Понятие открытой системы. Модель OSI. Стеки протоколов. Реферат, семиуровневая модель OSI, стеки протоколов. Сетевые протоколы и стандарты

Для решения сложных задач используется универсальный прием декомпозиция , т.е. разбиение сложной задачи на несколько простых задач – модулей .

Декомпозиция состоит в четком определении каждого модуля, а также порядка и взаимодействия.

Наиболее эффективная концепция декомпозиции – многоуровневый подход . После представления исходной задачи в виде множества модулей, эти модули группируют и упорядочивают по уровням. Уровни, в свою очередь, образуют иерархию. Группа модулей, составляющая каждый уровень, для решения своих задач должна обращаться с запросами только к модулям соседнего нижележащего уровня. С другой стороны, результаты работы каждого из модулей могут быть переданы только модулем соседнего вышележащего уровня.

Межуровневый интерфейс (интерфейс услуг) определяет набор функций, которые нижележащий уровень передает вышележащему уровню.

В сетевом взаимодействии участвуют две стороны. Для взаимодействия двух сторон необходимо организовать согласованную работу двух иерархий аппаратных и программных средств на двух разных компьютерах. Оба узла должны принять множество соглашения.

Схема взаимодействия двух узлов

Каждый уровень поддерживает интерфейсы двух типов:

1 – интерфейсы услуг с выше- и нижележащими уровнями ;

2 – интерфейсы со средствами взаимодействия другой стороны (протокол ) .

Протоколы определяют правила взаимодействия модулей одного уровня в разных узлах, а интерфейсы – соседних уровней в одном узле.

Стек протоколов – иерархически организованный набор протоколов, достаточных для организации взаимодействия узлов в сети.

Протоколы нижних уровней часто реализуются комбинацией программных и аппаратных средств. А протоколы верхних уровней – только программными средствами.

Протокольные сущности одного уровня двух взаимодействующих сторон обмениваются сообщениями в соответствии с определенным для них протоколом. Сообщения состоят из заголовка и поля данных . Работа каждого протокольного модуля состоит в интерпретации заголовков, поступающих к нему сообщений и выполнении связанных с этим действий. Заголовки сообщений разных протоколов имеют разную структуру.

Модель OSI

Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она определяет:

– уровни взаимодействия систем в сетях с коммутацией пакетов;

– стандартные названия уровней;

– функции, которые должен выполнять каждый уровень.

В модели OSI средство взаимодействия делится на 7 уровней:

1 – прикладной;

2 - представления;

3 – сеансовый;

4 – транспортный;

5 – сетевой;

6 – канальный;

7 – физический.

Приложение A обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса ПО прикладного уровня формирует сообщение стандартного формата. После формирования сообщения прикладной уровень отправляет его вниз. Протокол уровня представления н основе полученной информации из заголовка выполняет требуемые действия и добавляет к сообщению собственную информацию, т.е. новый заголовок. Далее сообщение передается сеансовому уровню и так далее до физического уровня. Физический уровень передает сообщение адресату по линии связи. Когда сообщение приходит на компьютер-адресат, он принимает его и перемещает вверх по уровням. Каждый уровень анализирует заголовок своего уровня, выполняет соответствующие функции, удаляет заголовок и передает сообщение вверх.

Физический уровень передает потоки битов по физическим каналам. Функции выполняются сетевым адаптером или последовательным портом.

Канальный уровень выполняет функции:

Установление логического соединения между логическими узлами;

Согласование скоростей передатчика и приемника информации;

Обеспечение надежной передачи обнаружения и коррекции ошибок.

Уровень формирует из пакетов собственные протокольные единицы-кадры, состоящие из поля данных и заголовка. Важнейшей информацией заголовка кадра является адрес назначения .

Кроме того этот уровень может обеспечить надежность передачи, например, путем фиксирования границ кадра, помещая специальную последовательность битов в его начало и конец.

В сетях, построенных на основе разделяемой среды, канальный уровень проверяет доступность разделяемой среды.

Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей. Технология, позволяющая соединять в единую сеть множество сетей – технология межсетевого взаимодействия . Функции сетевого уровня реализуются группой протоколов или маршрутизаторами. Маршрутизатор имеет несколько сетевых интерфейсов, к каждому из которых может быть подключена одна сеть. Данные, которые необходимо передать поступают от транспортного уровня. На сетевом уровне данные снабжаются заголовком и формируется пакет. Для того чтобы протоколы сетевого уровня могли доставлять пакеты любому узлу составной сети, эти узлы должны иметь уникальные адреса в пределах данной сети – сетевой адрес .

Транспортный уровень обеспечивает передачу данных с определенной степенью надежности. Модель OSI определяет 5 классов транспортного сервиса. Эти виды сервиса отличаются качеством предоставляемых услуг (срочность, возможностью восстановления прерванной связью, способностью к обнаружению и исправлению ошибок передачи).

Сеансовый уровень управляет взаимодействием сторон, т.е. фиксирует, какая из сторон является активной в настоящий момент и предоставляет средства синхронизации сеанса.

Уровень представления обеспечивает представление передаваемой по сети информации, не меняя при этом её содержания. На этом уровне могут проходить шифрование и дешифрование данных.

Прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи в сети получают доступ к разделяемым ресурсам. Единица данных этого уровня – сообщение.

Технологии доступа

Для упрощения и удешевления аппаратных и программных решений разработчики первых локальных сетей остановились на совместном использовании общей среды передачи данных.

Использование разделяемых сред позволяет упростить логику передачи данных. Недостаток – плохая масштабируемость.

Локальные сети, являясь пакетными сетями, используют принцип временного мультиплексирования, т.е. разделяют передающую среду во времени.

Алгоритм управления доступом к среде является одной из важнейших характеристик технологий локальной сети.

Технология Ethernet

Основная среда – коаксиальный кабель .

На уровне MAC, который обеспечивает доступ к среде и передачу кадра, для идентификации сетевых интерфейсов узлов сети используются регламентированные уникальные шестибайтовые адреса – MAC-адреса (каждый сетевой адаптер имеет, по крайней мере, один MAC-адрес). Обычно он записывается в виде шести пар шестнадцатеричных цифр, разделенных тире или двоеточием, например: 11-AO-17-3D-BC-01.

Помимо отдельных интерфейсов MAC-адрес может определять группу интерфейсов или даже все интерфейсы сети. Первый бит старшего байта адреса назначения – признак того, является адрес индивидуальным или групповым. Если этот бит = 0, то адрес индивидуальный, т.е. идентифицирует один сетевой интерфейс. Если =1 – групповым. Групповой адрес связан только с интерфейсами, сконфигурируемым как члены группы, номер которой указан в групповом адресе. Если сетевой интерфейс включен в группу, то наряду с уникальным MAC-адресом ассоциируется также групповой адрес. Второй бит старшего байта определяет способ назначения адреса. Если бит=0, то централизованный, если = 1 – локальный. В три старших байта адреса производитель помещает выданный идентификатор. За уникальность младших трех байтов адреса отвечает производитель оборудования.

Сетевые адаптеры Ethernet могут работать в режиме неразборчивого захвата , т.е. сетевые адаптеры захватывают все кадры, поступающие на интерфейс независимо от их MAC-адресов назначения (используется в случае мониторинга адреса).

Формат кадра

Доступ к среде и передача данных в технологии Ethernet

Метод доступа в сетях Ethernet на разделяемой проводной среде носит название CSMA/CD .

Все компьютеры в сети на разделяемой среде имеют возможность немедленно получить данные, которые любой из компьютеров начал передавать в общую среду В таком случае говорят, что среда, к которой подключены все станции, работают в режиме коллективного доступа. Чтобы получить возможность передавать кадр, интерфейс отправитель должен убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигналов или несущей частоты . Признаком «незанятости» среды является отсутствие на ней несущей частоты. Если среда свободна, то узел готов к передаче данных. Все станции, подключенные к кабелю, начинают записывать байты передаваемого кадра в свои встроенные буферы. Та станция, которая узнает свой адрес в заголовке кадра, продолжает записывать в его содержимое свой буфер. А остальные станции прием кадра прекращает. Станция назначения обрабатывает полученные данные и передает их вверх по своему стеку. Кадр Ethernet содержит не только адрес назначения, но и адрес источника, поэтому станция получатель знает, кому нужно послать ответ. После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу, которая занимает 9,6 мкс и которая нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной из станций. После окончания паузы узлы имеют право начать передачу своего кадра, т.к. среда свободна.

Механизм прослушивания среды и паузы между кадрами не гарантируют исключения ситуации, когда две или более станции одновременно решают, что среда свободна. Говорят, что при этом происходит коллизия , т.к. содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу одновременно. Чтобы корректно обработать коллизию все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется факт обнаружения коллизий. Для повышения вероятности скорейшего обнаружения коллизии всеми станциями сети станция, которая обнаруживает коллизию, прерывает передачу своего кадра и отправляет в сеть специальную последовательность из 32 бит, называемую JAM-последовательностью. После этого передающая станция обязана прекратить передачу и сделать паузу.

Token Ring и FDDI

Основная среда передачи данных – витая пара . Для адресации станции используются MAC-адреса того же формата, что и Ethernet. Метод доступа Token Ring основан на передачи от узла к узлу специального токена (маркера доступа), при этом только узел, владеющий токеном, может передавать данные в кольцо. Существует лимит на период монопольного использования среды – время удержания токена , по истечении которого станция обязана передать токен своему соседу.

В технологии FDDI применяется двойное кольцо с целью обеспечения отказоустойчивости.

Технология ATM

Асинхронный режим передачи (ATM) является технологией, позволяющей по сети передавать различные типы трафика (голосовые, видео и цифровые данные). При этом обеспечивается достаточная пропускная способность для каждого из них и гарантируется своевременная доставка чувствительных к задержкам передачи данных.

Основой являются коммутируемые сети с трансляцией ячеек и установлением соединений.

ATM разбивает весь трафик на 5 классов: A, B, C, D и X. Первые четыре – трафик типовых приложений, которые отличаются устойчивым набором требований к задержкам и потерям пакетов, а также тем, генерируют они трафик с постоянной или переменной битовой скоростью. Класс X зарезервирован для уникальных приложений, набор характеристик и требований которых не относится ни к одному из первых четырех классов.

Данные передаются небольшими пакетами фиксированного размераячейки . А в сетях с разделяемой средой доступа передача осуществляется пакетами переменной длиныкадры .

Чтобы уменьшить время ожидания передачи ячейки, её размер должен быть мал. Однако маленький размер ячейки увеличивает накладные расходы на передачу из-за наличия большого количества интервалов между передачами ячеек. Размер ячейки ATM составляет 53 байта, из которых 48 байт отводится на данные, а 5 - на заголовок ячейки блока информации.

Для передачи пакетов по сети ATM от источника к месту назначения источник должен сначала установить соединение с получателем. Сети с установлением соединений могут резервировать для конкретного соединения полосу пропускания, гарантируя для каждого соединения определенную скорость передачи данных. При установлении соединения, коммутаторы определяют оптимальный маршрут для передачи данных. Когда соединение установлено, коммутаторы начинают передачу данных. Передача ячеек осуществляется с использованием адресных таблиц, в которых содержится информация об адресе порта, из которых поступают ячейки, идентификаторы виртуальных каналов и виртуальных путей.

Виртуальный канал – соединение между двумя конечными станциями ATM, которое устанавливается на время их взаимодействия. Он является двунаправленным, поэтому после установления соединения каждая конечная станция может, как посылать пакеты другой станции, так и получать от неё по этому каналу. Существует 3 типа виртуальных каналов:

1 – постоянные виртуальные каналы (PVC) – постоянное соединение между двумя конечными станциями, которое устанавливается вручную в процессе конфигурирования сети. Он проходит через все коммутаторы, расположенные между конечными станциями. После установки, для него резервируется определенная часть полосы пропускания и двум конечным станциям не требуется устанавливать или сбрасывать соединения;

2 – коммутируемые виртуальные каналы (SVC) – устанавливается динамически, когда две конечные станции обмениваются данными друг с другом. По окончании обмена через некоторый промежуток времени канал сбрасывается. Соединение устанавливается только в том случае, если сеть в состоянии поддерживать данное соединение;

3 – интеллектуальные постоянные виртуальные каналы (SPVC) – устанавливается вручную на этапе конфигурирования сети, при этом оператор сети указывает только конечные станции, для которых должно быть установлено соединение. Для каждого нового сеанса передачи данных, коммутатор определяет: по какому пути будут проходить ячейки.

Виртуальный путь – путь между двумя коммутаторами, которое существует постоянно, независимо от того, есть соединение или нет. Когда пользователь запрашивает виртуальный канал, коммутаторы определяют, какой виртуальный путь использовать для достижения конечных станций.

По одному и тому же виртуальному пути может передаваться одновременно трафик множества виртуальных каналов.

Стек протокола TCP/IP

Стек TCP/IP широко используется как в локальных, так и в глобальных сетях. Он имеет структуру, состоящую из четырех уровней:

Прикладной уровень соответствует трем верхним уровням модели OSI: прикладному, представления и сеансовому. Он объединяет сервисы, предоставляемые системой пользовательским приложениям.

К службам прикладного уровня относят:

- протокол передачи файлов FTP ;

- протокол передачи почты SMTP ;

- протокол передачи гипертекста HTTP и т.д.

Протоколы прикладного уровня развертываются на конечных узлах или хостах.

Транспортный уровень может предоставлять вышележащему уровню два типа сервиса:

1 – гарантированную доставку обеспечивает протокол управления передачей TCP ;

2 – доставку по возможности или с максимальными усилиями обеспечивает протокол пользовательских дейтаграмм UDP .

Для того чтобы обеспечить надёжную доставку данных, протокол TCP предусматривает установление логического соединения, что позволяет ему нумеровать пакеты, подтверждать их прием квитанциями, в случае потери организовывать повторные передачи, распознавать и уничтожать дубликаты и доставлять прикладному уровню пакеты в том порядке, в котором они были отправлены. Благодаря этому протоколу объекты на узле отправителя и узле получателя могут поддерживать обмен данными в дуплексном режиме.

Второй протокол, UDP, является простейшим дейтаграммным протоколом, когда задача надежного обмена не ставиться.

От прикладного протокола транспортный уровень принимает задание на передачу данных с тем или иным качеством прикладному уровню получателя. Программные модули протоколов прикладного уровня устанавливаются также на хостах.

Сетевой уровень [уровень интернета] обеспечивает перемещение пакетов в пределах составной сети, образованной соединением нескольких подсетей. Основной протокол – межсетевой протокол IP . В его задачу входит: продвижение пакетов между сетями от одного маршрутизатора к другому до тех пор, пока пакет не попадет в сеть назначения. Он развертывается не только на хостах, но и на всех маршрутизаторах.

Протокол IP – дейтаграммный протокол, работающий без установления соединений по принципу доставки с максимальными усилиями.

К сетевому уровню также относят протоколы, выполняющие вспомогательные функции:

Протоколы маршрутизации RIP и OSPF предназначены для изучения топологии сети, определения маршрутов и составления таблиц маршрутизации;

Протокол межсетевых управляющих сообщений ICMP , предназначенный для передачи маршрутизаторам источнику сведений об ошибках, возникших при передаче пакетов.

Уровень сетевых интерфейсов отвечает только за организацию взаимодействия с подсетями разных технологий, входящими в составную сеть.

Задачу организации интерфейса между технологиями TCP/IP и любой другой промежуточной технологией сети можно свести к двум задачам:

1 – упаковка IP пакета в единицу передаваемых данных промежуточной сети;

2 – преобразование сетевых адресов в адреса технологий данной промежуточной сети.

Система DNS

См. Олифера (стр. 583)


Похожая информация.


Важнейшим направлением стандартизации в области вычислительных сетей является стандартизациякоммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярны следующие стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA, OSI.

Все эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и ряд других, которые позволяют задействовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни.

Стек osi

Модель OSI является концептуальной схемой взаимодействия открытых систем, а стек OSI представляет собой набор вполне конкретных спецификаций протоколов.

В отличие от других стеков протоколов, стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, X.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FTAM, протокол эмуляции терминала VTP, протоколы справочной службы X.500, электронной почты X.400 и ряд других.

Протоколы стека OSI отличаются сложностью и неоднозначностью спецификаций. Эти свойства стали результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи и все существующие технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек tcp/ip

Стек TCP/IP был разработан по инициативе Министерства обороны США более 20 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название от популярных протоколов IP и TCP, внесли специалисты из университета Беркли, реализовавшие протоколы стека в версии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном количестве корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, PPP, протоколы территориальных сетей X.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. IP обеспечивает продвижение пакета по составной сети, а TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Может применяться в больших сетях, является его способность фрагментировать пакеты. Действительно, сложная составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в другую, с меньшей максимальной длиной, может возникнуть необходимость разделения передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Гибкая система адресации, позволяющая проще по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий.

В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство просто необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Для реализации мощных функциональных возможностей протоколов стека TCP/IP требуются большие вычислительные затраты. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб упрощает администрирование сети и конфигурирование оборудования, но в то же время сама требует пристального внимания со стороны администраторов.

Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярны следующие стеки:

Все эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и ряд других, которые позволяют задействовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Использование в сети того или иного стека коммуникационных протоколов во многом определяет лицо сети и ее характеристики. В небольших сетях может использоваться исключительно один стек. В крупных корпоративных сетях, объединяющих различные сети, параллельно используются, как правило, несколько стеков.

В коммуникационном оборудовании реализуются протоколы нижних уровней, которые в большей степени стандартизованы, чем протоколы верхних уровней, и это является предпосылкой для успешной совместной работы оборудования различных производителей. Перечень протоколов, поддерживаемых тем или иным коммуникационным устройством, является одной из наиболее важных характеристик этого устройства.

Компьютеры реализуют коммуникационные протоколы в виде соответствующих программных элементов сетевой операционной системы, например, протоколы канального уровня, как правило, выполнены в виде драйверов сетевых адаптеров, а протоколы верхних уровней в виде серверных и клиентских компонент сетевых сервисов.

Стек OSI. Следует четко различать модель OSI и стек OSI. В то время как модель OSI является концептуальной схемой взаимодействия открытых систем, стек OSI представляет собой набор вполне конкретных спецификаций протоколов. В отличие от других стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях OSI поддерживает Ethernet, Token Ring, FDDI, а также такие протоколы как LLC, X.25 и ISDN. Сервисы сетевого, транспортного и сеансового уровней этого стека пока мало распространены. Наиболее популярными протоколами стека OSI являются протоколы, реализующие высокоуровневые сервисы по передаче файлов, эмуляции терминала, ведению каталогов имен и по организации электронной почты.



Сети ISDN.

ISDN (англ. Integrated Services Digital Network) - цифровая сеть с интеграцией служб. Позволяет совместить услуги телефонной связи и обмена данными. Технология ISDN появилась в 1984 году.

Использование для этой цели телефонных проводов имеет два преимущества: они уже существуют и могут использоваться для подачи питания на терминальное оборудование.

ISDN позволяет объединить передачу голоса, данных и изображения. Интеграция разнородных трафиков ISDN выполняется, используя способ временного разделения (TDM – Time Division Multiplexing). Для каждого типа данных выделяется отдельная полоса, называющаяся элементарным каналом (или стандартным каналом). Для этой полосы гарантируется фиксированная, согласованная доля полосы пропускания.

Цифровые сети с интеграцией услуг ISDN можно использовать при передаче голоса и данных, для объединения удаленных ЛВС, для доступа к сети Internet и для различных видов трафика, в том числе мультимедийного. Оконечными устройствами в сети ISDN могут быть: цифровой телефонный аппарат, компьютер с ISDN-адаптером, видео- и аудиооборудование.

Суть технологии ISDN, состоит в том, что различные устройства, например, телефоны, компьютеры, факсы и другие устройства, могут одновременно передавать и принимать цифровые сигналы после установления коммутируемого соединения с удаленным абонентом.

Сети ISDN состоят из двух В-каналов, дополнительного D-канала и H-канала. В ISDN основной поток информации (голос и данные) передается по В-каналам. Эти каналы коммутируются между парой абонентов с помощью информации, передаваемой по дополнительному каналу – D-каналу. H-канал - это канал высокоскоростной передачи данных со скоростями 384 кбит/с (канал H0), 1563 кбит/с (канал H11), 1920 кбит/с (канал H12).

После коммутации каждый В-канал представляет собой две “трубы”, пропускающие во встречных направлениях потоки битов со скоростью 64 кбит/с. Служебный канал – также двунаправленный, его пропускная способность может быть 16 или 64 кбит/с в зависимости от типа сервиса.

Скорость передачи данных в ISDN может быть: 64 кбит/с., 128 кбит/с, а в широкополосных каналах связи до 155 Мбит/с. Через линии ISDN возможна передача данных с помощью технологий и протоколов глобальных сетей: Х.25, Frame Relay.

Стандартные стеки коммуникационных протоколов

Важнейшим направлением стандартизации в области вычислительных сетей явля­ется стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наибо­лее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB и OSI. Все эти стеки на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам.

Следует четко различать модель OSI и стек OSI. В то время как модель OSI явля­ется концептуальной схемой взаимодействия открытых систем, стек OSI представ­ляет собой набор вполне конкретных спецификаций протоколов. В отличие от других стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, Х.25 и ISDN, - то есть использует разработан­ные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реа­лизованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов РТАМ, протокол эмуляции терминала VTP, протоколы справочной службы Х.500, электронной почты Х.400 и ряд других.

Протоколы стека OSI отличает большая сложность и неоднозначность специ­фикаций. Эти свойства явились результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи жизни и все существующие и появляющиеся технологии.

Из-за своей сложности протоколы OSI требуют больших затрат вычислитель­ной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI - международный, независимый от производителей стандарт. Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети,

устанавливаемые в правительственных учрежде­ниях США после 1990 года, должны или непосредственно поддерживать стек OSI, или обеспечивать средства для перехода на этот стек в будущем. Одним из крупнейших производителей, поддерживающих OSI, является компания AT&T, ее сеть Stargroup полностью базируется на этом стеке.

Стек TCP/IP был разработан по инициативе Министерства обороны США более 20 лет назад. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоко­лам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей вер­сии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты фи­зического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и вы­деленных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей. Только в сети Internet объединено около 10 миллионов компьютеров по всему миру, кото­рые взаимодействуют друг с другом с помощью стека протоколов TCP/IP.

Стремительный рост популярности Internet привел и к изменениям в расста­новке сил в мире коммуникационных протоколов - протоколы TCP/IP, на кото­рых построен Internet, стали быстро теснить бесспорного лидера прошлых лет - стек IPX/SPX компании Novell. Сейчас любая промышленная операционная система обя­зательно включает программную реализацию этого стека в своем комплекте поставки.

Хотя протоколы TCP/IP неразрывно связаны с Internet и каждый из много­миллионной армады компьютеров Internet работает на основе этого стека, суще­ствует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используют протоколы TCP/IP. Чтобы отличать их от Internet, эти сети называют сетями TCP/IP или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, дающих ему преимущество перед другими протоко­лами, когда речь заходит о построении сетей, включающих глобальные связи. В част­ности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кад­ра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эф­фективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адреса­ции, позволяющая более просто по сравнению с другими протоколами аналогич­ного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетеро­генных сетей.

В стеке TCP/IP очень экономно используются возможности широковещатель­ных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различ­ных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, в том числе и на облегчение кон­фигурирования оборудования, но в то же время сама требует пристального внима­ния со стороны администраторов.

Информационный обмен — процесс многофункциональный. Родственные функции группируются по назначению и эти группы называют "уровнями взаимодействия". Унификация уровней позволяет создавать гетерогенные сети со сложной топологией. В основе унификации — понятие эталонной сетевой модели. Модель как таковая лишь описывает порядок сетевого взаимодействия, который реализуется в виде стека протоколов.

Обмен информацией между компьютерами, объединенными в сеть, очень сложная задача. Это связано с тем, что существует много производителей аппаратных и программных средств вычислительных систем. Единственный выход — унифицировать средства сопряжения систем, а именно использовать открытые системы . Открытая система взаимодействует с другими системами на основе единых общедоступных стандартов и спецификаций.

В 1984г. Международная Организация по Стандартизации (ISO) представила индустриальный стандарт — модель взаимодействия открытых систем (Open System Interconnection Reference Model — OSI/RM, в советской литературе — ЭМВОС), чтобы помочь поставщикам создавать совместимые сетевые аппаратные и программные средства. В соответствии с этой моделью выделяются следующие уровни (рис.1):

Рис. 1. Эталонная модель OSI

  • физический (Physical);
  • канальный (Data Link);
  • сетевой (Network);
  • транспортный (Transport);
  • сеансовый (Session);
  • представительский (Presentation) ;
  • прикладной (Application).

В соответствии с эталонной моделью OSI эти уровни взаимодействуют так, как показано на рис. 2. Таким образом, сложная задача обмена информацией между компьютерами в сети разбивается на ряд относительно независимых и менее сложных подзадач взаимодействия между смежными уровнями .

Рис. 2. Взаимодействие между уровнями OSI

Связь между уровнями двух сетевых узлов (горизонтальное взаимодействие ) выполняется в соответствии с унифицированными правилами — протоколами взаимодействия

В автономной системе передача данных между уровнями (вертикальное взимодействие ) реализуется через интерфейсы API

Границу между сеансовым и транспортным уровнями можно рассматривать как границу между протоколами прикладного уровня и протоколами низших уровней. Если прикладной, представительный и сеансовый уровни обеспечивают прикладные процессы сеанса взаимодействия, то четыре низших уровня решают проблемы транспортировки данных.

Два самых низших уровня — физический и канальный — реализуются аппаратными и программными средствами, остальные пять более высоких уровней реализуются, как правило, программными средствами.

При передаче информации от прикладного процесса в сеть на физический уровень происходит ее обработка, которая заключается в разбиении передаваемых данных на отдельные блоки, преобразовании формы представления или кодировки данных в блоке и добавлении к каждому блоку заголовка (header) соответствующего уровня (см. пример). Каждый заголовок характеризует используемый протокол обработки данных, причем каждый уровень воспринимает в качестве данных весь блок, полученный от предыдущего уровня, включая присоединенный заголовок. Такое построение эталонной модели позволяет заложить (инкапсулировать ) в каждый передаваемый по физической среде информационный блок сведения, необходимые для выбора последовательности протоколов для осуществления обратных преобразований на принимающей информацию стороне.

Физический уровень

Этот уровень определяет механические, электрические, процедурные и функциональные характеристики установления, поддержания и размыкания физического соединения между конечными системами. Физический уровень определяет такие характеристики соединения, как уровни напряжений, синхронизацию и физическую скорость передачи данных, максимальные расстояния передачи, конструктивные параметры разъемов и другие аналогичные характеристики. Известные стандарты RS-232-C, V.24 и IEEE 802.3 (Ethernet).

Канальный уровень

Канальный уровень (уровень звена данных, информационно-канальный уровень) отвечает за надежную передачу данных через физический канал, а именно:

  • обеспечивает физическую адресацию (в отличие от сетевой или логической адресации);
  • обеспечивает обнаружение ошибок в передаче и восстановление данных;
  • отслеживает топологию сети и обеспечивает дисциплину использования сетевого канала конечной системой;
  • обеспечивает уведомление о неисправностях;
  • обеспечивает упорядоченную доставку блоков данных и управление потоком информации.

Для ЛВС канальный уровень разбивается на два подуровня:

  • LLC (Logical Link Control) — обеспечивает управление логическим звеном, т.е. собственно функции канального уровня;
  • MAC (Media Access Control) — обеспечивает специальные методы доступа к среде распространения.

Сетевой уровень

Этот уровень обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным подсетям (сегментам), которые могут быть разделены множеством подсетей и могут находиться в разных географических пунктах. Протоколы маршрутизации позволяют сети из маршрутизаторов выбирать оптимальные маршруты через связанные между собой подсети.

Транспортный уровень

Транспортный уровень обеспечивает высшим уровням услуги по транспортировке данных, а именно:

  • обеспечивает надежную транспортировку данных через объединенную сеть;
  • обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов;
  • обеспечивает обнаружение и устранение неисправностей транспортировки;
  • следит за тем, чтобы конечная система не была перегружена слишком большим количеством данных.

Другими словами, транспортный уровень обеспечивает интерфейс между процессами и сетью, устанавливает логические каналы между процессами и обеспечивает передачу по этим каналам информационных блоков. Эти логические каналы называются транспортными.

Сеансовый уровень

Сеансовый уровень реализует установление, поддержку и завершение сеанса взаимодействия между прикладными процессами абонентов. Сеансовый уровень синхронизирует диалог между объектами представительного уровня, определяет точки синхронизации для промежуточного контроля и восстановления при передаче файлов. Этот уровень также позволяет производить обмен данными в режиме, заданном прикладной программой, или предоставляет возможность выбора режима обмена.

Кроме основной функции управления диалогом сеансовый уровень предоставляет средства для выбора класса услуг и уведомления об исключительных ситуациях (проблемах сеансового, представительного и прикладного уровней).

Представительный уровень

Представительный уровень (уровень представления данных) определяет синтаксис, форматы и структуры представления передаваемых данных (но не затрагивает семантику, значение данных). Для того, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой на прикладном уровне другой системы, представительный уровень осуществляет трансляцию между известными форматами представления информации за счет использования унифицированного формата представления информации.

Таким образом, этот уровень обеспечивает служебные операции, выбираемые на прикладном уровне, для интерпретации передаваемых и получаемых данных: управление информационным обменом, отображение данных и управление структурированными данными. Эти служебные данные позволяют связывать воедино терминалы и вычислительные средства различных типов. Примером протокола этого уровня является XDR .

Прикладной уровень

В отличие от других уровней прикладной уровень — самый близкий к пользователю уровень OSI — не предоставляет услуги другим уровням OSI, однако он обеспечивает прикладные процессы, лежащие за пределами масштаба модели OSI.

Прикладной уровень обеспечивает непосредственную поддержку прикладных процессов и программ конечного пользователя (СУБД, текстовых процессоров, программ банковских терминалов и т.д.) и управление взаимодействием этих программ с сетью передачи данных:

  • идентифицирует и устанавливает наличие предполагаемых партнеров для связи;
  • синхронизирует совместно работающие прикладные программы;
  • устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации;
  • определяет достаточность наличных ресурсов для предполагаемой связи.

Модель OSI не является реализацией, она лишь предлагает порядок организации взаимодействия между компонентами системы. Реализациями этих правил являются стеки протоколов .

Стеки протоколов

Стек OSI

Протоколы стека OSI и их распределение по уровням сетевой модели приведены на рис. 3.

Стек NetBIOS/SMB

Фирмы Microsoft и IBM совместно работали над сетевыми средствами для персональных компьютеров, поэтому стек протоколов NetBIOS/SMB является их совместным детищем. Средства NetBIOS появились в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM, которая на прикладном уровне (рис. 4) использовала для реализации сетевых сервисов протокол SMB .

Протокол NetBIOS работает на трех уровнях модели взаимодействия открытых систем: сетевом, транспортном и сеансовом . NetBIOS может обеспечить сервис более высокого уровня, чем протоколы IPX и SPX, однако не обладает способностью к маршрутизации. Таким образом, NetBIOS не является сетевым протоколом в строгом смысле этого слова. NetBIOS содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням, однако с его помощью невозможна маршрутизация пакетов, так как в протоколе обмена кадрами NetBIOS не вводится такое понятие как сеть. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети. NetBIOS поддерживает как дейтаграммный обмен, так и обмен с установлением соединений.

Протокол SMB , соответствующий прикладному и представительному уровням модели OSI, регламентирует взаимодействие рабочей станции с сервером. В функции SMB входят следующие операции:

  • Управление сессиями. Создание и разрыв логического канала между рабочей станцией и сетевыми ресурсами файлового сервера.
  • Файловый доступ. Рабочая станция может обратиться к файл-серверу с запросами на создание и удаление каталогов, создание, открытие и закрытие файлов, чтение и запись в файлы, переименование и удаление файлов, поиск файлов, получение и установку файловых атрибутов, блокирование записей.
  • Сервис печати. Рабочая станция может ставить файлы в очередь для печати на сервере и получать информацию об очереди печати.
  • Сервис сообщений. SMB поддерживает простую передачу сообщений со следующими функциями: послать простое сообщение; послать широковещательное сообщение; послать начало блока сообщений; послать текст блока сообщений; послать конец блока сообщений; переслать имя пользователя; отменить пересылку; получить имя машины.

Из-за большого количества приложений, которые используют функции API, предоставляемые NetBIOS, во многих сетевых ОС эти функции реализованы в виде интерфейса к своим транспортным протоколам. В NetWare имеется программа, которая эмулирует функции NetBIOS на основе протокола IPX, существуют программные эмуляторы NetBIOS для Windows NT и стека TCP/IP.

Стек TCP/IP

Стек TCP/IP, называемый также стеком DoD и стеком Internet, является одним из наиболее популярных стеков коммуникационных протоколов. Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является основным в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Структура протоколов TCP/IP приведена на рис. 5. Протоколы TCP/IP делятся на 4 уровня.

Самый нижний (уровень IV) — уровень межсетевых интерфейсов — соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных каналов это Ethernet, Token Ring, FDDI, для глобальных каналов — собственные протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP/PPP, которые устанавливают соединения типа "точка — точка" через последовательные каналы глобальных сетей, и протоколы территориальных сетей X.25 и ISDN. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Следующий уровень (уровень III) — это уровень межсетевого взаимодействия, который занимается передачей дейтаграмм с использованием различных локальных сетей, территориальных сетей X.25, линий специальной связи и т. п. В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP , который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизатором и шлюзом, системой-источником и системой-приемником, то есть для организации обратной связи. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает устойчивое виртуальное соединение между удаленными прикладными процессами. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным методом, то есть без установления виртуального соединения, и поэтому требует меньших накладных расходов, чем TCP.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня: протокол копирования файлов FTP , протоколы удаленного управления telnet и ssh, почтовый протокол SMTP, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Кратко остановимся на некоторых из протоколов стека, наиболее тесно связанных с тематикой данного курса.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Проблема управления разделяется здесь на две задачи. Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия сервера с программой-клиентом, работающей на хосте администратора. Они определяют форматы сообщений, которыми обмениваются клиенты и серверы, а также форматы имен и адресов. Вторая задача связана с контролируемыми данными. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в шлюзах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые хост или шлюз должен сохранять, и допустимые операции над ними.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений — TCP. Кроме пересылки файлов протокол, FTP предлагает и другие услуги. Так пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол — простейший протокол пересылки файлов TFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения — UDP.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленной ЭВМ.

Контрольные вопросы

  1. Для чего предназначена модель OSI?
  2. Перечислите уровни модели OSI
  3. Какие задачи решает прикладной уровень модели OSI?
  4. Какие задачи решает уровень представлений модели OSI?
  5. Какие задачи решает транспортный уровень модели OSI?
  6. Какие задачи решает сетевой уровень модели OSI?
  7. Какие задачи решает канальный уровень модели OSI?
  8. Какие задачи решает физический уровень модели OSI?
  9. Как в модели OSI проходит обмен данными между уровнями?
  10. Что такое «стек протоколов»

Постоянный адрес этой страницы:




Top