Пропускная способность сигнала. Пропускная способность канала. Измерение пропускной способности

Илья Назаров
Системный инженер компании "ИНТЕЛКОМ лайн"

После оценки требуемой пропускной способности на каждом из участков IP-сети необходимо определиться с выбором технологий сетевого и канального уровней OSI. В соответствии с выбранными технологиями определяются наиболее подходящие модели сетевого оборудования. Этот вопрос также непростой, поскольку пропускная способность напрямую зависит от производительности оборудования, а производительность, в свою очередь, – от программно-аппаратной архитектуры. Рассмотрим подробнее критерии и методы оценки пропускной способности каналов и оборудования в IP-сетях.

Критерии оценки пропускной способности

Со времени возникновения теории телетрафика было разработано множество методов расчета пропускных способностей каналов. Однако в отличие от методов расчета, применяемых к сетям с коммутацией каналов, расчет требуемой пропускной способности в пакетных сетях довольно сложен и вряд ли позволит получить точные результаты. В первую очередь это связано с огромным количеством факторов (в особенности присущих современным мультисервисным сетям), которые довольно сложно предугадать. В IP-сетях общая инфраструктура, как правило, используется множеством приложений, каждое из которых может использовать собственную, отличную от других модель трафика. Причем в рамках одного сеанса трафик, передаваемый в прямом направлении, может отличаться от трафика, проходящего в обратном направлении. Вдобавок к этому расчеты осложняются тем, что скорость трафика между отдельно взятыми узлами сети может изменяться. Поэтому в большинстве случаев при построении сетей оценка пропускной способности фактически обусловлена общими рекомендациями производителей, статистическими исследованиями и опытом других организаций.

Стань участником Партнерской программы «Актив-СБ» и вы получите:

Рассрочку платежа на складские позиции (при условии предоставления полного пакета документов);

Размещение компании в разделе "Монтаж", при закупке оборудования ежемесячно на сумму более 100 000 руб;

Кэшбэк по Бонусной программе в размере до 5% от суммы покупок

Чтобы более или менее точно определить, какая пропускная способность требуется для проектируемой сети, необходимо в первую очередь знать, какие приложения будут использоваться. Далее для каждого приложения следует проанализировать, каким образом будет происходить передача данных в течение выбранных промежутков времени, какие протоколы для этого применяются.

Для простого примера рассмотрим приложения небольшой корпоративной сети.

Пример расчета пропускной способности

Предположим, в сети расположены 300 рабочих компьютеров и столько же IP-телефонов. Планируется использовать такие сервисы: электронная почта, IP-телефония, видеонаблюдение (рис. 1). Для видеонаблюдения применяются 20 камер, с которых видеопотоки передаются на сервер. Попытаемся оценить, какая максимальная пропускная способность потребуется для всех сервисов на каналах между коммутаторами ядра сети и на стыках с каждым из серверов.


Следует сразу отметить, что все расчеты нужно проводить для времени наибольшей сетевой активности пользователей (в теории телетрафика – ЧНН, часы наибольшей нагрузки), поскольку обычно в такие периоды работоспособность сети наиболее важна и возникающие задержки и отказы в работе приложений, связанные с нехваткой пропускной способности, неприемлемы. В организациях наибольшая нагрузка на сеть может возникать, например, в конце отчетного периода или в сезонный наплыв клиентов, когда совершается наибольшее количество телефонных вызовов и отправляется большая часть почтовых сообщений.

Электронная почта
Возвращаясь к нашему примеру, рассмотрим сервис электронной почты. В нем используются протоколы, работающие поверх TCP, то есть скорость передачи данных постоянно корректируется, стремясь занять всю доступную пропускную способность. Таким образом, будем отталкиваться от максимального значения задержки отправки сообщения – предположим, 1 секунды будет достаточно, чтобы пользователю было комфортно. Далее нужно оценить средний объем отправляемого сообщения. Предположим, что в пиках активности почтовые сообщения часто будут содержать различные вложения (копии счетов, отчеты и т.д.), поэтому для нашего примера средний размер сообщения возьмем 500 кбайт. И наконец, последний параметр, который нам необходимо выбрать, – максимальное число сотрудников, которые одновременно отправляют сообщения. Предположим, во время авралов половина сотрудников одновременно нажмут кнопку "Отправить" в почтовом клиенте. Тогда требуемая максимальная пропускная способность для трафика электронной почты составит (500 кбайт х 150 хостов)/1 с = 75 000 кбайт/с или 600 Мбит/с. Отсюда сразу можно сделать вывод, что для соединения почтового сервера с сетью необходимо использовать канал Gigabit Ethernet. В ядре сети это значение будет одним из слагаемых, составляющих общую требуемую пропускную способность.

Телефония и видеонаблюдение
Другие приложения – телефония и видеонаблюдение – в своей структуре передачи потоков схожи: оба вида трафика передаются с использованием протокола UDP и имеют более или менее фиксированную скорость передачи. Главные отличия в том, что у телефонии потоки являются двунаправленными и ограничены временем вызова, у видеонаблюдения потоки передаются в одном направлении и, как правило, являются непрерывными.

Чтобы оценить требуемую пропускную способность для трафика телефонии, предположим, что в пики активности количество одновременных соединений, проходящих через шлюз, может достигать 100. При использовании кодека G.711 в сетях Ethernet скорость одного потока с учетом заголовков и служебных пакетов составляет примерно 100 кбит/с. Таким образом, в периоды наибольшей активности пользователей требуемая пропускная способность в ядре сети составит 10 Мбит/с.

Трафик видеонаблюдения рассчитывается довольно просто и точно. Допустим, в нашем случае видеокамеры передают потоки по 4 Мбит/с каждая. Требуемая пропускная способность будет равна сумме скоростей всех видеопотоков: 4 Мбит/с х 20 камер = 80 Мбит/с.

Витоге осталось сложить полученные пиковые значения для каждого из сетевых сервисов: 600 + 10 + 80 = 690 Мбит/с. Это и будет требуемая пропускная способность в ядре сети. При проектировании следует также предусмотреть и возможность масштабирования, чтобы каналы связи могли как можно дольше обслуживать трафик разрастающейся сети. В нашем примере будет достаточно использования Gigabit Ethernet, чтобы удовлетворить требованиям сервисов и одновременно иметь возможность беспрепятственно развивать сеть, подключая большее количество узлов

Конечно же, приведенный пример является далеко не эталонным – каждый случай нужно рассматривать отдельно. В реальности топология сети может быть гораздо сложнее (рис. 2), и оценку пропускной способности необходимо производить для каждого из участков сети.


Нужно учитывать, что VoIP-трафик (IP-телефония) распространяется не только от телефонов к серверу, но и между телефонами напрямую. Кроме того, в разных отделах организации сетевая активность может различаться: служба техподдержки совершает больше телефонных вызовов, отдел проектов активнее других пользуется электронной почтой, инженерный отдел больше других потребляет интернет-трафик и т.д. В результате некоторые участки сети могут требовать большей пропускной способности по сравнению с остальными.

Полезная и полная пропускная способность

В нашем примере при расчете скорости потока IP-телефонии мы учитывали используемый кодек и размеры заголовка пакета. Это немаловажная деталь, которую нужно иметь в виду. В зависимости от способа кодирования (используемые кодеки), объема данных, передаваемых в каждом пакете, и применяемых протоколов канального уровня формируется полная пропускная способность потока. Именно полная пропускная способность должна учитываться при оценке требуемой пропускной способности сети. Это наиболее актуально для IP-телефонии и других приложений, использующих передачу низкоскоростных потоков в реальном времени, в которых размер заголовков пакета составляет существенную часть от размера пакета целиком. Для наглядности сравним два потока VoIP (см. таблицу). Эти потоки используют одинаковое сжатие, но разные размеры полезной нагрузки (собственно, цифровой аудиопоток) и разные протоколы канального уровня.


Скорость передачи данных в чистом виде, без учета заголовков сетевых протоколов (в нашем случае – цифрового аудиопотока), есть полезная пропускная способность. Как видно из таблицы, при одинаковой полезной пропускной способности потоков их полная пропускная способность может сильно различаться. Таким образом, при расчете требуемой пропускной способности сети для телефонных вызовов в пиковые нагрузки, особенно у операторов связи, выбор канальных протоколов и параметров потоков играет значительную роль.

Выбор оборудования

Выбор протоколов канального уровня обычно не составляет проблемы (сегодня чаще стоит вопрос, какая пропускная способность должна быть у канала Ethernet), но вот выбор подходящего оборудования даже у опытного инженера может вызвать затруднения.

Развитие сетевых технологий одновременно с растущими потребностями приложений в пропускной способности сетей вынуждает производителей сетевого оборудования разрабатывать все новые программно-аппаратные архитектуры. Часто у отдельно взятого производителя встречаются на первый взгляд схожие модели оборудования, но предназначенные для решения разных сетевых задач. Взять, к примеру, коммутаторы Ethernet: у большинства производителей наряду с обычными коммутаторами, используемыми на предприятиях, есть коммутаторы для построения сетей хранения данных, для организации операторских сервисов и т.д. Модели одной ценовой категории различаются своей архитектурой, "заточенной" под определенные задачи.

Кроме общей производительности, выбор оборудования также должен быть обусловлен поддерживаемыми технологиями. В зависимости от типа оборудования определенный набор функций и виды трафика могут обрабатываться на аппаратном уровне, не используя ресурсы центрального процессора и памяти. При этом трафик других приложений будет обрабатываться на программном уровне, что сильно снижает общую производительность и, как следствие, максимальную пропускную способность. Например, многоуровневые коммутаторы, благодаря сложной аппаратной архитектуре, способны осуществлять передачу IP-пакетов без снижения производительности при максимальной загрузке всех портов. При этом если мы захотим использовать более сложную инкапсуляцию (GRE, MPLS), то такие коммутаторы (по крайней мере недорогие модели) вряд ли нам подойдут, поскольку их архитектура не поддерживает соответствующие протоколы, и в лучшем случае такая инкапсуляция будет происходить за счет центрального процессора малой производительности. Поэтому для решения подобных задач можно рассматривать, например, маршрутизаторы, у которых архитектура основана на высокопроизводительном центральном процессоре и в большей степени зависит от программной, нежели аппаратной реализации. В этом случае в ущерб максимальной пропускной способности мы получаем огромный набор поддерживаемых протоколов и технологий, которые не поддерживаются коммутаторами той же ценовой категории.

Общая производительность оборудования

В документации к своему оборудованию производители часто указывают два значения максимальной пропускной способности: одно выражается в пакетах в секунду, другое – в битах в секунду. Это связано с тем, что большая часть производительности сетевого оборудования расходуется, как правило, на обработку заголовков пакетов. Грубо говоря, оборудование должно принять пакет, найти для него подходящий путь коммутации, сформировать новый заголовок (если нужно) и передать дальше. Очевидно, что в этом случае играет роль не объем данных, передаваемых в единицу времени, а количество пакетов.

Если сравнить два потока, передаваемых с одинаковой скоростью, но с разным размером пакетов, то на передачу потока с меньшим размером пакетов потребуется больше производительности. Данный факт следует учитывать, если в сети предполагается использовать, например, большое количество потоков IP-телефонии – максимальная пропускная способность в битах в секунду здесь будет гораздо меньше заявленной.

Понятно, что при смешанном трафике, да еще и с учетом дополнительных сервисов (NAT, VPN), как это бывает в подавляющем большинстве случаев, очень сложно рассчитать нагрузку на ресурсы оборудования. Часто производители оборудования или их партнеры проводят нагрузочное тестирование разных моделей при разных условиях и результаты публикуют в Интернете в виде сравнительных таблиц. Ознакомление с этими результатами сильно упрощает задачу выбора подходящей модели.

Подводные камни модульного оборудования

Если выбранное сетевое оборудование является модульным, то, кроме гибкой конфигурации и масштабируемости, обещанной производителем, можно получить и множество "подводных камней".

При выборе модулей следует тщательно ознакомиться с их описанием или проконсультироваться у производителя. Недостаточно руководствоваться только типом интерфейсов и их количеством – нужно также ознакомиться и с архитектурой самого модуля. Для похожих модулей нередка ситуация, когда при передаче трафика одни способны обрабатывать пакеты автономно, а другие просто пересылают пакеты центральному процессорному модулю для дальнейшей обработки (соответственно для одинаковых внешне модулей цена на них может различаться в несколько раз). В первом случае общая производительность оборудования и, как следствие, его максимальная пропускная способность оказываются выше, чем во втором, поскольку часть своей работы центральный процессор перекладывает на процессоры модулей.

Кроме этого, модульное оборудование часто обладает блокируемой архитектурой (когда максимальная пропускная способность ниже суммарной скорости всех портов). Это связано с ограниченной пропускной способностью внутренней шины, через которую модули осуществляют обмен трафиком между собой. Например, если модульный коммутатор имеет внутреннюю шину с пропускной способностью 20 Гбит/с, то для его линейной платы с 48 портами Gigabit Ethernet при полной загрузке можно использовать только 20 портов. Подобные детали нужно также иметь в виду и при выборе оборудования внимательно читать документацию.

При проектировании IP-сетей пропускная способность является ключевым параметром, от которого будет зависеть архитектура сети в целом. Для более точной оценки пропускной способности, можно руководствоваться следующим рекомендациям:

  1. Изучайте приложения, которые планируется использовать в сети, применяемые ими технологии и объемы передаваемого трафика. Пользуйтесь советами разработчиков и опытом коллег, чтобы учесть все нюансы работы этих приложений при построении сетей.
  2. Детально изучайте сетевые протоколы и технологии, которые используются этими приложениями.
  3. Внимательно читайте документацию при выборе оборудования. Чтобы иметь некоторый запас готовых решений, ознакомьтесь с продуктовыми линейками разных производителей.

В результате при правильном выборе технологий и оборудования можно быть уверенным, что сеть в полной мере удовлетворит требованиям всех приложений и, будучи достаточно гибкой и масштабируемой, прослужит долгое время.

Пропускная способность

Пропускная способность - метрическая характеристика, показывающая соотношение предельного количества проходящих единиц (информации , предметов, объёма) в единицу времени через канал, систему, узел.

Используется в различных сферах:

  • в связи и информатике П. С. - предельно достижимое количество проходящей информации;
  • в транспорте П. С. - количество единиц транспорта;
  • в машиностроении - объем проходящего воздуха (масла, смазки).

Может измеряться в различных, иногда сугубо специализированных, единицах - штуки, бит/сек , тонны , кубические метры и т. д.

В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной или полученной информации за единицу времени.
Пропускная способность - один из важнейших с точки зрения пользователей факторов. Она оценивается количеством данных, которые сеть в пределе может передать за единицу времени от одного подсоединенного к ней устройства к другому.

Пропускная способность канала

Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала есть скорость передачи информации при использовании «наилучших» (оптимальных) для данного канала источника, кодера и декодера, поэтому она характеризует только канал.

Пропускная способность дискретного (цифрового) канала без помех

C = log(m) бит/символ

где m - основание кода сигнала, используемого в канале. Скорость передачи информации в дискретном канале без шумов (идеальном канале) равна его пропускной способности, когда символы в канале независимы, а все m символов алфавита равновероятны (используются одинаково часто).

Пропускная способность нейронной сети

Пропускная способность нейронной сети - среднее арифметическое между объемами обрабатываемой и создаваемой информации нейронной сетью за единицу времени.

См. также

  • Список пропускных способностей интерфейсов передачи данных

Wikimedia Foundation . 2010 .

Смотреть что такое "Пропускная способность" в других словарях:

    Пропускная способность - расход воды через водосливную арматуру при незатопленной воронке выпуска. Источник: ГОСТ 23289 94: Арматура санитарно техническая водосливная. Технические условия оригинал док … Словарь-справочник терминов нормативно-технической документации

    Общее количество нефтепродуктов, которые могут быть перекачены по трубопроводу (через терминал) в единицу времени. Емкость хранения резервуара (резервуарного парка) общее количество нефтепродуктов, которые могут быть помещены на хранение в… … Финансовый словарь

    пропускная способность - Весовой расход рабочей среды через клапан. [ГОСТ Р 12.2.085 2002] пропускная способность КV Расход жидкости (м3/ч), с плотностью, равной 1000 кг/м3, пропускаемой регулирующим органом при перепаде давления на нем в 1 кгс/см2 Примечание. Текущее… … Справочник технического переводчика

    Максимальное количество информации, которая может быть обработана в единицу времени, измеряемая в бит/с … Психологический словарь

    Производительность, мощность, отдача, емкость Словарь русских синонимов … Словарь синонимов

    Пропускная способность - — см. Механизм обслуживания … Экономико-математический словарь

    пропускная способность - Категория. Эргономическая характеристика. Специфика. Максимальное количество информации, которая может быть обработана в единицу времени, измеряемая в бит/с. Психологический словарь. И.М. Кондаков. 2000 … Большая психологическая энциклопедия

    пропускная способность - Максимальное количество транспортных средств, которое может проехать на данном участке дороги за конкретное время … Словарь по географии

    ПРОПУСКНАЯ СПОСОБНОСТЬ - (1) дороги наибольшее количество единиц наземного транспорта (млн. пар поездов), которое данная дорога может пропустить за единицу времени (час, сутки); (2) П. с. канала связи максимальная скорость безошибочной передачи (см.) по данному каналу… … Большая политехническая энциклопедия

    ПРОПУСКНАЯ СПОСОБНОСТЬ - наивысшая скорость передачи данных аппаратуры, с которой информация поступает в запоминающее устройство без потерь при сохранении скорости выборки и аналого цифрового преобразования. для приборов с архитектурой на параллельной шине пропускная… … Словарь понятий и терминов, сформулированных в нормативных документах российского законодательства


В любой системе связи через канал передается информация. Скорость передачи информации была определена в § 2.9. Эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Попытаемся найти способ оценки способности канала передавать информацию. Рассмотрим вначале дискретный канал, через который передаются в единицу времени символов из алфавита объемом При передаче каждого символа в среднем по каналу проходит следующее количество информации [см. (2.135) и (2.140)]:

где случайные символы на входе и выходе канала. Из четырех фигурирующих здесь энтропий -собственная информация передаваемого символа - определяется источником дискретного сигнала и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

Представим себе, что на вход канала можно подавать символы от разных источников, характеризуемых различными распределениями вероятностей (но, конечно, при тех же значениях . Для каждого такого источника количество информации, переданной по каналу, принимает свое значение. Максимальное количество переданной информации, взятое по всевозможным

источникам входного сигнала, характеризует сам канал и называется пропускной способностью канала. В расчете на один символ

где максимизация производится по всем многомерным распределениям вероятностей Можно также определить пропускную способность С канала в расчете на единицу времени (секунду):

Последнее равенство следует из аддитивности энтропии. В дальнейшем везде, где это особо не оговорено, будем под пропускной способностью понимать пропускную способность в расчете на секунду.

В качестве примера вычислим пропускную способность симметричного канала без памяти, для которого переходные вероятности заданы формулой (3.36). Согласно (3.52) и (3.53)

Величина в данном случае легко вычисляется, поскольку условная переходная вероятность принимает только два значения: , если еслн Первое из этих значений возникает с вероятностью а второе с вероятностью К тому же, поскольку рассматривается канал без памяти, результаты приема отдельных символов независимы друг от друга. Поэтому

Следовательно, не зависит от распределения вероятности В, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

Подставив (3.56) в (3.55), получим

Поскольку в правой части только член зависит от распределения вероятностей то максимизировать необходимо его. Максимальное значение согласно (2.123) равно и реализуется оно тогда, когда все принятые символы равновероятны и независимы друг от друга. Легко убедиться, что это условие удовлетворяется, еслн входные символы равновероятны и независимы, поскольку

При этом и

Отсюда пропускная способность в расчете на секунду

Для двоичного симметричного канала пропускная способность в двоичных единицах в секунду

Зависимость от согласно (3.59) показана на рис. 3.9.

При пропускная способность двоичного канала поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить, совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т. е. при последовательности на выходе и входе канала независимы. Случай называют обрывом канала. То, что пропускная способность при в двоичном канале такая же, как при (канал без шумов), объясняется тем, что при достаточно все выходные символы инвертировать (т. е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

Рис. 3.9. Зависимость пропускной способности двоичного симметричного канала без памяти от вероятности ошибочного приема символа

Пропускная способность непрерывного канала вычисляется аналогично. Пусть, например, канал имеет ограниченную полосу пропускания шириной Тогда сигналы на входе и выходе канала по теореме Котельникова определяются своими отсчетами, взятыми через интервал и поэтому информация, проходящая по каналу за некоторое время равна сумме количеств информации, переданных за каждый такой отсчет. Пропускная способность канала на один такой отсчет

Здесь случайные величины - сечения процессов на входе и выходе канала и максимум берется по всем допустимым входным сигналам, т. е. по всем распределениям .

Пропускная способность С определяется как сумма значений Сотсч» взятая по всем отсчетам за секунду. При этом, разумеется, дифференциальные энтропии в (3.60) должны вычисляться с учетом вероятностных связей между отсчетами.

Вычислим, например, пропускную способность непрерывного канала без памяти с аддитивным белым гауссовским шумом, имеющим полосу пропускания шириной если средняя мощность сигнала (дисперсия не превышает заданной величины Мощность (дисперсию) шума в полосе обозначим Отсчеты входного и выходного сигналов, а также шума связаны равенством

н так как имеет нормальное распределение с нулевым математическим ожиданием, то и условная плотность вероятности при фиксированном и будет также нормальной - с математическим ожиданием и и дисперсией Найдем пропускную способность на один отсчет:

Согласно (2.152) дифференциальная энтропия нормального распределения не зависит от математического ожидания и равна Поэтому для нахождения нужно найти такую плотность распределения при которой максимизируется Из (3.61), учитывая, что независимые случайные величины, имеем

Таким образом, дисперсия фиксирована, так как заданы. Согласно (2.153), при фиксированной дисперсии максимальная дифференциальная энтропия обеспечивается нормальным распределением. Из (3.61) видно, что при нормальном одномерном распределении распределение будет также нормальным и, следовательно,

Переходя к пропускной способности С в расчете на секунду, заметим, что информация, переданная за несколько отсчетов, максимальна в том случае, когда отсчеты сигналов независимы. Этого можно достичь, если сигнал выбрать так, чтобы его спектральная плотность была равномерной в полосе Как было показано в отсчеты, разделенные интервалами, кратными взаимно некоррелированны, а для гауссовских величин некоррелированность означает независимость.

Поэтому пропускную способность С (за секунду) можно найти, сложив пропускные способности (3.63) для независимых отсчетов:

Она реализуется, если гауссовский процесс с равномерной спектральной плотностью в полосе частот (квазибелый шум).

Из формулы (3.64) видно, что если бы мощность сигнала не была ограничена, то пропускная способность была бы бесконечной. Пропускная способность равна нулю, если отношение сигнал/шум в канале равно нулю. С ростом этого отношения пропускная способность увеличивается неограниченно, однако медленно, вследствие логарифмической зависимости.

Соотношение (3.64) часто называют формулой Шеннона. Эта формула имеет важное значение в теории информации, так как определяет зависимость пропускной способности рассматриваемого непрерывного канала от таких его технических характеристик, как ширина полосы пропускания и отношение сигна/шум. Формула Шеннона указывает на возможность обмена полосы пропускания на мощность сигнала и наоборот. Однако поскольку С зависит от линейно, а от по логарифмическому закону, компенсировать возможное сокращение полосы пропускания увеличением мощности сигнала, как правило, нецелесообразно. Более эффективным является обратный обмен мощности сигнала на полосу пропускания.

Пропускная способность выступает универсальной характеристикой, описывающей максимальное количество единиц объектов, проходящих канал, узел, сечение. Характеристика широко используется связистами, транспортниками, гидравликами, оптиками, акустиками, машиностроением. Каждый даёт собственное определение. Обычно подводят черту, применяя единицы времени, явно увязывая физический смысл на скорость прохождения процесса. Канал связи передаёт информацию. Поэтому характеристикой пропускной способности выступает битрейт (бит/с, бод).

Единица измерения

Стандартный бит/с чаще дополняют приставками:

  1. Кило: кбит/с = 1000 бит/с.
  2. Мега: Мбит/с = 1000000 бит/с.
  3. Гига: Гбит/с = 1 млрд. бит/с.
  4. Тера: Тбит/с = 1 трлн. бит/с.
  5. Пета: Пбит/с = 1 квадриллион бит/с.

Реже применяются размерности байтов (1Б = 8 бит). Величина обычно касается физического слоя иерархии OSI. Часть ёмкости канала отбирают условности протокола: заголовки, стартовые биты… Бодами принято измерять модулированную скорость, показывающую число символов в единицу времени. Для двоичной системы (0, 1) оба понятия эквиваленты. Кодирование уровней, например, псевдо-шумовыми последовательностями изменяет расстановку сил. Бодов становится меньше при том же битрейте, разницу определяет база наложенного сигнала. Теоретически достижимая верхняя граница модулированной скорости связана с шириной спектра канала законом Найквиста:

бод ≤ 2 x ширина (Гц).

Практически порог достигается одновременным выполнением двух условий:

  • Однополосная модуляция.
  • Линейное (физическое) кодирование.

Коммерческие каналы демонстрируют пропускную способность вдвое ниже. Реальная сеть передаёт также фреймовые биты, избыточную информацию исправления ошибок. Последнее касается вдвойне беспроводных протоколов, сверхскоростных медных линий. Заголовки каждого последующего уровня OSI последовательно снижают реальную пропускную способность канала.

Отдельно эксперты оговаривают пиковые значения – числа полученные с применением идеальных условий. Реальная скорость соединения устанавливается специализированным оборудованием, реже программным обеспечением. Онлайн-измерители показывают зачастую нереальные значения, описывающие состояние одной-единственной ветки мировой паутины. Путаницы добавляет отсутствие стандартизации. Иногда битрейт подразумевает физическую скорость, реже – сетевую (вычитающую объем служебной информации). Величины соотносятся следующим образом:

сетевая скорость = физическая скорость х кодовая скорость.

Последняя величина учитывает наличие возможности корректировать ошибки, всегда меньше единицы. Сетевая скорость однозначно ниже физической. Пример:

  1. Сетевая скорость протокола IEEE 802.11a составляет 6..54 Мбит/с. Чистый битрейт – 12..72 Мбит/с.
  2. Реальная скорость передачи 100Base-TX Ethernet равна 125 Мбит/с, благодаря принятой системе кодирования 4B5B. Однако применяемая методика линейной модуляции NRZI позволяет указать символьную скорость 125 Мбод.
  3. Ethernet 10Base-T лишён кода коррекции ошибок, сетевая скорость равна физической (10 Мбит/с). Однако применяемый манчестерский код обусловливает присвоение итоговой символьной – значения 20 Мбод.
  4. Общеизвестна асимметрия скорости восходящего (48 кбит/с), нисходящего (56 кбит/с) каналов голосового модема V.92. Аналогично работают сети многих поколений сотовой связи.

Ёмкость канала получила имя Шеннона – теоретический верхний предел сетевого битрейта в отсутствии ошибок.

Теория повышения пропускной способности

Теорию информацию развивал Клод Шеннон, наблюдая ужасы Второй мировой войны, ввёл понятие ёмкости канала, разработал математические модели. Имитация связной линии включает три блока:

  1. Передатчик.
  2. Зашумлённый канал (наличие источника помех).
  3. Приёмник.

Переданная, принятая информация представлены условными функциями распределения. Ёмкостную модель Шеннона описывают графами. Пример Википедии даёт обзор среды, характеризующейся пятью дискретными уровнями полезного сигнала. Шум выбирают из интервала (-1..+1). Тогда пропускная способность канала равна сумме полезного сигнала, помех по модулю 5. Полученное значение часто оказывается дробным. Поэтому сложно определить размер изначально переданной информации (округлять в верхнюю или нижнюю сторону).

Величины, отстоящие дальше (например, 1; 3), невозможно перепутать. Каждый набор, сформированный тремя и более различимыми сообщениями, дополнен одним нечётким. Хотя номинальная ёмкость канала позволяет передать одновременно 5 значений, эффективной оказывается пара, позволяющая кодировать послания, избегая ошибок. Чтобы увеличить объем, используют комбинации: 11, 23, 54, 42. Кодовое расстояние последовательностей всегда больше двух. Поэтому помехи бессильны помешать правильному распознаванию комбинации. Становится возможным мультиплексирование, повышающее значительно пропускную способность канала связи.

Пять дискретных значений тоже объединяют равносторонним графом. Концы рёбер указывают пары значений, которые приёмник может перепутать, благодаря наличию шума. Тогда число комбинаций представлено независимым множеством составленного графа. Графически набор собран комбинациями, исключающими присутствие обеих точек одного ребра. Модель Шеннона для пятиуровневого сигнала составлена исключительно парами значений (см. выше). Внимание, вопрос!

  • Какое отношение сложные теоретические выкладки имеют к обсуждаемой теме ёмкости канала?

Самое непосредственное. Первая цифровая система передачи кодированной информации Зелёный шмель (Вторая мировая война) применяла 6-уровневый сигнал. Теоретические выкладки учёных снабдили союзников надёжной зашифрованной связью, позволив провести свыше 3000 конференций. Вычислительная сложность графов Шеннона остаётся неизвестной. Значение пытались получить окольными путями, продолжая ряды по мере усложнения случая. Число Ловаса считаем красочным примером сказанного.

Битрейт

Пропускная способность реального канала вычисляется согласно теории. Строится модель шума, например, аддитивная Гауссова, получают выражение теоремы Шеннона-Хартли:

С = В log2 (1 + S/N),

В – полоса пропускания (Гц); S/N – отношение сигнал/шум. Логарифм по основанию 2 позволяет посчитать битрейт (бит/с). Величины сигнала, шума записываются квадратами вольта, либо ваттами. Подстановка децибелов даёт неправильный результат. Формула пиринговых беспроводных сетей немного отличается. Берут спектральную плотность шума, помноженную на ширину полосы пропускания. Выведены отдельные выражения каналов с быстрыми и медленными замираниями.

Мультимедийные файлы

Применительно к развлекательным приложениям битрейт показывает количество информации, сохраняемой, воспроизводимой ежесекундно:

  1. Частота сэмплирования данных различна.
  2. Выборки разного размера (бит).
  3. Иногда проводится шифрование.
  4. Специализированные алгоритмы сжимают информацию.

Выбирается золотая середина, способствующая минимизации битрейта, обеспечивающая приемлемое качество. Иногда сжатие необратимо искажает исходный материал помехами компрессии. Часто скорость показывает число битов в единице воспроизводимого времени аудио, видео (отображается плеером). Иногда величину вычисляют делением размера файла на общую длительность. Поскольку размерность задана байтами, вводят множитель 8. Часто мультимедийный битрейт скачет. Скоростью энтропии называют минимальную, обеспечивающую полное сохранение исходного материала.

Компакт-диски

Стандарт audio CD предписывает передавать поток частотой выборки 44,1 кГц (глубина 16 бит). Типичная музыка формата стерео составлена двумя каналами (левая, правая колонка). Битрейт удваивается к моно. Пропускаемая способность канала кодово-импульсной модуляции определена выражением:

  • битрейт = частота выборки х глубина х число каналов.

Стандарт audio CD даёт итоговую цифру 1,4112 Мбит/с. Нехитрый подсчёт показывает: 80 минут записи занимают 847 МБ без учёта заголовков. Большим размером файла определяется потребность содержимое сжимать. Приведём цифры формата MP3:

  • 32 кбит/с – приемлемо для членораздельной речи.
  • 96 кбит/с – низкокачественная запись.
  • .160 кбит/с – слабый уровень.
  • 192 кбит/с – нечто среднее.
  • 256 кбит/с – типичное значение большинства треков.
  • 320 кбит/с – качество премиум.

Эффект налицо. Снижение скорости с одновременным ростом качества воспроизведения. Простейшие телефонные кодеки занимают 8 кбит/с, Opus – 6 кбит/с. Видео более требовательное. 10-битный несжатый поток Full HD (24 кадра) занимает 1,4 Гбит/с. Становится понятной необходимость провайдерам постоянно превосходить ранее установленные рекорды. Элементарный семейный воскресный просмотр измеряется общими впечатлениями зрителей. Близким сложно объяснить, что такое погрешность оцифровывания изображения.

Реальные каналы строят, обеспечивая солидный запас. Аналогичными причинами обусловлен прогресс стандартов цифровых носителей. Dolby Digital (1994) предусматривал однозначно потерю информации. Первый показ Бэтмен возвращается (1992) проигрывали с 35-мм плёнки, несущей сжатый звук (320 кбит в секунду). Кадры видео переносил CCD сканер, попутно оборудование распаковывало звуковое сопровождение. Оснащённый системой 5.1 Digital Surround зал требовал дальнейшей цифровой обработки потока.

Реальные системы чаще образованы набором каналов. Сегодня былой шик вытесняется Dolby Surround 7.1, растёт популярность Atmos. Одинаковые технологи могут реализоваться практически самобытно. Приведём примеры восьмиканального (7.1) звукового сопровождения:

  • Dolby Digital Plus (3/1,7 Мбит/с).
  • Dolby TrueHD (18 Мбит/с).

Заданная пропускная способность различна.

Примеры пропускной способности каналов

Рассмотрим эволюцию технологий цифровой передачи информации.

Модемы

  1. Акустическая пара (1972) – 300 бод.
  2. Модем Вадик&Белл 212А (1977) – 1200 бод.
  3. Канал ISDN (1986) – 2 канала 64 кбит/с (итоговая скорость – 144 кбит/с).
  4. 32bis (1990) – до 19,2 кбит/с.
  5. 34 (1994) – 28,8 кбит/с.
  6. 90 (1995) – 56 кбит/с нисходящий поток, 33,6 кбит/с – восходящий.
  7. 92 (1999) – 56/48 кбит/с нисходящий/восходящий потоки.
  8. ADSL (1998) – до 10 Мбит/с.
  9. ADSL2 (2003) – до 12 Мбит/с.
  10. ADSL2+ (2005) – до 26 Мбит/с.
  11. VDSL2 (2005) – 200 Мбит/с.
  12. fast (2014) – 1 Гбит/с.

Локальная сеть Ethernet

  1. Экспериментальная версия (1975) – 2,94 Мбит/с.
  2. 10BASES (1981, коаксиальный кабель) – 10 Мбит/с.
  3. 10BASE-T (1990, витая пара) – 10 Мбит/с.
  4. Fast Ethernet (1995) – 100 Мбит/с.
  5. Gigabit Ethernet (1999) – 1 Гбит/с.
  6. 10 Gigabit Ethernet (2003) – 10 Гбит/с.
  7. 100 Gigabit Ethernet (2010) – 100 Гбит/с.

Wi-Fi

  1. IEEE 802.11 (1997) – 2 Мбит/с.
  2. IEEE 802.11b (1999) – 11 Мбит/с.
  3. IEEE 802.11a (1999) – 54 Мбит/с.
  4. IEEE 802.11g (2003) – 54 Мбит/с.
  5. IEEE 802.11n (2007) – 600 Мбит/с.
  6. IEEE 802.11ac (2012) – 1000 Мбит/с.

Сотовая связь

  1. Первое поколение:
    1. NMT (1981) – 1,2 кбит/с.
  2. 2G:
    1. GSM CSD, D-AMPS (1991) – 14,4 кбит/с.
    2. EDGE (2003) – 296/118,4 кбит/с.
  3. 3G:
    1. UMTS-FDD (2001) – 384 кбит/с.
    2. UMTS HSDPA (2007) – 14,4 Мбит/с.
    3. UMTS HSPA (2008) – 14,4/5,76 Мбит/с.
    4. HSPA+ (2009) – 28/22 Мбит/с.
    5. CDMA2000 EV-DO Rev. B (2010) – 14,7 Мбит/с.
    6. HSPA+ MIMO (2011) – 42 Мбит/с.
  4. 3G+:
    1. IEEE 802.16e (2007) – 144/35 Мбит/с.
    2. LTE (2009) – 100/50 Мбит/с.
  5. 4G:
    1. LTE-A (2012) – 115 Мбит/с.
    2. WiMAX 2 (2011-2013, IEEE 802.16m) – 1 Гбит/с (максимум, обеспечиваемый неподвижными объектами).

Япония сегодня внедряет пятое поколение мобильной связи, увеличивая возможности передачи цифровых пакетов.

Существует множество факторов, способных исказить или повредить сигнал. Наиболее распространенные из них – помехи или шумы, представляющие собой любой нежелательный сигнал, который смешивается с сигналом, предназначенным для передачи или приема, и искажает его. Для цифровых данных возникает вопрос: насколько эти искажения ограничивают возможную скорость передачи данных. Максимально возможная при определенных условиях скорость, при которой информация может передаваться по конкретному тракту связи, или каналу, называется пропускной способностью канала.

Существуют четыре понятия, которые мы попытаемся связать воедино.

    Скорость передачи данных – скорость в битах в се к у нду (бит / с), с которой мо г у т

передаваться данны е;

    Ширина полосы – ширина полосы передаваемого сигнал а, ограничиваемая передатчи к ом и природой передающей среды. Выраж а ется в периодах в се к унд у, или герцах (Гц).

    Ш ум. Средний у рове н ь ш у м а в канале связи.

    Уровень ошибок – частота появления ош и бок. Ошибкой счита е тся прием 1 п р и переданном 0 и наоборот.

Проблема, заключается в следующем: средства связи недешевы и, в общем случае, чем шире их полоса, тем дороже они стоят. Более того, все каналы передачи, представляющие практический интерес, имеют ограниченную ширину полосы. Ограничения обусловлены физическими свойствами передающей среды или преднамеренными ограничениями ширины полосы в самом передатчике, сделанными для предотвращения интерференции с другими источниками.

Естественно, нам хотелось бы максимально эффективно использовать имеющуюся полосу. Для цифровых данных это означает, что для определенной полосы желательно получить максимально возможную при существующем уровне ошибок скорость передачи данных. Главным ограничением при достижении такой эффективности являются помехи.

      1. Методы доступа к среде в беспроводных сетях

Одна из основных проблем построения беспроводных систем – это решение задачи доступа многих пользователей к ограниченному ресурсу среды передачи. Существует несколько базовых методов доступа (их еще называют методами уплотнения или мультиплексирования), основанных на разделении между станциями таких параметров, как пространство, время, частота и код. Задача уплотнения – выделить каждому каналу связи пространство, время, частоту и/или код с минимумом взаимных помех и максимальным использованием характеристик передающей среды.

Уплотнение с пространственным разделением

Основано на разделении сигналов в пространстве, когда передатчик посылает сигнал, используя код с , время t и частоту f в области s i . To есть каждое беспроводное устройство может вести передачу данных только в границах одной определенной территории, на которой любому другому устройству запрещено передавать свои сообщения.

К примеру, если радиостанция вещает на строго определенной частоте на закрепленной за ней территории, а какая-либо другая станция в этой же местности также начнет вещать на той же частоте, то слушатели радиопередач не смогут получить «чистый» сигнал ни от одной из этих станций. Другое дело, если радиостанции работают на одной частоте в разных городах. Искажений сигналов каждой радиостанции не будет в связи с ограниченной дальностью распространения сигналов этих станций, что исключает их наложение друг на друга. Характерный пример – системы сотовой телефонной связи.

Уплотнение с частотным разде л ением (Frequency Division Multiplexing, FDM)

Каждое устройство работает на строго определенной частоте, благодаря чему несколько устройств могут вести передачу данных на одной территории (рисунок 3.2.6). Это один из наиболее известных методов, так или иначе используемый в самых современных системах беспроводной связи.

Рисунок 3.2.6 – Принцип частотного разделения каналов

Наглядная иллюстрация схемы частотного уплотнения - функционирование в одном городе нескольких радиостанций, работающих на разных частотах. Для надежной отстройки друг от друга их рабочие частоты должны быть разделены защитным частотным интервалом, позволяющим исключить взаимные помехи.

Эта схема, хотя и позволяет использовать множество устройств на определенной территории, сама по себе приводит к неоправданному расточительству обычно скудных частотных ресурсов, поскольку требует выделения отдельной частоты для каждого беспроводного устройства.

Уплотнение с временным разд е лением (Time Division Multiplexing, TDM)

В данной схеме распределение каналов идет по времени, т. е. каждый передатчик транслирует сигнал на одной и той же частоте f в области s , но в различные промежутки времени t i (как правило, циклически повторяющиеся) при строгих требованиях к синхронизации процесса передачи (рисунок 3.2.7).

Рисунок 3.2.7 – Принцип временного разделения каналов

Подобная схема достаточно удобна, так как временные интервалы могут динамично перераспределяться между устройствами сети. Устройствам с большим трафиком назначаются более длительные интервалы, чем устройствам с меньшим объемом трафика.

Основной недостаток систем с временным уплотнением – это мгновенная потеря информации при срыве синхронизации в канале, например, из-за сильных помех, случайных или преднамеренных. Однако успешный опыт эксплуатации таких знаменитых TDM-систем, как сотовые телефонные сети стандарта GSM, свидетельствует о достаточной надежности механизма временного уплотнения.

Уплотнение с кодовым разделением (Code Division Multiplexing, CDM)

В данной схеме все передатчики передают сигналы на одной и той же частоте f , в области s и во время t , но с разными кодами c i .

Именем основанного на CDM механизма разделения каналов (CDMA, CDM Access)

даже назван стандарт сотовой телефонной связи IS-95a, а также ряд стандартов третьего поколения сотовых систем связи (cdma2000, WCDMA и др.).

В схеме CDM каждый передатчик заменяет каждый бит исходного потока данных на CDM-символ - кодовую последовательность длиной в 11, 16, 32, 64 и т.п. бит (их называют чипами). Кодовая последовательность уникальна для каждого передатчика. Как правило, если для замены «1» в исходном потоке данных используют некий CDM-код, то для замены «0» применяют тот же код, но инвертированный.

Приемник знает CDM-код передатчика, сигналы которого должен воспринимать. Он постоянно принимает все сигналы, оцифровывает их. Затем в специальном устройстве (корреляторе) производит операцию свертки (умножения с накоплением) входного оцифрованного сигнал с известным ему CDM-кодом и его инверсией. В несколько упрощенном виде это выглядит как операция скалярного произведения вектора входного сигнала и вектора с CDM-кодом.

Если сигнал на выходе коррелятора превышает некий установленный пороговый уровень, приемник считает, что принял 1 или 0. Для увеличения вероятности приема передатчик может повторять посылку каждого бита несколько раз. При этом сигналы других передатчиков с другими CDM-кодами приемник воспринимает как аддитивный шум.

Более того, благодаря большой избыточности (каждый бит заменяется десятками чипов), мощность принимаемого сигнала может быть сопоставима с интегральной мощностью шума. Похожести CDM-сигналов на случайный (гауссов) шум добиваются, используя CDM-коды, порожденные генератором псевдослучайных последовательностей. Поэтому данный метод еще называют методом расширения спектра сигнала посредством прямой последовательности (DSSS - Direct Sequence Spread Spectrum), о расширении спектра будет рассказано ниже.

Наиболее сильная сторона данного уплотнения заключается в повышенной защищенности и скрытности передачи данных: не зная кода, невозможно получить сигнал, а в ряде случаев - и обнаружить его присутствие. Кроме того, кодовое пространство несравненно более значительно по сравнению с частотной схемой уплотнения, что позволяет без особых проблем присваивать каждому передатчику свой индивидуальный код.

Основной же проблемой кодового уплотнения до недавнего времени являлась сложность технической реализации приемников и необходимость обеспечения точной синхронизации передатчика и приемника для гарантированного получения пакета.

Механизм мультиплексирования посредством ортогональных несущих частот (Orthogonal Frequency Div i sion Multiplexing , OFDM )

Весь доступный частотный диапазон разбивается на достаточно много поднесущих (от нескольких сот до тысяч). Одному каналу связи (приемнику и передатчику) назначают для передачи несколько таких несущих, выбранных из всего множества по определенному закону. Передача ведется одновременно по всем поднесущим, т. е. в каждом передатчике исходящий поток данных разбивается на N субпотоков, где N – число поднесущих, назначенных данному передатчику.

Распределение поднесущих в ходе работы может динамически изменяться, что делает данный механизм не менее гибким, чем метод временного уплотнения.

Схема OFDM имеет несколько преимуществ. Во-первых, селективному замиранию будут подвержены только некоторые подканалы, а не весь сигнал. Если поток данных защищен кодом прямого исправления ошибок, то с этим замиранием легко бороться. Но что более важно, OFDM позволяет подавить межсимвольную интерференцию. Межсимвольная интерференция оказывает значительное влияние при высоких скоростях передачи данных, так как расстояние между битами (или символами) является малым.

В схеме OFDM скорость передачи данных уменьшается в N раз, что позволяет увеличить время передачи символа в N раз. Таким образом, если время передачи символа для исходного потока составляет T s , то период сигнала OFDM будет равен NT s . Это позволяет существенно снизить влияние межсимвольных помех. При проектировании системы N выбирается таким образом, чтобы величина NT s значительно превышала среднеквадратичный разброс задержек канала.




Top