Переменные состояния системы. Определение переменной состояния. Контрольные вопросы и задачи

Факультет автоматики и электромеханики

Кафедра теоретической и общей электротехники

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

(Метод переменных состояния)

Методические указания к выполнению курсовой работы

Составил Башев А.А.

Ред. проф. Алтунин Б.Ю.

Н.Новгород, 2010

Метод переменных состояния.

В основу метода переменных состояния положена принципиальная возможность замены дифференциального уравнения n -го порядка электрической цепи n дифференциальными уравнениями первого порядка. В качестве переменных состояния принимают токи индуктивностей и напряжения на ёмкостях , которые однозначно определяют запас энергии цепи в любой момент времени. Систему уравнений состояния можно представить в виде матричного уравнения:

где: – столбцевая матрица (вектор) n переменных состояния;

– столбцевая матрица (вектор) n первых производных переменных состояния;

- квадратная матрица размером , элементы которой определяются коэффициентами дифференциального уравнения цепи;

V(t) – столбцовая матрица (вектор) m независимых воздействий;

B – матрица размером , элементы которой зависят от параметров цепи и её структуры;

– столбцовая матрица, элементы которой зависят от независимых воздействий, структуры и параметров цепи.

Формирование системы дифференциальных уравнений цепи основано на использовании дифференциальных уравнений для переменных состояния, согласно которым

Расчёт цепей методом переменных состояний можно разделить на два этапа:

1) На первом этапе составляют систему дифференциальных уравнений цепи ;

2) На втором этапе решают составленную систему дифференциальных уравнений ;

Решение системы дифференциальных уравнений, составленных методом переменных состояния, можно выполнить двумя способами: аналитическим и численным.

При аналитическом способе решение уравнений состояния записывают в виде суммы матриц принуждённой и свободной составляющих:

где: – соответствует реакции цепи от внешних воздействий при нулевых начальных условиях ;

– матрица (вектор) начальных значений переменных состояния, полученных при ;

– матричная экспоненциальная функция.

– соответствует реакции цепи, обусловленной ненулевыми начальными условиями ; при отсутствии внешних воздействий V=0 ;

Если в цепи после коммутации нет источников энергии, т.е. , то решение матричного уравнения имеет вид:

Если же после коммутации есть источники независимых воздействий, то матрица , и интегрирование матричного уравнения приводит к решению в виде:

которое состоит из суммы двух слагаемых – реакции цепи при ненулевых начальных условиях и реакции цепи при нулевых начальных условиях и наличии источников внешних воздействий

При численном способе решения уравнений состояния используют различные программы численного интегрирования на ЭВМ: метод Рунге-Кутта, метод Эйлера, метод трапеций и др. Так, например, в пакете программ MathCAD приведены программы численного решения дифференциальных уравнений модифицированном методом Эйлера и методом Рунге-Кутта. Поскольку погрешность решения методом Эйлера достигает нескольких процентов, то более предпочтительным является метод Рунге-Кутта, который при решении уравнений четвёртого порядка даёт погрешность , где – шаг приращения переменной. Этот метод обеспечивает контроль точности вычислений на каждом шаге интегрирования и программную регулировку шага.

В системе MatchCAD программа интегрирования уравнений по методу Рунге-Кутта имеет имя rkfixed . Обращение к ней производится через операцию присваивания какой-либо переменной (в дальнейшем z ) имени программы:

где: x – вектор переменных состояния, размер которого определяется вектором начальных значений и соответствует числу уравнений состояния;

0 и – начало и конец временного интервала интегрирования;

N – число точек на интервале интегрирования;

D – функция, которая описывает правую часть уравнений, разрешённых относительно первых производных.

Для линейных цепей функция D имеет вид линейного матричного преобразования , где A – квадратная матрица коэффициентов, которые определяются структурой цепи и параметрами элементов; F – вектор независимых переменных, элементы которого определяются входными воздействиями. Все элементы матриц A и F должны быть определенны перед обращением к программе rkfixed .

Матрица z имеет размер , где первый столбец (нулевой) соответсвует дискретным значениям времени . Остальные столбцы этой матрицы соответствуют значениям переменных состояния: , где индекс i изменяется от 1 до N .

Для контоля правильности задания исходных данных можно (но не обязательно) обратиться к программе определения собственных чисел матрицы A : eigenvals (A ). Эта программа выводит информацию о собственных числах, которые совпадают с корнями характеристического уравнения цепи. Необходимым, но недостаточным условием правильности ввода данных, является набор отрицательных собственных чисел (или комплексно-сопряжённых чисел с отрицательно вещественной частью).



Рассмотрим теперь некоторые способы составления дифференциальных уравнений цепи по методу переменных состояния. Для этих целей наиболее часто применяют два основных способа:

1) использование законов Кирхгофа;

2) использование метода наложения.

Рассмотрим применение этих способов на некоторых примерах.

Пример 1. Требуется составить уравнения состояния и решить их для одноконтурной цепи второго порядка при отключении источника напряжения Е. Схема цепи приведена на рисунке 1(а), а параметры её элементов имеют следующие значения: Е=40 В; r=40 Ом; L=1 Гн; С=500мкФ.

Решение. Посмотрим схему замещения цепи для произвольного момента времени t , которая приведена на рисунке 1(б). На этой схеме ёмкость С заменена источником постоянного напряжения , а индуктивность L – источником тока . Результирующая схема замещения содержит только сопротивление r , источник тока и источник напряжения .

Рисунок 1. Исходная (а ) и расчётная (б ) схемы цепи к примеру 1.

Для полученной схемы можно составить уравнения, пользуясь законами Кирхгофа:

Откуда находим:

,

Из этих уравнений получаем значение первых производных переменных состояния:

.

Пользуясь которыми, запишем матричное уравнение цепи:

,

При использовании программы rkfixed это уравнение записывают в виде:

,

Это матричное уравнение необходимо ещё дополнить матрицей начальных состояний цепи, которая включает напряжение на ёмкости и ток в индуктивности на момент коммутации (т.е. при t=0_ ):

,

используемой для начала процесса интегрирования дифференциальных уравнений цепи.

Перед обращением к программе интегрирования rkfixed определяем через операцию присваивания значения следующих величин:

1) коэффициентов матрицы А :

2) значений вектора начальных состояний переменных

3) число точек интегрирования ;

4) формализованную матричную запись уравнений состояния при условии, что F=0 ;

5) конечное значение временного интервала .

Необходимый временной интервал интегрирования можно оценить по собственным числам матрицы А путём обращения к программе eigenvals (А ). В рассматриваемом примере имеются два комплексно сопряжённых числа , вещественные части которых одинаковы и равны . Эта часть комплексного числа определяет коэффициент затухания и непосредственно связана с длительностью переходного процесса формулой . Для наглядности в рассматриваемом примере интервал интегрирования выбран в два раза больше .

Форма записи исходных данных для программы rkfixed и результаты расчёта приведены на рисунке 2. Поскольку переменные состояния и измеряются в разных единицах и могут значительно отличаться друг от друга, то при построении графиков необходимо указать масштабные коэффициенты. Так, например, для графика переменной использован масштабный коэффициент, равный 100. Чтобы получить действительное значение тока , следует разделить значения, отсчитываемые по оси ординат, на 100.

Из полученных графиков следует, что переходный процесс в цепи носит колебательных характер, а обе функции постепенно затухают до нулевого значения при увеличении времени t .

Рисунок 2. Результаты расчёта к примеру 1.

Пример 2 . Составить уравнения для переменных состояния и рассчитать их при замыкании ключа К в цепи второго порядка, изображённой на рисунке 3(а). Параметры элементов цепи имеют следующие значения: А; r 1 =r 2 =50 Ом; L=5 мГн; С=0,1 мкФ.

Решение. Переходный процесс в рассматриваемой цепи возникает в результате перераспределения энергии между индуктивностью L и ёмкостью C после подключения сопротивления r 1 . Используя первый закон Кирхгофа, определим ток в ёмкости С :

.

а) б)

Рисунок 3. Исходная (а ) и расчётная (б ) схемы к примеру 2.

Аналогично, используя второй закон Кирхгофа, найдём напряжение на индуктивности:

.

Объединим эти уравнения в систему для переменных состояния:

.

Полученную систему уравнений запишем в матричной форме:

.

После подстановки числовых значений параметров элементов получим уравнения состояния в виде:

Для определения вектора начальных значений найдём напряжение на ёмкости и ток в индуктивности до замыкания ключа К:

Таким образом, вектор начальных значений переменных состояния имеет вид:

.

Схемы замещения для расчёта значений переменных состояния приведена на рисунке 3(б). На этой схеме ёмкость заменена источником напряжения , а индуктивность – источником тока . Значения этих величин изменяются на каждом шаге интегрирования.

Решение уравнений состояния выполним по программе rkfixed, входящей в систему MathCAD. Для этого присвоим переменным состояния следующие значения: и запишем уравнения состояния в виде:

,

где значения коэффициентов можно взять из уравнений состояния, рассчитанных выше, и включить в программу констант или определить через операции присваивания в самой программе.

Форма задания исходных данных для расчёта по программе rkfixed приведена на рисунке 4. Значение N=5000 указано произвольно, так как оно влияет только на время выполнения расчёта и точность. Косвенно оценить точность расчёта можно, сравнив результаты интегрирования для двух значений N=N 1 и N 1 /2 . Если результаты расчета в этих точках совпадают, то точность вычислений и число точек интегрирования на интервале t k находится в приемлемых пределах.

Через операцию присваивания определяем также вектор начальных значений х и вектор независимых источников F . Временной интервал t k может быть указан произвольно или приближённо выбран с помощью анализа чисел матрицы А .

Для апериодического процесса, который существует в рассматриваемой цепи, следует выбрать наименьшее по модулю собственное число p min и воспользоваться формулой t k =3/p min . Из двух собственных чисел p 1 =-1.888E5 1/c; p 2 =-2.118E4 1/c меньшее значение имеет p 2 , поэтому t k =3/2,118Е4=1,42Е-4 с.

Выбор интервала t k можно также выполнить, анализируя постоянные времени цепей первого порядка, которые можно построить на основе исходной цепи путём последовательного исключения реактивных элементов. При этом из найденных постоянных времени следует выбрать ту, которая имеет максимальное значение, и, используя её, рассчитать

Графики временных зависимостей и приведены на рисунке 4. Для переменной использован масштабный коэффициент, равный 100. Из этих графиков видно, что напряжение на ёмкости изменяется от до уровня , а ток в индуктивности – от до .

Рисунок 4. Результаты расчёта к примеру 2.

Пример 3 . Составить уравнения для переменных состояния и выполнить расчёт переходного процесса в цепи третьего порядка, приведённой на рисунке 5(а) при замыкании ключа К. Параметры элементов цепи имеют следующие значения: Е=120 В; r 1 =r 3 =r 4 =1 Ом; r 2 =r 5 =2 Ом; L 1 =1 мГн; L 2 =2 мГн; С=10 мкФ.

а) б)

Рисунок 5. Исходная (а ) и расчётная (б ) схемы к примеру 3.

Решение. Переходный процесс в схеме обусловлен перераспределением энергии реактивными элементами цепи после коммутации ключа К . На рисунке 5(б) изображена схема замещения цепи, на которой реактивные элементы заменены источниками напряжения и тока. Положительные направления этих источников согласованы с исходной схемой. При расчёте схемы замещения определению подлежат напряжения на источниках тока , и ток в ёмкости , так как именно они определяют производные от переменных состояния. При расчёте этих величин воспользуемся принципом наложения , в соответствие с которым реакцию линейной цепи можно определить в виде суммы реакций от отдельных источников. Для этого рассмотрим четыре частные схемы, приведённые на рисунке 6, в каждой из которых действует только один из источников, входящих в схему, приведённую на рисунке 5(б).

А б в

Накопителем энергии - емкостью

Расчет переходных процессов в цепях с одним

Электромагнитные процессы при переходном процессе в таких цепях обусловлены запасом электрической энергии в емкости С и рассеиванием этой энергии в виде тепла на активных сопротивлениях цепи. При составлении дифференциального уравнения следует в качестве неизвестной функции выбрать напряжение u C на емкости. Следует отметить, что при расчете установившихся режимов, т. е. при определении начальных условий и принужденной составляющей, сопротивление емкости в цепях постоянного тока равно бесконечности.

Пример 6.2. Включение последовательной цепи R,C на постоянное напряжение.

Цепь (рис. 6.3, а ), состоящая из последовательно соединенных сопротивления R = 1000 Ом и емкости С = 200 мкФ, в некоторый момент времени подключается к постоянному напряжению U= 60 В. Требуется определить ток и напряжение емкости в переходном процессе и построить графики u C (t ), i (t ).

R i R i, A u, B

U C U C t = 0.02,c

0 t 2t 3t t , с

Решение. 1. Определяем начальные условия. Начальное условие u C (-0) = 0, так как цепь до коммутации была отключена (полагаем достаточно длительное время).

2. Изображаем электрическую цепь после коммутации (рис. 6.3, б ), указываем направления тока и напряжений и для нее составляем уравнение по второму закону Кирхгофа

или .

3. Преобразуем уравнение п.2 в дифференциальное. Для этого, подставив вместо тока i известное уравнение , получим:

4. Решение уравнения (искомое напряжение на емкости) ищем в виде:

.

5. Определяем . Так как в цепи постоянного тока в установившемся режиме сопротивление емкости равно бесконечности (при этом ), то все напряжение будет приложено к емкости. Поэтому

u C пр =U= 60 В.

6. Составляем однородное дифференциальное уравнение

решением которого будет функция

7. Составляем характеристическое уравнение RC l + 1= 0, корень которого равен

Постоянная времени

8. Запишем решение .

9. Согласно второму закону коммутации и начальным условиям

10. Определим постоянную интегрирования А путем подстановки t =0 в уравнение п.8

Напряжение на емкости в переходном процессе

11. Ток в цепи можно определить по уравнению

или по уравнению п. 2

Графики u C (t ) и i (t ) представлены на рис. 6.3, в .

Мгновенные значения токов и напряжения, определяющие энергетическое состояние электрической цепи, называются в данном методе переменными, а сам метод назван методом переменных состояния.

Этот метод основан на составлении системы дифференциальных уравнений и, как правило, численном их решении с помощью ЭВМ.



В качестве неизвестных здесь следует принимать переменные, которые не имеют разрывов, т.е. за время не должно быть скачкообразного изменения этих величин. Такими переменными, следовательно, должны быть ток i и потокосцепление в индуктивности, напряжение и заряд на емкости. В противном случае при численном решении производных в точках, где имеется разрыв, возникает бесконечно большая величина, что недопустимо.

Существуют различные численные методы расчета дифференциальных уравнений. Это методы Эйлера, Рунге-Кутта и другие, которые отличаются друг от друга точностью расчета, объемом и временем вычислений. При этом, чем больше точность вычислений, тем больше требуется времени для решения.

1. Определить начальные условия.

2. Составить систему дифференциальных уравнений.

3. Все переменные в уравнениях п.2 выразить через токи или потокосцепления в индуктивностях и напряжения или заряды на емкостях.

4. Все уравнения п.3 свести к нормальной форме Коши.

Множественная регрессия не является результатом преобразования уравнения:

-
;

-
.

Линеаризация подразумевает процедуру …

- приведения уравнения множественной регрессии к парной;

+ приведения нелинейного уравнения к линейному виду;

- приведения линейного уравнения к нелинейному виду;

- приведения нелинейного уравнения относительно параметров к уравнению, линейному относительно результата.

Остатки не изменяются;

Уменьшается количество наблюдений

В стандартизованном уравнении множественной регрессии переменными являются:

Исходные переменные;

Стандартизованные параметры;

Средние значения исходных переменных;

Стандартизованные переменные.

Одним из методов присвоения числовых значений фиктивным переменным является. . .

+– ранжирование;

Выравнивание числовых значений по возрастанию;

Выравнивание числовых значений по убыванию;

Нахождение среднего значения.

В матрице парных коэффициентов корреляции отображены значения парных коэффициентов линейной корреляции между. . . .

Переменными;

Параметрами;

Параметрами и переменными;

Переменными и случайными факторами.

Метод оценки параметров моделей с гетероскедастичными остатками называется ____________ методом наименьших квадратов:

Обычным;

Косвенным;

Обобщенным;

Минимальным.

Дано уравнение регрессии . Определите спецификацию модели.

Полиномиальное уравнение парной регрессии;

Линейное уравнение простой регрессии;

Полиномиальное уравнение множественной регрессии;

Линейное уравнение множественной регрессии.

В стандартизованном уравнении свободный член ….

Равен 1;

Равен коэффициенту множественной детерминации;

Равен коэффициенту множественной корреляции;

Отсутствует.

В качестве фиктивных переменных в модель множественной регрессии включаются факторы,

Имеющие вероятностные значения;

Имеющие количественные значения;

Не имеющие качественных значений;

Не имеющие количественных значений.

Факторы эконометрической модели являются коллинеарными, если коэффициент …

Корреляции между ними по модулю больше 0,7;

Детерминации между ними по модулю больше 0,7;

Детерминации между ними по модулю меньше 0,7;

Обобщенный метод наименьших квадратов отличается от обычного МНК тем, что при применении ОМНК …

Преобразуются исходные уровни переменных;

Остатки не изменяются;

Остатки приравниваются к нулю;

Уменьшается количество наблюдений.

Объем выборки определяется …

Числовыми значением переменных, отбираемых в выборку;

Объемом генеральной совокупности;

Числом параметров при независимых переменных;

Числом результативных переменных.

11. Множественная регрессия не является результатом преобразования уравнения:

+-
;

-
;

-
.

Исходные значения фиктивных переменных предполагают значения …

Качественные;

Количественно измеримые;

Одинаковые;

Значения.

Обобщенный метод наименьших квадратов подразумевает …

Преобразование переменных;

Переход от множественной регрессии к парной;

Линеаризацию уравнения регрессии;

Двухэтапное применение метода наименьших квадратов.

Линейное уравнение множественной регрессии имеет вид . Определите какой из факторовили:

+- , так как 3,7>2,5;

Оказывают одинаковое влияние;

- , так как 2,5>-3,7;

По этому уравнению нельзя ответить на поставленный вопрос, так как коэффициенты регрессии несравнимы между собой.

Включение фактора в модель целесообразно, если коэффициент регрессии при этом факторе является …

Нулевым;

Незначимым;

Существенным;

Несущественным.

Что преобразуется при применении обобщенного метода наименьших квадратов?

Стандартизованные коэффициенты регрессии;

Дисперсия результативного признака;

Исходные уровни переменных;

Дисперсия факторного признака.

Проводится исследование зависимости выработки работника предприятия от ряда факторов. Примером фиктивной переменной в данной модели будет являться ______ работника.

Возраст;

Уровень образования;

Заработная плата.

Переход от точечного оценивания к интервальному возможен, если оценки являются:

Эффективными и несостоятельными;

Неэффективными и состоятельными;

Эффективными и несмещенными;

Состоятельными и смещенными.

Матрица парных коэффициентов корреляции строится для выявления коллинеарных и мультиколлинеарных …

Параметров;

Случайных факторов;

Существенных факторов;

Результатов.

На основании преобразования переменных при помощи обобщенного метода наименьших квадратов получаем новое уравнение регрессии, которое представляет собой:

Взвешенную регрессию, в которой переменные взяты с весами
;

;

Нелинейную регрессию, в которой переменные взяты с весами
;

Взвешенную регрессию, в которой переменные взяты с весами .

Если расчетное значение критерия Фишера меньше табличного значения, то гипотеза о статистической незначимости уравнения …

Отвергается;

Незначима;

Принимается;

Несущественна.

Если факторы входят в модель как произведение, то модель называется:

Суммарной;

Производной;

Аддитивной;

Мультипликативной.

Уравнение регрессии, которое связывает результирующий признак с одним из факторов при зафиксированных на среднем уровне значении других переменных, называется:

Множественным;

Существенным;

Частным;

Несущественным.

Относительно количества факторов, включенных в уравнение регрессии, различают …

Линейную и нелинейную регрессии;

Непосредственную и косвенную регрессии;

Простую и множественную регрессию;

Множественную и многофакторную регрессию.

Требованием к уравнениям регрессии, параметры которых можно найти при помощи МНК является:

Равенство нулю значений факторного признака4

Нелинейность параметров;

Равенство нулю средних значений результативной переменной;

Линейность параметров.

Метод наименьших квадратов не применим для …

Линейных уравнений парной регрессии;

Полиномиальных уравнений множественной регрессии;

Уравнений, нелинейных по оцениваемым параметрам;

Линейных уравнений множественной регрессии.

При включении фиктивных переменных в модель им присваиваются …

Нулевые значения;

Числовые метки;

Одинаковые значения;

Качественные метки.

Если между экономическими показателями существует нелинейная связь, то …

Нецелесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию линейного уравнение парной регрессии;

Необходимо включить в модель другие факторы и использовать линейное уравнение множественной регрессии.

Результатом линеаризации полиномиальных уравнений является …

Нелинейные уравнения парной регрессии;

Линейные уравнения парной регрессии;

Нелинейные уравнения множественной регрессии;

Линейные уравнения множественной регрессии.

В стандартизованном уравнении множественной регрессии
0,3;
-2,1. Определите, какой из факторовилиоказывает более сильное влияние на:

+- , так как 2,1>0,3;

По этому уравнению нельзя ответить на поставленный вопрос, так как неизвестны значения «чистых» коэффициентов регрессии;

- , так как 0,3>-2,1;

По этому уравнению нельзя ответить на поставленный вопрос, так как стандартизированные коэффициенты несравнимы между собой.

Факторные переменные уравнения множественной регрессии, преобразованные из качественных в количественные называются …

Аномальными;

Множественными;

Парными;

Фиктивными.

Оценки параметров линейного уравнения множественной регрессии можно найти при помощи метода:

Средних квадратов;

Наибольших квадратов;

Нормальных квадратов;

Наименьших квадратов.

Основным требованием к факторам, включаемым в модель множественной регрессии, является:

Отсутствие взаимосвязи между результатом и фактором;

Отсутствие взаимосвязи между факторами;

Отсутствие линейной взаимосвязи между факторами;

Наличие тесной взаимосвязи между факторами.

Фиктивные переменные включаются в уравнение множественной регрессии для учета действия на результат признаков …

Качественного характера;

Количественного характера;

Несущественного характера;

Случайного характера.

Из пары коллинеарных факторов в эконометрическую модель включается тот фактор,

Который при достаточно тесной связи с результатом имеет наибольшую связь с другими факторами;

Который при отсутствии связи с результатом имеет максимальную связь с другими факторами;

Который при отсутствии связи с результатом имеет наименьшую связь с другими факторами;

Который при достаточно тесной связи с результатом имеет меньшую связь с другими факторами.

Гетероскедастичность подразумевает …

Постоянство дисперсии остатков независимо от значения фактора;

Зависимость математического ожидания остатков от значения фактора;

Зависимость дисперсии остатков от значения фактора;

Независимость математического ожидания остатков от значения фактора.

Величина остаточной дисперсии при включении существенного фактора в модель:

Не изменится;

Будет увеличиваться;

Будет равно нулю;

Будет уменьшаться.

Если спецификация модели отображает нелинейную форму зависимости между экономическими показателями, то нелинейно уравнение …

Регрессии;

Детерминации;

Корреляции;

Аппроксимации.

Исследуется зависимость, которая характеризуется линейным уравнением множественной регрессии. Для уравнения рассчитано значение тесноты связи результативной переменной с набором факторов. В качестве этого показателя был использован множественный коэффициент …

Корреляции;

Эластичности;

Регрессии;

Детерминации.

Строится модель зависимости спроса от ряда факторов. Фиктивной переменной в данном уравнении множественной регрессии не является _________потребителя.

Семейное положение;

Уровень образования;

Для существенного параметра расчетное значение критерия Стьюдента …

Больше табличного значения критерия;

Равно нулю;

Не больше табличного значения критерия Стьюдента;

Меньше табличного значения критерия.

Систему МНК, построенную для оценки параметров линейного уравнения множественной регрессии можно решить …

Методом скользящего среднего;

Методом определителей;

Методом первых разностей;

Симплекс-методом.

Показатель, характеризующий на сколько сигм изменится в среднем результат при изменении соответствующего фактора на одну сигму, при неизменном уровне других факторов, называется ____________коэффициентом регрессии

Стандартизованным;

Нормализованным;

Выровненным;

Центрированным.

Мультиколлинеарность факторов эконометрической модели подразумевает …

Наличие нелинейной зависимости между двумя факторами;

Наличие линейной зависимости между более чем двумя факторами;

Отсутствие зависимости между факторами;

Наличие линейной зависимости между двумя факторами.

Обобщенный метод наименьших квадратов не используется для моделей с _______ остатками.

Автокоррелированными и гетероскедастичными;

Гомоскедастичными;

Гетероскедастичными;

Автокоррелированными.

Методом присвоения числовых значений фиктивным переменным не является:

Ранжирование;

Присвоение цифровых меток;

Нахождения среднего значения;

Присвоение количественных значений.

Нормально распределенных остатков;

Гомоскедастичных остатков;

Автокорреляции остатков;

Автокорреляции результативного признака.

Отбор факторов в модель множественной регрессии при помощи метода включения основан на сравнении значений …

Общей дисперсии до и после включения фактора в модель;

Остаточной дисперсии до и после включения случайных факторов в модель;

Дисперсии до и после включения результата в модель;

Остаточной дисперсии до и после включения фактора модель.

Обобщенный метод наименьших квадратов используется для корректировки …

Параметров нелинейного уравнения регрессии;

Точности определения коэффициента множественной корреляции;

Автокорреляции между независимыми переменными;

Гетероскедастичности остатков в уравнении регрессии.

После применения обобщенного метода наименьших квадратов удается избежать_________ остатков

Гетероскедастичности;

Нормального распределения;

Равенства нулю суммы;

Случайного характера.

Фиктивные переменные включаются в уравнения ____________регрессии

Случайной;

Парной;

Косвенной;

Множественной.

Взаимодействие факторов эконометрической модели означает, что …

Влияние факторов на результирующий признак зависит от значений другого неколлинеарного им фактора;

Влияние факторов на результирующий признак усиливается, начиная с определенного уровня значений факторов;

Факторы дублируют влияние друг друга на результат;

Влияние одного из факторов на результирующий признак не зависит от значений другого фактора.

Тема Множественная регрессия (Задачи)

Уравнение регрессии, построенное по 15 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для

с вероятностью 0,99 равны:

Уравнение регрессии, построенное по 20 наблюдениям, имеет вид:

с вероятностью 0,9 равны:

Уравнение регрессии, построенное по 16 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для с вероятностью 0,99 равны:

Уравнение регрессии в стандартизированном виде имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

По 18 наблюдениям получены следующие данные:

;
;
;
;

равны:

По 17 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 22 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 25 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 24 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 28 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 26 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

В уравнении регрессии:

Восстановить пропущенные характеристики; построить доверительный интервал для с вероятностью 0,95, еслиn=12




Top