet. 100Мбит/с.

Новые стандарты Ethernet позволяют преодолеть скорость передачи в 10 Мбит/с.Известны несколько стандартов Ethernet, которые могут удовлетворить возросшие требования, рассмотрим 2 из них:

  • 100BaseVG-AnyLAN Ethernet;
  • 100BaseX Ethernet(Fast Ethernet).

И Fast Ethernet, и 100 Base VG-Any LAN работают примерно в пять-десять раз быстрее, чем стандартный Ethernet. Кроме того, они совместимы с существующей кабельной системой 10BaseT. Это означает, что перейти от l0BaseT к этим стандартам достаточно просто и быстро.

100VG-AnyLAN

100VG (Voice Grade) AnyLAN - новая сетевая технология, которая сочетает в себе элементы Ethernet и Token Ring. Эта технология, разработанная фирмой Hewlett-Packard, в настоящее время совершенствуется стандартом IEEE 802.12. Спецификация 802.12 -стандарт передачи кадров Ethernet 802.3 и пакетов Token Ring 802.5. Эта технология имеет несколько названий:

  • l00VG-AnyLAN;
  • 100Base VG;
  • AnyLAN.

Спецификации

Перечислим возможности некоторых из существующих в настоящее время спецификаций l00VG-AnyLAN:

  • минимальная скорость передачи данных 100 Мбит/с;
  • поддержка каскадируемой топологии «звезда» на основе витой пары категории 3, 4 или 5 и оптоволоконного кабеля;
  • метод доступа по приоритету запроса (различаются два уровня приоритета: низкий и высокий);
  • поддержка средств фильтрации персонально адресованных кадров в концентраторе (для повышения степени конфиденциальности);
  • поддержка передачи кадров Ethernet и Token Ring.

Топология

Сеть 100VG-AnyLAN строится по топологии «звезда», где все компьютеры соединены с концентратором. Сеть можно расширять, добавляя «дочерние» (child) концентраторы к центральному, «родительскому» (parent), который относится к ним так же, как и к компьютерам, т.е. родительские концентраторы управляют передачей компьютеров, соединенных со своими «детьми».

Некоторые соображения

Представленная технология требует использования специальных концентраторов и плат. Кроме того, длина кабеля 100BaseVG, по сравнению с 10BaseT и другими реализациями Ethernet, ограничена: общая длина пары кабелей от концентратора 100BaseVG до компьютеров не может превышать 250 м. Чтобы преодолеть это ограничение, надо использовать специальное оборудование. Ограничения длины кабеля приведут к тому, что для 100BaseVG потребуется больше кабельных стоек, чем для 10BaseT.

100BaseX Ethernet

Этот стандарт, иногда называемый Fast Ethernet, является расширением существующего стандарта Ethernet. Он строится на UTP категории 5, использует метод доступа CSMA/CD и топологию «звезда-шина» (подобно 10BaseT), где все кабели подключены к концентратору.

Сегодня уже вряд ли кого-то можно удивить понятием сетевых подключений. Однако при упоминании о них многие из нас особо даже не задумываются о том, что собой представляет такое подключение и как функционируют сетевые службы. Мы рассмотрим этот вопрос в кратком изложении, так как о сетях и их возможностях в современном мире можно написать большую монографию.

Архитектура сети: основные виды

Компьютерные сети, как следует из основной трактовки самого термина, представляют собой определенное количество компьютерных терминалов, соединенных между собой и образующих сеть. Сегодня выделяют два основных типа подключений: беспроводное и проводное. Беспроводное соединение использует соединение посредством маршрутизатора вроде роутера Wi-Fi. Однако это только вершина айсберга. Архитектура сети на самом деле предполагает использование сразу нескольких компонентов, и потому может иметь различную классификацию. На сегодняшний день принято выделять три типа сетей: одноранговые сети, сети с выделенными серверами, гибридные сети, которые включают в себя все типы узлов. Отдельную категорию помимо этого представляют широковещательные, локальные, глобальные, частные и другие разновидности. Мы будем останавливаться только на основных понятиях.

Описание сетей по основным типам

Прежде всего, начать стоит с сетей на основе взаимодействия «главный компьютер в сети-клиент». Как уже должно быть ясно, главное положение в данном случае занимает центральный терминал, на котором осуществляется управление сетью и ее компонентами. Терминалы клиентов могут только посылать запросы на предоставление соединения и на получение информации. В такой сети главный терминал не может играть роль клиентской машины. Одноранговые сети, которые еще часто называют пиринговыми, от первого типа отличаются тем, что в них ресурсы в равной степени распределены между всеми подключенными терминалами. В качестве самого простого примера можно привести процессы загрузки файлов при использовании торрентов. При такой организации конечный файл полностью или в частично загруженном виде может находиться на различных компьютерных терминалах. Пользовательская система, которая загружает его на свой компьютер, применяет все доступные на данный момент ресурсы сети, чтобы скачать части искомого файла. Чем больше будет таких файлов, тем выше будет скорость закачки. В данном случае сетевая адресация не играет особой роли. Главное условие заключается в том, чтобы на клиентской машине было установлено специальное программное обеспечение. Оно и будет осуществлять клиентские запросы. Архитектура сети типа «клиент-сервер» является наиболее простой. Для упрощенного понимания соединение между компьютерными терминалами можно представить в виде библиотеки, в которой есть полки с книгами (центральный сервер), а посетители могут прочесть любой материал, который находится на полках. Здесь прослеживается взаимосвязь: посетитель приходит в библиотеку, регистрируется или представляет уже зарегистрированные личные данные, а после этого ищет нужную литературу и читает ее. Такое сравнение является довольно примитивным. Современные сети работают намного сложнее. Однако такой пример как нельзя лучше подойдет для упрощенного понимания.

Вопрос идентификации терминалов

Поговорим немного о том, как осуществляется распознавание компьютеров сети любого типа. Если кто-то не знает, то при подключении любому терминалу присваивается два типа IP-адреса или уникального идентификатора: внешний и внутренний. Стоит отметить, что внутренний адрес не является уникальным. А нынешний IP адрес – да. В мире не существует двух машин с одинаковымIP. Это позволяет идентифицировать любое устройство, будь то мобильное устройство или компьютерный терминал. За это отвечает специальный протокол. Самым распространенным и широко применяемым на данный момент является протокол IPv4. Практика показывает, что данный протокол уже изжил себя, поскольку он неспособен предоставлять уникальные адреса в связи с возросшим числом клиентских устройств. Достаточно только взглянуть на мобильную технику, за последние десять лет количество применяемых гаджетов возросло на столько, что чуть ли не каждый второй житель земли в своем распоряжении имеет мобильный телефон.

Протокол IPv6

Архитектура сети стала постепенно меняться. На смену версии протокола IPv4 пришла IPv6. Пока она еще не получила особо широкого распространения, однако будущее данного протокола не за горами. В скором времени практически все провайдеры интернета, которые предоставляют доступ услугам связи, постепенно перейдут на этот протокол. Посудите сами, с использованием данного протокола с предоставлением 128-битного адреса можно зарезервировать намного больше адресов, чем при использовании четвертой версии.

Выделенные серверы

Рассмотрим, что собой представляют выделенные серверы. В данном случае обозначение уже говорит само за себя. Они предназначены для выполнения каких-то конкретных задач. Это самый настоящий интернет-сервер виртуального типа, который полностью принадлежит тому пользователю, который берет его в аренду. В этом и состоит смысл хостинга, когда владелец подкасты главного ресурса может размещать на выделенном пространстве любую информацию. За безопасность в данном случае отвечает не арендатор, а тот, кто сдает серверное пространство в аренду. Можно привести достаточно много примеров таких серверов. Здесь вам и личные страницы, ифайлообменники, и игры, и почта.

Локальные сети

Локальные сети, или как их еще часто называют «локалки», создаются для объединения ограниченного числа терминалов в одно целое. Как уже должно быть ясно, архитектура локальной сети в плане подключения, может представлять собой и доступ по типу VPN, и проводное соединение. В обоих случаях потребуется наличие подключения к главному администраторскому серверу. В данном случае сетевые службы могут работать в двойном режиме: с ручным вводом параметров и автоматической идентификацией, заключающейся в присвоении адреса каждой машине. В принципе у локальных сетей есть одна отличительная особенность, которая состоит только в том, что любому терминалу требуется регистрация и центральный сервер. Доступ к «расшаренной» информации может быть либо ограниченным, либо полным. В данном случае все будет зависеть от настроек. Однако если взглянуть даже не облачные сервисы, то по сути они представляют собой виртуальную сеть, в которой пользователи, проходя процедуру аутентификации, получают права для доступа к определенной информации, редактированию и скачиванию файлов. Иногда при этом даже предусмотрено одновременное изменение содержимого файла в режиме реального времени.

Архитектура сети: историческая справка

Перейдем, наконец, к самой большой сети в мире. Это, конечно же, Интернет. Прототипом Интернета принято считать ARPANET. Так называлась коммуникация, которая была разработана в 1969 году в США исключительно для военных целей. Правда, тогда соединение было протестировано только между двумя узлами. Со временем подключение к сети при помощи кабеля было установлено даже с терминалами, которые находятся в Великобритании. Позже появилась идентификация на основе протоколов TCP/IP и система присвоения доменных имен. Именно тогда и возникло то, что сегодня называют Интернетом. Вообще считается, что в сети Интернет не существует единого сервера, на котором могла бы храниться вся информация. На сегодняшний день даже не существует дисковых накопителей такой емкости. Информация распределена между сотнями тысяч отдельных серверов различного типа. Иначе говоря, Интернет можно отнести в равной степени к одноранговой и гибридной сети. При этом на отдельно взятой машине можно создать собственный интернет-сервер, который дает возможность не только управлять параметрами сети и сохранить нужную информацию, но и обеспечить доступ к ней другим пользователям. Самым простым примером является раздача Wi-Fi.

Основные настройки и параметры

Если же говорить о параметрах и настройках, то здесь все довольно просто. Ручной ввод сетевыхIP, прокси и DNS-серверов уже давно не применяется. Вместо этого провайдеры предоставляют услуги автоматического распознавания ПК или мобильного устройства в сети. В операционных системах семейства Windows доступ к данным настройкам осуществляется через свойства сети с выбором параметров протокола IPv4. В настройках указывается автоматическое получение адресов. Это позволяет избавить пользователя от ввода данных вручную. Однако в некоторых случаях, особенно при настройке клиентов RDP или организации доступа к некоторым специфичным службам, ручной ввод данный является обязательным.

Заключение

Как вы сами можете убедиться, разобраться в том, что собой представляет архитектура сети, не представляет особой сложности. В данном обзоре были рассмотрены только основные аспекты организации работы сетей. Этого вполне достаточно для того, чтобы объяснить неподготовленному пользователю принцип работы сети на пальцах. На самом деле все немного сложнее. В данной статье мы не затрагивали понятия серверов прокси, DNS, WINS, DHCP и т.д. Также здесь не рассматривались вопросы, связанные с программным обеспечением. Даже представленной информации будет вполне достаточно для понимания основных принципов функционирования сетей любого типа и структуры.




Top