Какой уровень модели osi обеспечивает трансляцию данных. Как работают сетевые устройства согласно сетевой модели OSI

Сетевая модель OSI (базовая эталонная модель взаимодействия открытых систем, англ. Open Systems Interconnection Basic Reference Model) - абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов.

Модель состоит из 7-ми уровней, расположенных друг над другом. Уровни взаимодействуют друг с другом (по «вертикали») посредством интерфейсов, и могут взаимодействовать с параллельным уровнем другой системы (по «горизонтали») с помощью протоколов. Каждый уровень может взаимодействовать только со своими соседями и выполнять отведённые только ему функции. Несмотря на существование других моделей, большинство сетевых производителей сегодня разрабатывают свои продукты на основе этой структуры.

Уровни OSI

Каждый уровень модели OSI отвечает за часть процесса обработки по подготовке данных к передаче по сети.

Согласно модели OSI в процессе передачи данные буквально проходят сверху вниз по уровням модели OSI отправляющего компьютера и вверх по уровням модели OSI принимающего компьютера. На принимающем компьютере происходит процесс, обратный инкапсуляции. Биты прибывают на физический уровень модели OSI принимающего компьютера. В процессе перемещения вверх по уровням OSI принимающего компьютера данные поступят на прикладной уровень.

Уровень Название Описание 1 Описание 2
7. Прикладной Это уровень, с которым работают пользователи конечных продуктов. Их не волнует, как передаются данные, зачем и через какое место… Они сказали "ХОЧУ!" - а мы, программисты, должны им это обеспечить. В качестве примера можно взять на рассмотрение любую сетевую игру: для игрока она работает на этом уровне. Когда пользователь хочет отправить данные, например, электронную почту, на прикладном уровне начинается процесс инкапсуляции. Прикладной уровень отвечает за обеспечение сетевого доступа к приложениям. Информация проходит через верхние три уровня и, попадая вниз, на транспортный уровень, считается данными.
6. Представительский (Введение в XML , SMB) Здесь программист имеет дело с данными, полученными от низших уровней. В основном, это конвертирование и представление данных в удобоваримом для пользователя виде.
5. Сеансовый (TLS , SSL сертификаты для для сайта, почты , NetBios) Этот уровень позволяет пользователям осуществлять "сеансы связи". То есть именно на этом уровне передача пакетов становится для программиста прозрачной, и он может, не задумываясь о реализации, непосредственно передавать данные, как цельный поток. Здесь на сцену вступают протоколы HTTP, FTP , Telnet, SMTP и т.д.
4. Транспортный (Порты TCP , UDP) Осуществляет контроль над передачей данных (сетевых пакетов). То есть, проверяет их целостность при передаче, распределяет нагрузку и т.д. Этот уровень реализует такие протоколы, как TCP, UDP и т.д. Для нас представляет наибольший интерес. На транспортном уровне данные разбиваются на более легко управляемые сегменты, или блоки PDU транспортного уровня, для упорядоченной транспортировки по сети. Блок PDU описывает данные так, как они движутся с одного уровня модели OSI на другой. Кроме того, блок PDU транспортного уровня содержит такую информацию, как номера портов, порядковые номера и номера квитирования, которые используются для надежной транспортировки данных.
3. Сетевой (IP, ICMP протокол диагностики перегрузки сети) Логически контролирует адресацию в сети, маршрутизацию и т.д. Должен быть интересен разработчикам новых протоколов и стандартов. На этом уровне реализованы протоколы IP, IPX, IGMP, ICMP, ARP. В основном, управляется драйверами и операционными системами. Сюда влезать, конечно, стоит, но только когда ты знаешь, что делаешь, и полностью в себе уверен. На сетевом уровне каждый сегмент, поступивший с транспортного уровня, становится пакетом. Пакет содержит логическую адресацию и другие управляющие данные уровня 3.
2. Канальный (WI-FI , Что такое Ethernet) Этот уровень контролирует восприятие электронных сигналов логикой (радиоэлектронными элементами) аппаратных устройств. То есть, взаимодействуя на этом уровне, аппаратные средства превращают поток битов в электрические сигналы и наоборот. Нас он не интересует, потому что мы не разрабатываем аппаратные средства, чипы и т.д. Уровень касается сетевых карт, мостов, свичей, рутеров и т.д. На канальном уровне каждый пакет, поступивший с сетевого уровня, становится фреймом. Кадр содержит физический адрес и данные об исправлении ошибок.
1. Аппаратный (Физический) (лазер, электричество, радио) Контролирует передачи физических сигналов между аппаратными устройствами, входящими в сеть. То есть управляет передачей электронов по проводам. Нас он не интересует, потому что все, что находится на этом уровне, контролируется аппаратными средствами (реализация этого уровня - это задача производителей хабов, мультиплексоров, повторителей и другого оборудования). Мы не физики-радиолюбители, а геймдевелоперы. На физическом уровне фрейм становится битами. По сетевой среде биты передаются по одному.

Мы видим, что, чем выше уровень - тем выше степень абстракции от передачи данных, к работе с самими данными. Это и есть смысл всей модели OSI: поднимаясь все выше и выше по ступенькам ее лестницы, мы все меньше и меньше заботимся о том, как данные передаются, мы все больше и больше становимся заинтересованными в самих данных, нежели в средствах для их передачи. Нас, как программистов, интересуют уровни 3, 4 и 5. Мы должны использовать средства, которые они предоставляют, для того чтобы построить 6 и 7 уровни, с которыми смогут работать конечные пользователи.

Сетевой уровень

На сетевом уровне OSI реализованы протоколы IP(Структура межсетевого протокола IPv4 ,IPv6), IPX, IGMP, ICMP, ARP.

Нужно понимать почему возникла необходимость к построению сетевого уровня, почему сети построенные с помощью средств канального и физического уровня не смогли удовлетворять требования пользователей.

Создать сложную, структурированную сеть с интеграцией различных базовых сетевых технологий, можно и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Естественно в целом трафик в такой сети складывается случайным образом, но с другой стороны он характеризуется и некоторыми закономерностями. Как правило, в такой сети некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда им необходим доступ к ресурсам компьютеров другого отдела. Поэтому в зависимости от сетевого трафика компьютеры в сети разделяют на группы, которые называют сегменты сети. Компьютеры объединяются в группу, если большая часть их сообщений предназначена (адресована) компьютерам этой же группы. Разделение сети на сегменты, могут осуществлять мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Таким образом, одна сеть распадается на отдельные подсети. Из этих подсетей в дальнейшем могут быть построены составные сети достаточно крупных размеров.

Идея разбиения на подсети - это основа построения составных сетей.

Сеть называется составной (internetwork или internet), если она может быть представлена в виде совокупности нескольких сетей. Сети, входящие в составную сеть, называются подсетями (subnet), составляющими сетями или просто сетями, каждая из которых может работать на основе собственной технологии канального уровня (хотя это и не обязательно).

Но, воплощение этой идеи в жизнь с помощью повторителей, мостов, и коммутаторов имеет очень существенные ограничения и недостатки.

    В топологии сети построенной как с помощью повторителей, так и мостов или коммутаторов, должны отсутствовать петли. Действительно, мост или коммутатор может решать задачу доставки пакета адресату только тогда, когда между отправителем и получателем существует единственный путь. Хотя в то же время наличие избыточных связей, которые и образуют петли, часто необходимо для лучшей балансировки нагрузки, а также для повышения надежности сети за счет образования резервных путей.

    Логические сегменты сети, расположенные между мостами или коммутаторами, слабо изолированы друг от друга. Они не защищены от широковещательных штормов. Если какая-либо станция посылает широковещательное сообщение, то это сообщение передается всем станциям всех логических сегментов сети. Администратор должен вручную ограничивать количество широковещательных пакетов, которое разрешается генерировать некоторому узлу в единицу времени. В принципе некоторым образом удалось ликвидировать проблему широковещательных штормов с использованием механизма виртуальных сетей(Настройка VLAN Debian D-Link), реализованного во многих коммутаторах. Но в этом случае, хотя и возможно достаточно гибко создавать изолированные по трафику группы станций, но при этом они изолированы полностью, то есть узлы одной виртуальной сети не могут взаимодействовать с узлами другой виртуальной сети.

    В сетях, построенных на основе мостов и коммутаторов, достаточно сложно решается задача управления трафиком на основе значения данных, содержащихся в пакете. В таких сетях это возможно только с помощью пользовательских фильтров, для задания которых администратору приходится иметь дело с двоичным представлением содержимого пакетов.

    Реализация транспортной подсистемы только средствами физического и канального уровней, к которым относятся мосты и коммутаторы, приводит к недостаточно гибкой, одноуровневой системе адресации: в качестве адреса станции получателя используется MAC -адрес - адрес, который жестко связан с сетевым адаптером.

Все приведенные недостатки мостов и коммутаторов связаны только с тем, что они работают по протоколам канального уровня. Все дело в том, что эти протоколы в явном виде не определяют понятие часть сети (или подсеть, или сегмент), которое можно было бы использовать при структуризации большой сети. Поэтому разработчики сетевых технологий решили поручить задачу построения составной сети новому уровню - сетевому.

взаимодействия открытых систем. Иными словами - это определённый стандарт, по которому действуют сетевые технологии.

Упомянутая система состоит из семи уровней модели OSI. Каждый протокол работает с протоколами своего уровня либо уровнем ниже, либо выше от себя.

Каждый уровень оперирует определённым типом данных:

  1. Физический - бит;
  2. Канальный - кадр;
  3. Сетевой - пакет;
  4. Транспортный - сегменты/дейтаграммы;
  5. Сеансовый - сеанс;
  6. Представительский - поток;
  7. Прикладной - данные

Уровни модели OSI

Прикладной уровень (application layer )

Это самый верхний уровень сетевой модели OSI . Его ещё называют уровень приложений. Предназначен для взаимодействия пользователя с сетью. Уровень предоставляет приложениям возможность использования различных сетевых служб.

Функции:

  • удалённый доступ;
  • почтовый сервис;
  • формирование запросов к следующему уровню (уровень представления )

Сетевые протоколы уровня:

  • BitTorrent
  • HTTP
  • SMTP
  • SNMP
  • TELNET

Уровень представления (presentation layer )

Это второй уровень. По другому называют представительским уровнем. Предназначен для преобразование протоколов, а так же для кодировки и декодировки данных. На данном этапе, запросы доставленные с прикладного уровня, формируются в в вид данных для передачи по сети и наоборот.

Функции:

  • сжатие/распаковка данных;
  • кодирование/декодирование данных;
  • перенаправление запросов

Сетевые протоколы уровня :

  • LPP
  • NDR

Сеансовый уровень (session layer )

Этот уровень сетевой модели OSI отвечает за поддержание сеанса связи. Благодаря данному уровню приложения могут взаимодействовать друг с другом на протяжении долгого времени.

Функции:

  • предоставление прав
  • создание/приостановление/восстановление/завершение связи

Сетевые протоколы уровня :

  • ISO-SP
  • L2TP
  • NetBIOS
  • PPTP
  • SMPP

Транспортный уровень (transport layer )

Это четвёртый уровень, если вести отсчёт сверху. Предназначен для надёжной передачи данных. При этом, передача не всегда может быть надёжной. Возможны дублирование и недоставка посылки данных.

Сетевые протоколы уровня:

  • UDP
  • SST
  • RTP

Сетевой уровень (network layer )

Данный уровень сетевой модели OSI отвечает за определение наилучшего и кратчайшего маршрута для передачи данных.

Функции:

  • присвоение адреса
  • отслеживание коллизий
  • определение маршрута
  • коммутация

Сетевые протоколы уровня:

  • IPv4/IPv6
  • CLNP
  • IPsec
  • RIP
  • OSPF

Канальный уровень (Data Link layer )

Это шестой уровень, который отвечает за доставку данных между устройствами которые находятся в одной сетевой области.

Функции:

  • адресация на уровне аппаратного обеспечения
  • контроль за ошибками
  • исправление ошибок

Сетевые протоколы уровня:

  • SLIP
  • LAPD
  • IEEE 802.11 wireless LAN,
  • FDDI
  • ARCnet

Физический уровень (physical layer )

Самый нижний и самый последний уровень сетевой модели OSI . Служит для определения метода передачи данных в физической/электрической среде. Допустим, любой сайт, например "играть онлайн казино http://bestforplay.net ", расположен на каком то сервере, интерфейсы которого тоже передают какой нибудь электрический сигнал по кабелям и проводам.

Функции:

  • определение вида передачи данных
  • передача данных

Сетевые протоколы уровня:

  • IEEE 802.15 (Bluetooth)
  • 802.11Wi-Fi
  • GSMUm radio interface
  • ITU и ITU-T
  • EIARS-232

Таблица 7-и уровневой модели OSI

Модель OSI
Тип данных Уровень Функции
Данные Прикладной Доступ к сетевым службам
Поток Представительский Представление и шифрование данных
Сеансы Сеансовый Управление сеансом связи
Сегменты/Дейтаграммы Транспортный Прямая связь между конечными пунктами и надежность
Пакеты Сетевой Определение маршрута и логическая адресация
Кадры Канальный Физическая адресация
Биты Физический Работа со средой передачи, сигналами и двоичными данными

Для облегчения понимания работы всех сетевых устройств, перечисленных в статье Сетевые устройства , касательно уровней сетевой эталонной модели OSI, Я сделал схематичные рисунки с небольшими комментариями.

Для начала вспомним уровни эталонной сетевой модели OSI и инкапсулирование данных.

Посмотрите, как происходит передача данных между двумя соединенными компьютерами. Заодно Я выделю работу сетевой карты на компьютерах, т.к. именно она является сетевым устройством, а компьютер – в принципе нет. (Все картинки кликабельны - для увеличения картинки кликните по ней.)


Приложение на компьютере PC1 отправляет данные другому приложению находящемуся на другом компьютере PC2. Начиная с верхнего уровня (уровень приложений) данные направляются к сетевой карте на канальный уровень. На нём сетевая карта преобразует фреймы в биты и отправляет в физическую среду (например, кабель витую пару). На другой стороне кабеля поступает сигнал, и сетевая карта компьютера PC2 принимает эти сигнала, распознавая их в биты и формируя из них фреймы. Данные (содержащиеся в фреймах) декапсулируются к верхнему уровню, и когда доходят до уровня приложений, соответствующая программа на компьютере PC2 получает их.

Повторитель. Концентратор.

Репитер и концентратор работают на одном и том же уровне, поэтому касательно сетевой модели OSI они изображаются одинаково. Для удобства представлений сетевых устройств будем их отображать между нашими компьютерами.


Репитер и концентратор устройства первого (физического) уровня. Они принимают сигнал, распознают его, и пересылают сигнал далее во все активные порты.

Сетевой мост. Коммутатор.

Сетевой мост и коммутатор тоже работают на одном уровне (канальном) и изображаются они соответственно одинаково.


Оба устройства уже второго уровня, поэтому помимо распознавания сигнала (подобно концентраторам на первом уровне) они декапсулируют его (сигнал) в фреймы. На втором уровне сравнивается контрольная сумма трейлера (прицепа) фрейма. Затем из заголовка фрейма узнаётся MAC-адрес получателя, и проверяется его наличие в коммутируемой таблице. Если адрес присутствует, то фрейм обратно инкапсулируется в биты и отправляется (уже в виде сигнала) на соответствующий порт. Если адрес не найден, происходит процесс поиска этого адреса в подключенных сетях.

Маршрутизатор.


Как Вы видите, маршрутизатор (или роутер) – это устройство третьего уровня. Вот как примерно роутер функционирует: На порт поступает сигнал, и роутер распознаёт его. Распознанный сигнал (биты) формируют фреймы (кадры). Сверяется контрольная сумма в трейлере и MAC-адрес получателя. Если все проверки прошли успешно, фреймы формируют пакет. На третьем уровне маршрутизатор исследует заголовок пакета. В нем присутствует IP адрес пункта назначения (получателя). На основе IP-адреса и собственной таблицы маршрутизации роутер выбирает наилучший путь следования пакеты к получателю. Выбрав путь, роутер инкапсулирует пакет в фреймы, а затем в биты и отправляет их в виде сигналов на соответствующий порт (выбранный в таблице маршрутизации).

Заключение

В заключении Я объединил все устройства в одной картинке.


Теперь у Вас достаточно знаний, чтобы определить какие устройства и как работают. Если у Вас остались вопросы, задавайте их мне и в ближайшее время Вам или Я или другие пользователи непременно помогут.

Только начали работать сетевым администратором? Не хотите оказаться сбитым с толку? Наша статья вам пригодится. Слышали, как проверенный временем администратор говорит о сетевых неполадках и упоминает какие-то уровни? Может вас когда-нибудь спрашивали на работе, какие уровни защищены и работают, если вы используете старый брандмауэр? Чтобы разобраться с основами информационной безопасности, нужно понять принцип иерархии модели OSI. Попробуем увидеть возможности данной модели.

Уважающий себя системный администратор должен хорошо разбираться в сетевых терминах

В переводе с английского - базовая эталонная модель взаимодействия открытых систем. Точнее, сетевая модель стека сетевых протоколов OSI/ISO. Введена в 1984 году в качестве концептуальной основы, разделившей процесс отправки данных во всемирной паутине на семь несложных этапов. Она не является самой популярной, так как затянулась разработка спецификации OSI. Стек протоколов TCP/IP выгоднее и считается основной используемой моделью. Впрочем, у вас есть огромный шанс столкнуться с моделью OSI на должности системного администратора или в IT-сфере.

Создано множество спецификаций и технологий для сетевых устройств. В таком разнообразии легко запутаться. Именно модель взаимодействия открытых систем помогает понимать друг друга сетевым устройствам, использующим различные методы общения. Заметим, что наиболее полезна OSI для производителей программного и аппаратного обеспечения, занимающихся проектированием совместимой продукции.

Спросите, какая же в этом польза для вас? Знание многоуровневой модели даст вам возможность свободного общения с сотрудниками IT-компаний, обсуждение сетевых неполадок уже не будет гнетущей скукой. А когда вы научитесь понимать, на каком этапе произошёл сбой, сможете легко находить причины и значительно сокращать диапазон своей работы.

Уровни OSI

Модель содержит в себе семь упрощённых этапов:

  • Физический.
  • Канальный.
  • Сетевой.
  • Транспортный.
  • Сеансовый.
  • Представительский.
  • Прикладной.

Почему разложение на шаги упрощает жизнь? Каждый из уровней соответствует определённому этапу отправки сетевого сообщения . Все шаги последовательны, значит, функции выполняются независимо, нет необходимости в информации о работе на предыдущем уровне. Единственная необходимая составляющая - способ получения данных с предшествующего шага, и каким образом пересылается информация на последующий шаг.

Перейдём к непосредственному знакомству с уровнями.

Физический уровень

Главная задача первого этапа - пересылка битов через физические каналы связи. Физические каналы связи - устройства, созданные для передачи и приёма информационных сигналов. К примеру, оптоволокно, коаксиальный кабель или витая пара. Пересылка может проходить и через беспроводную связь. Первый этап характеризуется средой передачи данных: защитой от помех, полосой пропускания, волновым сопротивлением. Так же задаются качества электрических конечных сигналов (вид кодирования, уровни напряжения и скорость передачи сигнала) и подводятся к стандартным типам разъёмов, назначаются контактные соединения.

Функции физического этапа осуществляются абсолютно на каждом устройстве, подключённом к сети. Например, сетевой адаптер реализовывает эти функции со стороны компьютера. Вы могли уже столкнуться с протоколами первого шага: RS -232, DSL и 10Base-T, определяющими физические характеристики канала связи.

Канальный уровень

На втором этапе связываются абстрактный адрес устройства с физическим устройством, проверяется доступность среды передачи. Биты сформировываются в наборы - кадры. Основная задача канального уровня - выявление и правка ошибок. Для корректной пересылки перед и после кадра вставляются специализированные последовательности битов и добавляется высчитанная контрольная сумма . Когда кадр достигает адресата, вновь высчитывается контрольная сумма, уже прибывших данных, если она совпадает с контрольной суммой в кадре, кадр признаётся правильным. В ином случае появляется ошибка, исправляемая через повторную передачу информации.

Канальный этап делает возможным передачу информации, благодаря специальной структуре связей. В частности, через протоколы канального уровня работают шины, мосты, коммутаторы. В спецификации второго шага входят: Ethernet, Token Ring и PPP. Функции канального этапа в компьютере исполняют сетевые адаптеры и драйверы к ним.

Сетевой уровень

В стандартных ситуациях функций канального этапа не хватает для высококачественной передачи информации. Спецификации второго шага могут передавать данные лишь между узлами с одинаковой топологией, к примеру, дерева. Появляется необходимость в третьем этапе. Нужно образовать объединённую транспортную систему с разветвлённой структурой для нескольких сетей, обладающих произвольной структурой и различающихся методом пересылки данных.

Если объяснить по-другому, то третий шаг обрабатывает интернет-протокол и исполняет функцию маршрутизатора: поиск наилучшего пути для информации. Маршрутизатор - устройство, собирающее данные о структуре межсетевых соединений и передающее пакеты в сеть назначения (транзитные передачи - хопы). Если вы сталкиваетесь с ошибкой в IP-адресе, то это проблема, возникшая на сетевом уровне. Протоколы третьего этапа разбиваются на сетевые, маршрутизации или разрешения адресов: ICMP, IPSec, ARP и BGP.

Транспортный уровень

Чтобы данные дошли до приложений и верхних уровней стека, необходим четвёртый этап. Он предоставляет нужную степень надёжности передачи информации. Значатся пять классов услуг транспортного этапа. Их отличие заключается в срочности, осуществимости восстановления прерванной связи, способности обнаружить и исправить ошибки передачи. К примеру, потеря или дублирование пакетов.

Как выбрать класс услуг транспортного этапа? Когда качество каналов транспортировки связи высокое, адекватным выбором окажется облегчённый сервис. Если каналы связи в самом начале работают небезопасно, целесообразно прибегнуть к развитому сервису, который обеспечит максимальные возможности для поиска и решения проблем (контроль поставки данных, тайм-ауты доставки). Спецификации четвёртого этапа: TCP и UDP стека TCP/IP, SPX стека Novell.

Объединение первых четырёх уровней называется транспортной подсистемой. Она сполна предоставляет выбранный уровень качества.

Сеансовый уровень

Пятый этап помогает в регулировании диалогов. Нельзя, чтобы собеседники прерывали друг друга или говорили синхронно. Сеансовый уровень запоминает активную сторону в конкретный момент и синхронизирует информацию, согласуя и поддерживая соединения между устройствами. Его функции позволяют возвратиться к контрольной точке во время длинной пересылки и не начинать всё заново. Также на пятом этапе можно прекратить соединение, когда завершается обмен информацией. Спецификации сеансового уровня: NetBIOS.

Представительский уровень

Шестой этап участвует в трансформации данных в универсальный распознаваемый формат без изменения содержания. Так как в разных устройствах утилизируются различные форматы, информация, обработанная на представительском уровне, даёт возможность системам понимать друг друга, преодолевая синтаксические и кодовые различия. Кроме того, на шестом этапе появляется возможность шифровки и дешифровки данных, что обеспечивает секретность. Примеры протоколов: ASCII и MIDI, SSL.

Прикладной уровень

Седьмой этап в нашем списке и первый, если программа отправляет данные через сеть. Состоит из наборов спецификаций, через которые юзер , Web-страницам. Например, при отправке сообщений по почте именно на прикладном уровне выбирается удобный протокол. Состав спецификаций седьмого этапа очень разнообразен. К примеру, SMTP и HTTP, FTP, TFTP или SMB.

Вы можете услышать где-нибудь о восьмом уровне модели ISO. Официально, его не существует, но среди работников IT-сферы появился шуточный восьмой этап. Всё из-за того, что проблемы могут возникнуть по вине пользователя, а как известно, человек находится у вершины эволюции, вот и появился восьмой уровень.

Рассмотрев модель OSI, вы смогли разобраться со сложной структурой работы сети и теперь понимаете суть вашей работы. Всё становится довольно просто, когда процесс разбивается на части!

Модель OSI — это базовая эталонная модель взаимодействия открытых систем. Она представляет собой систему, состоящую из семи уровней, на каждом из которых задействованы определенные сетевые протоколы, обеспечивающие передачу данных на всех ступенях взаимодействия.

Общие сведения

Для того чтобы облегчить понимание и проще ориентироваться в различных направлениях работы с сетевыми протоколами, была создана принятая за эталон модульная система, благодаря чему стало гораздо проще локализовать проблему, зная, на каком из участков сети она располагается.

На каждом из уровней модели OSI ведется работа с определенными наборами протоколов (стеками). Они четко локализуются в рамках каждого уровня, не выходя за его границы, при этом будучи связанными в четкую и удобную для восприятия систему.

Итак, сколько уровней в сетевой модели OSI и какие они?

  1. Физический.
  2. Канальный.
  3. Сетевой.
  4. Транспортный.
  5. Сеансовый.
  6. Представительский.
  7. Прикладной.

Чем сложнее структура сетевого устройства, тем большее количество возможностей оно открывает, при этом работает одновременно на большем количестве уровней модели. Это влияет в том числе и на быстродействие устройств: чем больше уровней задействовано, тем медленнее происходит работа.

Взаимодействие уровней происходит при помощи интерфейсов между двумя соседними уровнями и через протоколы в рамках одного уровня.

Физический уровень

Первый уровень сетевой модели OSI - среда передачи данных. На нем происходит передача данных как таковая. За единицу нагрузки принимается бит. Происходит передача сигнала по кабелю или беспроводным сетям и соответствующее кодирование в информацию, выраженную посредством битов.

Протоколы, которые здесь задействованы: провод (витая пара, оптика, телефонный кабель и другие), среды беспроводной передачи данных (к примеру, Bluetooth или Wi-Fi) и так далее.

Также на этом уровне работают медиаконвертеры, репитеры сигнала, концентраторы, а также все механические и физические интерфейсы, при помощи которых осуществляют взаимодействие системы.

Канальный уровень

Здесь передача информации происходит в виде блоков данных, которые называются кадрами или фреймами, канальный уровень сетевой модели OSI осуществляет их создание и передачу. Взаимодействует, соответственно, с физическим и сетевым уровнями OSI.

Подразделяется на два подуровня:

  1. LLC — управляет логическим каналом.
  2. MAC — работа с доступом непосредственно к физической среде.

Для облегчения понимания разберем следующий пример.

В компьютере или ноутбуке существует сетевой адаптер. Чтобы он мог корректно работать, используется программное обеспечение, драйвера, относящиеся к верхнему подуровню — через них ведется взаимодействие с процессором, находящимся на нижнем подуровне.

Протоколы используются следующие: PPP (связность двух ПК прямым образом), FDDI (передача данных на расстояние менее двухсот километров), CDP (собственный протокол компании Cisco, используемый для обнаружения и получения информации о соседних сетевых устройствах).

Сетевой уровень

Это уровень модели OSI, отвечающий за маршруты, по которым идет передача данных. Устройства, которые работают на этой ступени, называются маршрутизаторами. Данные на этом уровне передаются пакетами. На канальном уровне устройство определялось при помощи физического адреса (MAC), а на сетевом начинают фигурировать IP-адреса — логический адрес какого-либо устройства сети, интерфейса.

Рассмотрим функции сетевого уровня модели OSI.

Основная задача данной ступени — это обеспечение передачи данных между оконечными устройствами.

Для этого обеспечивается назначение уникального адреса для всех этих устройств, инкапсуляция (снабжение данных соответствующим заголовком или метками, посредством чего и создается основная единица нагрузки — пакет).

Как только пакет достигает точки назначения, происходит процесс декапсуляции — конечный узел исследует полученные данные, чтобы убедиться, что пакет доставлен туда, куда требовалось, и передается на следующий уровень.

Рассмотрим список протоколов сетевого уровня модели OSI. Это упомянутый раньше IP, который входит в стек TCP/IP, ICMP (отвечает за передачу управляющих и сервисных данных), IGMP (групповая передача данных, мультикаст), BGP (осуществление динамической маршрутизации) и многие другие.

Транспортный уровень

Протоколы этого уровня служат для того, чтобы обеспечить надежность передачи сведений от отправляющего устройства до принимающего, отвечают непосредственно за доставку информации.

Основная задача транспортного уровня — чтобы пакеты данных были отправлены и получены без ошибок, отсутствовали потери, соблюдалась последовательность передачи.

Этот уровень работает с целыми блоками данных.

К примеру, требуется передать некий файл по электронной почте. Для того чтобы до получателя дошла корректная информация, требуется соблюдение точной структуры и последовательности передачи данных, ведь если будет утерян хотя бы один бит при загрузке файла, его невозможно будет открыть.

Можно выделить два основных протокола, которые работают на этом уровне: TCP и UDP.

UDP отправляет данные, не запрашивая от оконечного устройства ответ о доставке, и не повторяет отправку в случае неудачи. TCP же, наоборот, устанавливает соединение и требует ответа о доставке данных, если информация не доходит, повторяет отправление.

Сеансовый уровень

Он же сессионный. На этом уровне сетевой модели OSI происходит установка и поддержка сеансов связи между двумя оконечными устройствами. Этот уровень, как и все последующие, работает непосредственно с данными.

Для примера вспомним, как проводятся видеоконференции. Для того чтобы сеанс связи прошел успешно, необходимы соответствующие кодеки, которыми шифруется сигнал, с обязательным требованием наличия их на обоих устройствах. Если на одном из устройств кодек отсутствует или поврежден, связь не будет установлена.

Помимо этого, на сеансовом уровне могут использоваться такие протоколы, как L2TP (туннельный протокол для поддержки пользовательских виртуальных сетей), PAP (отправляет на сервер данные авторизации пользователей без шифрования и подтверждает их подлинность) и другие.

Представительский уровень

Отвечает за отображение данных в необходимом формате. Реализуется видоизменение информации (к примеру, кодирование), для того чтобы поток данных был успешно переведен на транспортный уровень.

В качестве примера можно перевести пересылку изображения по электронной почте. В результате работы протокола SMTP изображение преобразуется в удобный для восприятия на нижних уровнях формат, а для пользователя выводится в привычном формате JPEG.

Протоколы данного уровня: стандарты изображений (GIF, BMP, PNG, JPG), кодировки (ASCII и др.), видео- и аудиозаписи (MPEG, MP3) и т. д.

Прикладной уровень

Прикладной уровень, или уровень приложений, — самый верхний уровень модели OSI. Он отличается самым большим разнообразием протоколов и выполняемых ими функций.

Здесь нет необходимости отвечать за построение маршрутов или гарантию доставки данных. Каждый протокол выполняет свою конкретную задачу. В качестве примеров протоколов, действующих на данном уровне, можно привести HTTP (отвечает за передачу гипертекста, то есть в конечном итоге позволяет пользователям открывать в браузере веб-страницы), FTP (сетевая передача данных), SMTP (отправка электронной почты) и другие.

Стеки протоколов

Как уже рассматривалось выше, существует большое количество сетевых протоколов, выполняющих самые разнообразные задачи. Как правило, большинство из них работают в связках, выполняя свои функции слаженно, одновременно друг с другом реализуя собственный функционал.

Такие связки называются стеками протоколов.

Опираясь на сетевую модель OSI, стеки протоколов условно делят на три группы:

  • Прикладные (соответствуют данному уровню OSI и отвечают непосредственно за обмен данными между различными уровнями модели).
  • Сетевые (отвечают за обеспечение и поддержку связи между оконечными сетевыми устройствами, гарантируют надежность соединения).
  • Транспортные (их основная задача — построение маршрута передачи информации, проверка возникающих во время маршрутизации ошибок и направление запросов на повторную передачу данных).

Стеки можно настраивать, опираясь на поставленные задачи и необходимый функционал сети, регулировать количество протоколов и прикреплять протоколы к серверным сетевым интерфейсам. Это позволяет выполнять гибкую настройку сети.

Заключение

В этой статье мы изложили базовую информацию для ознакомления с сетевой моделью OSI. Это те основы, которые просто необходимо знать каждому, кто работает в сфере IT, для понимания того, как устроена система передачи данных.

В этой статье на уровне сетевой модели OSI для "чайников" мы постарались простым языком объяснить, как передача данных реализуется, а главное — как устроена система взаимодействия сетевого оборудования на различных уровнях.

О каждом из протоколов можно рассказать очень и очень много. Хочется надеяться, что эта статья вызовет интерес к дальнейшему ознакомлению с этой интересной темой.




Top