Внешнее механическое воздействие на клетку. Страховой случай механическое воздействие Механическое воздействие на телефон

Решила написать, как грамотно обращаться со страховой компанией.

По телефонам. Планшетам и технике. ПТП+

Давайте начистоту вы платите 5000 рублей, что бы получить 50 тысяч. Кто спокойно отдаст в руки эти деньги? Никто. Очень часто слышу от людей - "деньги взяли и ау". Вы правы.

Как действовать, когда у вас наступил страховой случай. Не важно от чего вы застрахованны, сначала достаньте ваш полис(договор страхование) и прочитайте его. Поверьте каких-то 15 минут, сохранят ваше время в дальнейшем и ваши нервы. Не получается разобраться, позвоните на горячую линию компании, лучше с другого телефона, не с которого потом будете обращаться, задайте вопросы специалисту, уточните список документов, как действует полис. Даже если вы вредный, злой и психуете - оператор до последнего конца будет вам объяснять, уточнять и пытаться вам объяснить.

Не нужно говорить правду или выдумывать сверхистории. Это скажется в дальнейшем. После консультации подумайте, как и что говорить. Очень часто встречаю родителей, которые вешают вину на своих чад. Телефон ребенок уронил, ребенка в школе толкнули, ребенок ел суп и пролил на него.

Поверьте эти подробности никому не интересны, а они могут потом сыграть не в вашу пользу.

Есть риск внешнее механическое воздействие - достаточно будет фразы уронил телефон и разбился. - Поверьте это будет выплата, а не разбирательство кто и где кого толкнул и почему вы не обратились в полицию, ведь было задействовано третье лицо.

"Внешнее механическое воздействие" - В данной компании свои правила, это означает, что дефект мешает работе устройства. Если это царапина, скол или разбита задняя панель телефона - то вы проходите мимо. Трещина должна задевать как экран, так и край экрана. Если устройство упало и разбился к примеру модель, который находится внутри устройства, а само устройство не повреждено, увы это не страховой случай.

Попадание жидкостью. - Уточните у специалиста вода должна от соседей залить ваше устройство или вы сами можете уронить его в воду. Конечно специалист скажет риск есть подавайте документы. И вы не выдумывайте потом от соседей. Попала вода - все. Уронил в воду, Пролил воду. Как говорится краткость сестра таланта.

Кража. Самое сложное. Так как здесь чаще встречается вытащили из кармана - что равняется, фразе вы потеряли телефон. Это не страховой случай. По причине, что он не доказуемый. И если вы пораскините мозгами, то поймете что тогда бы любой дурак пользовался этим трюком и получал деньги. Как же действовать в таком случае? Только через суд, это муторно, долго, но иногда страховые компании поверьте проигрывают и платят. И при чем очень часто.

Не выдумывайте дождь, грозу, машины. Это лишние документы. Не один сервисный центр не установит, что вы свой айфон разбили молотком, а разговоры страховая компания записывает.

Я не понимаю, что написано в моем полисе. - Звоните на горячую линию, консультируйтесь пока не поймете, что и как работает. А лучше из магазина, когда приобретаете страховку. Продавцы могут лить в уши, что угодно...что бы продать.

Особенности полисов. Частые ошибки.

Действовать полис может начать не с дня покупки, посмотрите это написано на самом договоре с какого числа он вступает в силу. Если вы обращаетесь раньше действия полиса, то понятно, что он еще не вступил в действие и вы не можете по нему обратиться. Никто не будет смотреть за вас, и не подскажет вам, думайте вы ведь хотите получить деньги. А бесплатный сыр бывает только в мышыловке.

И на заметку тем, кто кричит обман. Страховка эта паутина, все скидываются, что бы кто-то получил деньги. Поверьте, очень многие получили выплату.

Помните, вы живете в России, где царит бумажная иерархия. Не пугайтесь, когда вам озвучивают кипу бумаг, не меньше вы соберете в суд, когда вам придет отказ, потому что вы не думали, а требовали бесплатных денег.

Когда нибудь доберусь и до других продуктов. Полис не плох для того у кого дети и телефоны часто падают и разбиваются. От кражи он плох, как и другие от других компаний.

Основным документом запрашивают: Акт сервисного центра лицензированного - Нет в вашем городе такого, не отчаивайтесь. В любой компании принимают заявления в свободной форме, не поленитесь найдите ближайший за 200 км, напишите заявление в вашу компанию, грамотно, что не можете предоставить не по желанию, а потому что очень далеко. Или акт дорогой, а телефон стоит копейки. Попросите компанию помочь в вашем нелегком труде, так как вы не знаете как действовать. Попросите об одолжение принять решение без данного документа или разрешить вам обратиться в другой сервис который не лицензированный, но делает дешевле и в вашем городе.

Может кому-то мой отзыв поможет получить деньги. И пожалуйста, помните, никто сразу деньги не отдаст. От этого и сроки и вопросы и лишние документы. Удачи вам. И не разбивать ваши телефоны и не проливать на них супы

Расторжение любого договора.

Все знают, что вышел новый закон и Страховая компания, должна расторгнуть ваш договор и вернуть вам деньги. Но не все знают, как действует этот закон.

У вас есть 5 рабочих дней с момента заключения договора(кредит, коробка, и т.д)

Заключение договора - Вы приходите, покупаете что-то, вам оформляют договор. Все с этого дня отчитывается 5 рабочих дней, за эти 5 рабочих дней вы должны подать документы на расторжение. (Заполнить заявление, приложить договор, чек об оплате и ваши реквизиты). Если у вас есть в вашем городе филиал(уточняете у оператора) едите непосредственно в филиал. Если филиала нет, не отправляйте по электронной почте, отправляйте заказным письмом с уведомлением по почте России, для того, что бы у вас на руках остался документ об отправления ваших документов.

Расторжение коробок!

Привет дорогие друзья еще раз! На этот раз решила рассказать, как расторгнуть договор страхования, как вернуть свои деньги.

БЕЗ АКТИВАЦИИ

Сейчас очень часто продавцы ВТБ24 продают в комплект с кредитом, пару коробок. Которые являются добровольным страхованием, в отличие от страхования кредита, вы не обязаны их покупать и на кредит они не влияют. Данные коробки: Могу все, Могу все+, Жить, не тужить! Физкульт, привет, Привет, сосед!

Начнем с того, что вам все таки продали продукт, но вам хочется вернуть деньги.

НЕ АКТИВИРУЙТЕ ПРОДУКТ. Или попросите продавца если он настаивает на активации продукта, скажите что активируете его дома. В этот же день, либо до 30 дней календарных, позвоните в СК и попросите расторгнуть договор страхования, так как вы его не активировали. Тогда процедура займет меньше времени и деньги перечислят на счет.

От вас понадобиться:

Коробка с продуктом

Чек. (Если чек отсутствует, обращаетесь на точку продаж. Берете дубликат, слип, документ на котором будет написано "Продукт, его стоимость, дата покупки".

Банковские реквизиты, для перечисление вам денег.

ПАССИВНАЯ АКТИВАЦИЯ - ВСТУПАЕТ НА 31 ДЕНЬ С МОМЕНТА ПОКУПКИ(НЕ У ВСЕХ ПРОДУКТОВ)

Теперь рассмотрим другой вариант. Ваш полис АКТИВИРОВАЛСЯ САМОСТОЯТЕЛЬНО.

Тут два варианта исхода событий, либо полис действует на ваше имущество которое находится в собственности, либо на ваших детей, либо на вас самих.

Если собственность есть, дети тоже, да и вы сами тоже. Полис расторгнуть практически нереально. Даже суд будет гнуть свою линию, что условия прописаны на продукте. Здесь один вариант, писать претензию в страховую компанию, но не с просьбой расторжения договора, а с просьбой ответить на каких условиях расторжение данного договора невозможно, с просьбой уточнить пункт договора, где отказано в возврате денежных средств при расторжения договора и обращаться в суд. Да бы у вас были на руках документы, подтверждающие отказ СК возвращать вам деньги.

ЕСЛИ НЕТ ИМУЩЕСТВА, ДЕТЕЙ.

В суд. Так же обращаетесь по форме претензии в СК, как сказано выше.

Собираете коробки, чеки, паспорт, ответы от СК. В суде вы можете ссылаться на пункт "Иные обстоятельства". Это означает, что имущества у вас нет, а раз нет имущества или детей, то данный продукт не действителен. Суд вы выиграете 100%, ранее СК возвращала деньги, но потом передумала и стала отправлять людей в суд, ведь так меньше людей будет заниматься волокитой.

Судебные издержки потом оплатит СК, то есть от вас нужно время. Конечно все это ужасно злит, нервирует. Наберитесь терпения друзья мои, вы ведь хотите вернуть свои кровные. По себе скажу, что суд займет у вас от силы 2-3 дня, сбор документов и того меньше.

Претензия рассматривается 15-30 рабочих дней. Если нарушают сроки, опять претензию. Пишите, звонок в суде не будет играть большой роли, а ваши письменные обращения сыграют на руку.

Конечно некоторые скажут, что я из за 3000 тысяч должен еще этим заниматься?

Увы скандалом в данном случае деньги не вернуть, есть только эти варианты.

Как написать претензию!?

Заявление на А4 листе, на имя ВТБ Страхование. Указываете ваше Ф.И.О. адрес, контактные данные. Ваши жалобы, претензии, вопросы. Завершаете живой подписью и вашей Фамилией и числом. Фотографируете или сканируете, отправляете на тот адрес который скажет вам оператор. Вопрос оператору: На какой адрес, я могу направить письменную претензию. Как я могу уточнить состояние своей претензии?

На этом все! Позже дополню другими продуктами)

Надеюсь смогла вам помочь.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Физика твердого тела – один из столпов, на которых покоится современное технологическое общество. Физическое строение твердых тел. Симметрия и классификация кристаллов. Особенности деформации и напряжения. Дефекты кристаллов, способы повышения прочности.

    презентация , добавлен 12.02.2010

    Свойства твердых тел. Основные виды деформации. Основные допущения о свойствах материалов и характере деформирования. Геометрическая схематизация элементов строительных конструкций. Внешнее воздействие на тело. Классификация нагрузок. Крутящий момент.

    реферат , добавлен 28.01.2009

    Общие свойства твердого тела, его состояния. Локализированные и делокализированные состояния твердого тела, отличительные черты. Сущность, виды химической связи в твердых телах. Локальное и нелокальное описания в неискаженных решетках. Точечные дефекты.

    учебное пособие , добавлен 21.02.2009

    Общая характеристика и значение основных механических свойств твердых тел, направления их регулирования и воздействий: деформация, напряжение. Классификация и типы деформации: изгиба, кручения и сдвига. Пластическое течение кристаллов. Закон Гука.

    контрольная работа , добавлен 27.05.2013

    Деформация как изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга, ее причины и механизмы. Виды: растяжение, сжатие, кручение, изгиб и сдвиг. Основные факторы, влияющие на жесткость и прочность твердого тела.

    презентация , добавлен 26.01.2014

    Понятие и основные черты конденсированного состояния вещества, характерные процессы. Кристаллические и аморфные тела. Сущность и особенности анизотропии кристаллов. Отличительные черты поликристаллов и полимеров. Тепловые свойства и структура кристаллов.

    курс лекций , добавлен 21.02.2009

    Атомная подсистема твердого тела. Анизотропия и симметрия физических, физико-химических, механических свойств кристаллов. Модель идеального кристалла и независимых колебаний атомов в нем. Классическое приближение. Модель Эйнштейна. Энергия решетки.

    презентация , добавлен 22.10.2013

Избежать механических воздействий на электротехническое оборудование в современном мире практически невозможно, поэтому должна быть проведена оценка стойкости к влиянию внешних механических факторов. Существует несколько способов подобной проверки, о которых и рассказывают авторы материала.

ВНЕШНЕЕ МЕХАНИЧЕСКОЕ ВОЗДЕЙСТВИЕ
СПОСОБЫ ПОДТВЕРЖДЕНИЯ СТОЙКОСТИ ЭЛЕКТРООБОРУДОВАНИЯ

Валентин Шишенин,
д.т.н.,
Владимир Бакин,
к.т.н.,
Владимир Павлов,
инженер НИЦ 26 ЦНИИ МО РФ,
г. Санкт-Петербург

Научная разработка задач проверки факторов влияния удара и вибрации на различное оборудование была начата еще в 50–60-х годах прошлого века. Проведенные в этой области исследования позволили выявить группы оборудования, наиболее критичные к вибрационным и ударным нагрузкам.
Электротехническое оборудование относится к группе, наиболее чувствительной к вибрационным и ударным (далее – механическим) нагрузкам, т. к. оно имеет в структуре функциональных схем автоматические выключатели (переключатели), электромагнитные пускатели, реле и размыкатели различного типа, показывающие приборы контроля (амперметры, вольтметры и др.). Эти выводы подтверждаются и зарубежными исследованиями .
Механические воздействия на электротехническое оборудование во многом обусловлены динамическими явлениями, возникающими при вращении и возвратно-поступательном движении неуравновешенных элементов и деталей. В свою очередь механические колебания с малой амплитудой часто вызывают резонансные колебания других элементов конструкций. Дополнительным источником механических воздействий на электротехническое оборудование являются факторы техногенного характера, а также внешние природные факторы, в том числе землетрясения. Примеры последних лет подтверждают, что на земле сейчас нет мест, где землетрясения невозможны .
Еще большей потенциальной опасностью для окружающей среды и населения отличаются случаи нарушения нормальной работы и выход из строя от механических воздействий электротехнического оборудования, установленного на опасных производствах и атомных станциях. Поэтому к стойкости электротехнического оборудования на объектах повышенной опасности предъявляются более высокие требования.

Стандарты испытаний
В зависимости от области применения и места установки электротехнические изделия по ГОСТ 17.516.1-90 разделяются на группы механического исполнения. Исходя из этого к ним предъявляются требования по прочности, устойчивости и стойкости к механическим внешним воздействующим факторам различной степени жесткости.
Для аппаратуры, приборов, устройств и оборудования военного назначения требования по стойкости к внешним воздействующим факторам выдвигаются по ГОСТ РВ 20.39.304-98 . Испытания электротехнического оборудования на соответствие требованиям ГОСТ 17.516.1-90 в части стойкости к механическим внешним воздействующим факторам проводятся в соответствии с методами испытаний по ГОСТ 20.57.406-81 и по ГОСТ 16962.2-90 . Испытания электротехнического оборудования военного назначения на соответствие требованиям ГОСТ РВ 20.39.304-98 в части стойкости к механическим внешним воздействующим факторам проводятся в соответствии с методами испытаний по ГОСТ 20.57.305-98 .
В общем случае проверка соответствия электротехнического оборудования выдвигаемым требованиям может осуществляться экспериментальным, расчетным и расчетно-экспериментальным способами. У каждого из них есть свои особенности, достоинства и недостатки.

Экспериментальный способ
Наиболее полные и достоверные данные о прочности, устойчивости и стойкости оборудования к механическому воздействию внешних факторов можно получить только экспериментальным путем. Анализ результатов испытаний электротехнического оборудования на воздействие внешних механических факторов, проведенных за последние 10–20 лет в НИЦ 26 ЦНИИ, позволил установить наиболее характерные отказы и недостатки.
1. Поломки или разрушения узлов крепления, обусловленные:

  • срезом крепежных болтов и шпилек;
  • деформацией опорных узлов, выполненных из профильной или листовой стали;
  • появлением трещин и разрушением чугунных фундаментных рам у основания;
  • появлением трещин в сварных швах опорных узлов агрегатов.
2. Деформация или разрушение целостности корпуса из-за:
  • деформации каркаса, крышек и створок дверей оборудования стоечного и шкафного исполнения;
  • деформации опорных узлов стоек дверей, препятствующей их дальнейшей фиксации в закрытом положении;
  • разрушения и откола фланцевых выступов на чугунных крышках электродвигателей.
3. Деформация или поломка внутренних узлов и элементов в результате:
  • смещения выкатных тележек;
  • разрушения проходных и опорных изоляторов, гетинаксовых плат и текстолитовых корпусов;
  • выпадения дугогасительных камер, электроизмерительных приборов;
  • разрушения нити накала ламп в светотехническом оборудовании и аппаратуре;
  • разрушения подшипников.
4. Ложные срабатывания контактных элементов.

Самопроизвольное замыкание и размыкание контактных элементов аппаратов в момент воздействия нагрузки может привести к отключению важных технических систем и нарушению технологических процессов.
По объективным причинам в России за последние пятнадцать лет произошло значительное сокращение числа функционирующих испытательных лабораторий и испытательных центров и, как следствие, количества испытательных средств, воспроизводящих механические, в том числе и сейсмические, воздействия.
Следует также отметить большую изношенность парка испытательных средств на механические воздействия, относительно небольшие размеры испытательных столов и недостаток многокомпонентных установок.
Фактически отсутствует возможность испытания крупногабаритного оборудования с линейными размерами более 3 м и массой более 3 т на вибрационные воздействия и удар.
А как показывает практика, уникальное крупногабаритное и массивное оборудование из-за своих инерционных характеристик хуже переносит механические воздействия и поэтому нуждается в обязательной проверке на воздействие ожидаемых внешних механических факторов. Аналогичным образом обстоят дела с испытательными средствами для проверки на воздействия, адекватные интенсивным землетрясениям. В бывшем СССР функционировало пять крупных сейсмоплатформ программного действия, оснащенных гидравлическими приводами. В последние годы сейсмоплатформы, расположенные на территории Российской Федерации, практически не работали, и остается неясным, каковы необходимые объемы ассигнований для восстановления их работоспособности и модернизации.

Расчетный способ
Существенным недостатком использования экспериментального способа является его зависимость от ограниченных возможностей испытательного оборудования. Поэтому в случае необходимости проведения оценки прочности к механическим воздействиям образцов электротехнического оборудования, изготовленных из материалов с известными характеристиками, применяют расчетный способ. Этому способствует современное развитие методов моделирования и расчета, программных средств и вычислительной техники. Неоспоримое преимущество расчетного пути определения прочности заключается в том, что его применение не ограничено размерами и максимальной массой рассчитываемого оборудования. Кроме того, по сравнению с экспериментальным путем расчетный имеет достаточно низкую себестоимость.
Среди основных недостатков данного метода определения прочности можно подчеркнуть следующие:

  • расчетным путем практически нельзя оценить устойчивость работы электротехнического оборудования во время воздействия внешнего механического фактора;
  • практически нельзя подтвердить соответствие выдвигаемым требованиям по прочности к воздействию внешних механических факторов для образцов оборудования с нелинейными характеристиками и сложных систем электротехнического оборудования;
  • точность определения прочности зависит от принятой расчетной модели, квалификации специалистов-расчетчиков, применяемых программных продуктов и методик.
Расчетно-экспериментальный способ
Учитывая технические возможности существующих испытательных средств, испытание сложной электротехнической системы на стойкость при воздействии механических факторов может оказаться фактически нереализуемым или потребует значительных материальных затрат, а оценка стойкости системы в целом расчетным путем – невозможной. В этом случае используется расчетно-экспериментальный способ.
На вибродинамическом стенде были проведены испытания шкафов на стойкость к воздействию синусоидальной вибрации с указанными амплитудами виброперемещения и виброускорения в диапазоне от 7 до 100 Гц. Как известно, виброиспытания в диапазоне от 1 до 5 Гц представляют сложность из-за отсутствия вибродинамических стендов необходимой грузоподъемности. Во время испытаний с помощью установленных в определенных местах шкафов трех датчиков регистрировались параметры ускорений. Параллельно были разработаны расчетные модели шкафов и проведены расчеты на аналогичное воздействие.

Пример из практики
Была поставлена задача произвести оценку стойкости группы шкафов электротехнического оборудования с максимальными габаритами 600х800х2000 мм и максимальной массой 250 кг к воздействию синусоидальной вибрации в диапазоне от 1 до 100 Гц, с амплитудой виброускорения 7 м/с2 от 1 до 35 Гц и с амплитудой виброускорения 10 м/с2 от 35 до 100 Гц.

После испытаний было произведено сравнение расчетных и экспериментальных данных в диапазоне частот от 7 до 100 Гц и выявлена достаточная сходимость результатов расчета и испытаний. Испытания показали стойкость шкафов к испытательному воздействию в диапазоне от 7 до 100 Гц. После испытаний были проведены расчеты шкафов на проверенных расчетных моделях на воздействие синусои-дальной вибрации в диапазоне от 1 до 7 Гц. Полученные по расчету в установленных точках кинематические параметры не превышали параметров движения, зарегистрированных в этих же точках во время испытаний. Поэтому по результатам расчетно-экспериментальной оценки был сделан положительный вывод о стойкости оборудования в диапазоне от 1 до 100 Гц при воздействии заданной синусоидальной вибрации.

Расчетно-экспериментальный – это наиболее универсальный способ определения стойкости (прочности, устойчивости) образцов оборудования и их систем к внешним механическим воздействующим факторам. Он сочетает достоинства и частично исключает недостатки расчетного и экспериментального способов, однако его применение требует достаточного объема необходимых исходных и экспериментальных данных, корректности используемых методов и методик, высокой квалификации специалистов.

Несколько советов производителям
Повышение стойкости электротехнического оборудования к воздействию внешних механических факторов может осуществляться за счет:

  • применения оптимальных схемных решений;
  • применения в оборудовании стойких комплектующих;
  • уменьшения габаритов изделий;
  • рациональной компоновки и крепления комплектующих изделий, повышения коэффициента заполнения;
  • применения унифицированных каркасов оптимального профиля;
  • совершенствования запорных устройств дверей и крышек шкафного оборудования;
  • устройств дополнительного закрепления в верхней точке изделия;
  • расчета узлов штатного крепления оборудования;
  • контроля при монтаже необходимого усилия затяжки болтовых соединений.
Литература
1. Вибрации в технике. Справочник в 6 томах. – Т. 3. Колебания машин, конструкций и их элементов. – М.: Машиностроение, 1980.
2. Coloiaco A.P., Elsher E. G. Sine-beat tests verifies switchgear control equipment// IEEE Trans. Power Appar. and Syst. – 1973. – Vol. 93, N2. - P. 751-758.
3. Кириллов А.П., Амбриашвили Ю.К. Сейсмостойкость атомных электростанций. – М.: Энергоатомиздат, 1985.
4. ГОСТ 17.516.1-90 «Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам».
5. ГОСТ РВ 20.39.304-98 «Требования по стойкости к внешним воздействующим факторам». 6. ГОСТ 20.57.406-81 «Изделия электронной техники, квантовой электроники и электротехнические».
7. ГОСТ 16962.2-90 «Изделия электротехнические. Методы испытаний на стойкость к механическим внешним воздействующим факторам».
8. ГОСТ РВ 20.57.305-98 «Методы испытаний на воздействие механических факторов».
9. Бакин В.А., Беляев В.С., Виноградов В.В., Сирро В.А. Испытание строительных конструкций и крупногабаритного оборудования на сейсмические воздействия//Сейсмостойкое строительство. – М.: ВНИИНТПИ, 1996. – Вып. 6. – С. 3–10.

Общеизвестно, что физико-механические свойства материала, в том числе и бетона, в большой мере предопределяются его структурой. Под понятием структура бетона условимся понимать совокупность “макроструктуры”, созданной расположением заполнителей, и “микроструктуры” цементного камня, включая и контактную зону “цементный камень – заполнитель”.

Структура бетона является сложной функцией прилагаемых к нему физико-химико-механических факторов.

“МАКРОструктура” бетона формируется в результате внешнего механического воздействия на все его составляющие в процессе приготовления и уплотнения бетонной смеси. По большому счету совершенство макроструктуры бетона отражает рецептурные пропорции бетона (соотношение между вяжущим, заполнителями и водой) а также степень равномерности их распределения между собой (эффективности смешения).

В то же время “МИКРОструктура” бетона формируется как под воздействием внешнего механического воздействия, так и под влиянием коллоидно-химических и физико-химических процессов происходящих в вяжущем (диспергирование цементных зерен, их растворение, с последующей коогуляцией и выкристализацией и т.д.)

Характерно, что изменение во времени всех основных физико-механических свойств бетона (прочности, упругости, усадки, ползучести, плотности) в большинстве своем обусловлены именно кинетикой изменения характеристик “микроструктуры” бетона. Ею мы можем управлять (с той или иной степенью эффективности) как на уровне начального структурообразования цементного камня, так и в процессе первоначального формирования контактных полей между вяжущим и заполнителями. В практическом плане “управление” микроструктурой цементного камня возможно по пути химического (различного вида добавки и модификаторы в бетон), механического (внешнее механическое воздействие на начальные стадии гидратации цемента) и термического (тепловлажностная обработка).

В качестве одного из наиболее эффективных способов модификации параметров бетона как на уровне “микроструктуры” так и на уровне “макроструктуры” является вибрационное воздействие на бетонную смесь еще на стадии её приготовления – виброактивация, вибросмешивание. Еще более эффективным является механохимическое управление микроструктурой цементного камня, когда на механическое воздействие налагаются твердофазные реакции (механоактивация) и (или) прямое химическое воздействие химических модификаторов (ПАВ, электролиты, полимеры).

10.2.4.1 Интенсификация процессов гидратации цемента в процессе вибровоздействия.

Если рассмотреть микрошлифы цементного камня приготовленных обычным смешиванием компонентов (Рис) и приготовленных в вибросмесителе (Рис) отчетливо видна разница. В последнем случае микроструктура цементного камня более диспергирована – кристаллы новообразований гораздо более мелкие. Соответственно структура цементного камня более однородна, меньше внутренние напряжения и локальные микродефекты, что существенно снижает вероятность появления очагов разрушения – в итоге прочность такого цементного камня будет выше..

Рисунок Микрофотография препарата цементного камня приготовленного ручным смешиванием цемента с водой (темные зоны – не прореагировавшие зерна цемента).

Рисунок Микрофотография препарата цементного камня приготовленного с использованием виброперемешивания цемента с водой (темные зоны – не прореагировавшие зерна цемента).

Многочисленные эксперименты подтверждают, что под воздействием внешнего механического воздействия (в данном случае вибрационного) процессы гидратации цемента значительно ускоряются (смотри Таблица)

Значения степени гидратации и прочности на сжатие при твердении виброобработанного цементного камня.

Характеристика цементного камня

Степень гидратации (%)

Прочность на сжатие (кг/см2)

1 день

3 дня

7 дней

28 дней

1 день

3 дня

7 дней

28 дней

Цемент М-600, В/Ц=0.30, без вибровоздействия (контроль)

10.1

31.5

211.0

Цемент М-600, В/Ц=0.30, вибрация при укладке — 6 минут

10.2

12.6

56.0

298.0

Цемент М-500, В/Ц=0.26, без вибровоздействия (контроль)

11.0

12.1

12.8

125.0

180.0

Цемент М-500, В/Ц=0.26, вибрация при укладке – 6 минут

11.1

12.5

13.3

132.0

255.0

Цемент М-500, В/Ц=0.26, предварительная виброактивация – 10 минут + вибрация при укладке – 6 минут

12.2

13.4

13.6

216.0

450.0

Примечание: Цемент Броцненского завода

10.2.4.2 Эмпирическое прогнозирование характеристик виброактивированного бетона по сравнению с обычным.

Пои изучении влияния вибрационных воздействий на процесс твердения бетона наблюдается характерное явление: та абсолютная разность прочностей между виброобработанными и контрольными образцами (приготовленными традиционным способом, без вибровоздействия) которая и которая образуется в начале структурообразования цементного камня остается близкой к постоянной и при дальнейшем ходе твердения.

Как показали многочисленные исследования, причиной повышенной прочности бетона подвергнутого вибровоздействию является уплотнение коагуляционных структур. Причина же постоянства прироста прочности во все временные отрезки твердения бетона заключается в одинаковой интенсивности кристаллизации как виброобработанных так и контрольных образцов.

Факт постоянства прироста прочности открывает замечательную возможность определять абсолютные значения прочности виброобработанных образцов во время твердения и в связи с этим эффективность виброобработки, если имеются данные изменений по прочности контрольных образцов и известна начальная разность их прочностей. С практической точки зрения появляется возможность по данным 12 – 24 часовых испытаний. определить конечную прочность путем пересчета данных контрольного (не виброактивированного) состава твердеющего в аналогичных условиях с коэффициентом близким к величине 1.08. (Повышающий коэффициент был определен экспериментально, — он отражает тот факт, что виброобработка не только способствует улучшению коагуляционных структур и ускорению начального структурообразования, но и является причиной некоторго усиления и более полного развития процессов структурообразования в более поздние сроки.

Вычисление можно вести по следующей простой формуле:

Rвибро = 1.08 * (Rконтроль + Rдельта)

Rвибро – вычисляемая прочность виброактивированного образца для заданной длительности твердения

Rконтроль – экспериментальная прочность контрольного не виброактивированного образца за тот же период твердения

Rдельта — абсолютная разность прочностей между виброобработанными и контрольными образцами в возрасте 12 – 24 часа.

10.3 Активавированные и специальные цементы, как альтернатива высокопрочным, быстротвердеющим и особобыстротвердеющим портландцементам цементам.

10.3.1 Теоретические и практические особенности производства высокопрочных и быстротвердеющих цементов из специальных клинкеров.

В соответствии с областями применения в технологии бетонов представляется логичным разделение портландцемента на следующие классы: обыкновенный, повышенной прочности, высокопрочные (ВПЦ), быстротвердеющие (БТЦ), особобыстротвердеющие (ОБТЦ).

Обыкновенным называется портландцемент марки М-400. К классу цементов повышенной прочности относятся цементы марки М-500. К классу высокопрочных — цементы марок М-550 и М-600 (ГОСТ 10178-76), а к быстротвердеющим — все цементы с пределом прочности при сжатии не менее 25.0 МПа через 3 сут твердения.

Первые в СССР опытные партии портландцемента с активностью по современной оценке около 55.0 МПа были изготовлены ВНИИЦем-ом на вольских цементных заводах еще в 1938 году.

Позже, в середине 50-х годов на Белгородском цементном заводе была выпущена первая опытная партия цемента, соответствующего по активности нынешней марке М-600. При выпуске опытных партий применялись очень жесткие и труднодостижимые технологические нормативы, не позволяющие осуществлять регулярный выпуск таких цементов.

Для разрешения этих технологических сложностей было предложено решение, суть которого сводилась к целому комплексу достаточно сложных мероприятий, которые, тем не менее, позволяли оптимизировать все технологические переделы – начиная от оптимизации минералогического состава специальных цементов и заканчивая особенностями их измельчения и хранения.

В результате, коллективами цементных заводов совместно с узкоприкладными НИИ были выпущены опытные, а затем промышленные партии и начато постоянное промышленное производство высокопрочного цемента, сначала с активностью 55.0 МПа (марки М-700 по ГОСТ 970 — 61) на заводах Брянском, “Октябрь” (Новороссийской группы), Здолбуновском. В последствии было освоено также производство цементов с активностью 60.0 МПа на заводах Здолбуновском, “Большевик” (Вольской группы), Белгородском, Брянском, Абвросиевском, теплоозерском.

Первые опытные партии быстротвердеющего цемента были выпущены в СССР в 30-х годах под руководством В. Н. Юнга и С. М. Рояка. Его промышленный выпуск был начат в 1955 г. для удовлетворения потребностей только что созданной промышленности сборного железобетона, причем первоначальные нормативы по прочности были ниже современных — примерно 10.0 – 12.0 МПа через 1 сутки нормального твердения и 20.0 МПа через 3 сут твердения при нынешних методах испытаний.

Эффективность применения высокопрочных и быстротвердеющих цементов (ВПЦ и БТЦ) в строительстве и строительной индустрии обусловлена возможностью повышения марки бетона, уменьшением материалоемкости железобетонных изделий и конструкций, сокращением технологического цикла их изготовления, монтажа, установки под рабочую нагрузку, и, наконец, повышением несущей способности и надежности конструкций, здании и сооружений. Эти преимущества резко возрастают с повышением активности ВПЦ до 70.0 – 80.0 МПа.

Кроме того, целые направления производства строительных материалов всецело зависят именно от поставок специальных цементов. Так, например, производство пенобетона становится экономически обоснованным и высокорентабельным только при использовании быстротвердеющих цементов марок М-500 и М-600.

10.3.1.1 Минералогические особенности высокопрочных и быстротвердеющих цементов.

Для получения высокопрочных и быстротвердеющих цементов пригодны только сырьевые смеси с максимальной реакционной способностью, зависящей от физико-химической природы сырьевых материалов, химического состава и дисперсности смесей, Физико-химическая природа сырья — это совокупность геолого-минералогичеоких характеристик основных компонентов — известкового и силикатного — определяющая их химическую активность и сопротивляемость измельчению.

Для производства высокопрочных и быстротвердеющих цементов подходит далеко не всякое сырье, использующееся для производства рядовых цементов. В отдельных регионах, например Средней Азии, выпуск таких цементов вообще невозможен – сырье не позволяет.

Помимо особенностей подбора сырья, высокопрочные и быстротвердеющие цементы отличают и определенные сложности при их обжиге – в составе клинкера должны превалировать особые кристаллы алита (трехкальциевый силикат – C3S) строго определенной формы и размеров с ромбоэдрическим кристаллическим строением.

10.3.1.2 Влияние гранулометрического состава на активность ВПЦ и БТЦ.

Цемент получают путем размола специально обожженного сырья – клинкера. Как и всякий продукт обжига, прошедший процессы плавление-кристаллизация, цементный клинкер обладает определенной субмикроструктурой. Поэтому гранулометрический состав клинкера после его помола в шаровых мельницах в основном зависит от характера внутренней кристаллической структуры клинкера – в процессе помола разрушение в первую очередь идет по наименее прочным участкам кристаллической структуры клинкера. Этим положением обусловлено, что наше влияние на зерновой состав продуктов помола барабанных мельниц с шаровой и цильбепсной загрузкой может быть лишь модифицирующим.

Таблица 10.3.1.2-1

Гранулометрический состав цементов, быстротвердеющего, повышенной прочности и высокопрочных

(C3S — 60-65%, C3A — 3-7%)

(модификация алита в клинкере)

Вид и марка цемента

Удельная поверхность, см2/г

менее 5 мкм

5 – 30 мкм

Здолбуновский

(R-C3S)

БТЦ-500

2500 – 3200

12 – 18

40 – 50

БТЦ-550

3200 – 3700

15 – 21

45 – 60

ОБТЦ-550

3500 – 3800

18 – 23

50 – 65

ВПЦ-600

4300 – 6100

25 – 40

55 – 70

ВПЦ-600

4000 – 4500

21 – 27

58 – 68

Новороссийский

(М-С3S)

ВПЦ-550

3200 – 3700

17 – 20

40 – 45

ОБТЦ-550

3800 – 4000

19 – 23

42 – 55

ВПЦ-600

4500 – 4700

25 – 28

55 – 60

Брянский

(М-C3S)

ВПЦ-550

3200 – 3700

8 – 12

65 – 71

ВПЦ-600

3600 – 4000

18 – 20

54 – 65

Вольский

(М-C3S)

ВПЦ-600

3900 — 4230

14 — 23

48 — 65

Примечание: Все цементы Здолбуновского завода получены помолом в замкнутом цикле, остальные в открытом.

ОБТЦ – особобыстротвердеющий цемент Rсут=20.0 МПа

Так, при тонком помоле клинкера.нельзя избежать образования мелкой фракции (менее 5 мкм) в количестве от 12.5% от половины массы средней фракции (5 — 30 мкм). При отсутствии сепарации неизбежно останется крупная фракция (более 30 мкм) .в количестве 25 – 50 % от массы средней фракции. В цементах из мелкокристаллических клинкеров при прочих равных условиях крупной фракции содержится в 1.5 раза меньше, чем в цементах из крупнокристаллических клинкеров. Гранулометрический состав высокопрочных цементов (Таблица) отличается повышенным содержанием фракций 5 — 30 и менее 5 мкм, а быстротвердеющих — фракции менее 5 мкм. Коэффициент линейной корреляции между содержанием фракции менее 5 мкм и прочностью цемента через 1 сутки твердения составляет 0.77 (поэтому эта фракция предпочтительна в БТЦ), а между количеством средней фракция и активностью цемента в 28-суточном возрасте — 0.68

Меньший размер кристаллических блоков алита по сравнению с белитом является вероятной причиной сосредоточения алита в мелких фракциях цемента. Так, при 55% алита в исходном клинкере и удельной поверхности цемента 3000 см2/г — во фракции менее 5 мкм содержится в среднем 60% элита, а при повышении удельной поверхности цемента до 5000 см2/г – уже 75- 80% алита. Таким образом на стадии помола происходит существенное изменение химико-минералогического состава цемента, когда разные фракции цемента состоят из разных, по сути, минералов!

Обеднение средней фракции алитом нельзя.признать положительным фактором. Напротив, обогащение мелкой фракции белитом помогло бы активизировать его твердение. Это одна из важнейших проблем технологии цементов. Такое распределение минералов достигается в цементах Белгородского и Балаклейского заводов (у них во многом схожая сырьевая база) благодаря дендритной структуре белита, “армирующей” промежуточное вещество клинкера и повышающей его хрупкость. Большее количество белита сосредоточивается здесь в мелкой, а алита — в средней фракциях цемента, чем и объясняются хорошо известные строителям положительные свойства цемента Белгородского и Балаклейского заводов — быстрое нарастание прочности, в частности при пропаривании, высокая трещиностойкость, пониженная усадка и ползучесть.

10.3.1.3 Связь динамики гидратации цементов из специальных клинкеров с их зерновым составом.

Исследования показали, что при повышении тонкости помола цемента с 2000 см2/г до 6000 см2/г (при оптимальном содержании гипса для каждого уровня дисперсности), степень гидратации (по содержанию неиспаряемой воды) и прочность в 1 — 3 суточном возрасте растут, а в 28-суточном увеличиваются лишь до определенных пределов, а затем значительно снижаются. Оптимальная дисперсность помола цемента зависит от минералогических особенностей клинкера, и в первую очередь от преобладания в нем тех или иных модификаций алита.

В некоторых случаях с повышением удельной поверхности цемента от 2000 до 3000 см2/г содержание фракции менее 5 мкм вообще снижается, что может вызвать уменьшение гидратации и отсутствие прироста прочности цемента с одновременным повышением его дисперсности.

Наличие максимума дисперсности цемента, превышение которого приводит к замедлению гидратации сравнительно “молодое” открытие, которое, тем не менее, объясняет многие парадоксы встречающие современных исследователей, которые в попытке получить быстротвердеющие цементы однобоко ограничиваются его дополнительным измельчением.

Этот парадокс можно объяснить влиянием двух противоположно действующих факторов — увеличением реакционной поверхности частиц цемента, взаимодействующих с водой, и повышением экранирующей способности гидратных новообразований, которые, окружая частицы цемента, препятствуют доступу воды. При В/Ц = 0,4 степень гидратации мелкой фракции через 1 сут равна 100%, средней фракции – 20%, крупная фракция еще практически не прогидратировала.

Через 3 суток – вся мелкая и уже примерно половина всех средних и крупных фракций также прогидратируют. И только через месяц от 60 до 90 процентов всего цемента прогидратирует.

Такая “ступенчатая” гидратация цемента различных фракций формирует механизм (впервые предсказанный на кончике пера Г.Кюлем), что зоны контакта между продуктами гидратации средней и мелкой фракций “склеивает” именно продукты гидратации мелкой фракции (не бейте сильно — как сумел, так и объяснил).

Все это указывает на интенсифицирующее влияние мелкой фракции на гидратацию остальных фракций цемента. Эксперименты по смешиванию цементов различной дисперсности показали то оптимальное соотношение мелкой и средней фракций в ВПЦ с ромбоэдрическим алитом равно от 1:4.8 до 1:5.1. Без мелкой фракции ВПЦ получить нельзя в принципе!

10.3.1.4 Основные технологические схемы производства высокопрочных и быстротвердеющих цементов.

Основная технолгическая схема производства высокопрочных и быстротвердеющих цементов основана на использовании специально подобранных компонентов сырьевого шлама идущего на обжиг клинкера. Добыча сырья для БТЦ и ВПЦ – очень хлопотное и дорогое мероприятие, т.к. его отбор на действующих сырьевых карьерах цементных комбинатов приходится вести выборочно. Так на Брянском хаводе отбраковывают запесоченную часть глины и мел из карстовых воронок. На Здолбуновском заводе – глину содержащую более 20% кварцевых зерен, на Воскресенском заводе – включения окремненного мела (синяки), на Новороссийском заводе – содержащие глауконит и фосфориты мергели и т.д.

Производство БТЦ и ВПЦ очень жестко нормирует и производство сырьевого шлама – требуется гораздо более тщательное его усреднение (это влечет увеличение емкостей шламбассейнов) и более тонкий помол сырья до частиц менее 40 мкм. В свое время в СССР только Белгородский завод был способен полностью соответствовать требованиям технологического регламента по подготовке шлама для обжига клинкера под специальные цементы.

Особенных сложностей технического порядка на стадии обжига клинкера во вращающихся печах нет – требуемые термические параметры обжига вполне укладываются в характеристики современных печей. И ряд отечественных цементных комбинатов (в частности Балаклейский, Каменец-Подольский, старооскольский) в свое время вполне успешно выводили свои печи на режимы, обеспечивавшие массовый выпуск клинкера высокой активности из которого в последствии получали цемент марки М-600 и выше. Но из-за такого нештатного и незапроектированного режима работы (печи, все-же проектировали под выпуск рядовых цементов) требовалось повышать расход топлива на обжиг (повышать температуру в зоне спекания) и искуственно понижать производительность печей \на 10-15% (для стабилизации зоны спекания).

Особенности технологии производства ВПЦ и БТЦ также налагают существенные отличия от традиционной схемы производства рядовых цементов и на стадии помола. Основной особенностью режима измельчения БТЦ и, особенно, ВПЦ – применение в шаровых мельницах шаровой загрузки минимально возможного среднего диаметра шаров. Это, в свою очередь, делает практически невозможным использование для помола БТЦ и ВПЦ мощных и высокопроизводительных барабанных мельниц большого диаметра (либо существенно снижать от проектной, скорость их вращения).

Все вместе это обуславливает тот факт, что даже современные мельницы работающие в замкнутом цикле с сепарацией, при помоле БТЦ и ВПЦ показывают производительность в 40 – 50% меньшую, чем при помоле рядовых цементов.

Мало того, все дорогостоящие ухищрения по выпуску высококачественных быстротвердеющих и высокопрочных цементов могут быть полностью нивелированы всего за несколько месяцев хранения. Даже в битуминизированных пятислойных мешках цемент при хранении теряет от 5 до 15 процентов активности в месяц!!!

Поэтому все вместе взятое (кратко приведенное выше) во все времена обуславливало крайне “недоброжелательное” отношение цементных заводов даже к самой идее наладить массовый и постоянный выпуск БТЦ и ВПЦ. И только когда на ответственейшие объекты, в первую очередь военной инфраструктуры и среднего машиностроения требовались такие высококачественные цементы, “твердая рука Партии” могла сподвигнуть цементные комбинаты на подобного рода свершения.

Следует ли удивляться, что в отсутствие этой “твердой руки” БТЦ и ВПЦ также напрочь исчезли с отечественного рынка цемента — объективные экономические предпосылки для их выпуска еще не сложились, – дешевле получается такие цементы экспортировать, если в том возникает нужда.

(Вполне возможно, что подороржание цемента в России сформирует более благоприятную коньюктуру, когда массовое применение БТЦ и ВПЦ станет экономически целесообразным – и тогда отечественный строительный рынок опять, как и четверть века назад, с восторженным придыханием и восхищением будет “смаковать” эти чарующие любого заводского технолога аббревиатуры – БТЦ, ОБТЦ, ВПЦ.)

(продолжение следует)

Тре"ние вне"шнее , механическое сопротивление, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении. Сила сопротивления F , направленная противоположно относительно перемещению данного тела, называется силой трения, действующей на это тело. Т. в. - диссипативный процесс, сопровождающийся выделением тепла, электризацией тел, их разрушением и т.д.

Различают Т. в. скольжения и качения. Характеристика первого - коэффициент трения скольжения f c - безразмерная величина, равная отношению силы трения к нормальной нагрузке; характеристика второго - коэффициент трения качения f k представляет собой отношение момента трения качения к нормальной нагрузке. Внешние условия (нагрузка, скорость, шероховатость, температура, смазка) влияют на величину Т. в. не меньше, чем природа трущихся тел, меняя его в несколько раз.

Трение скольжения. Если составляющая приложенной к телу силы, лежащая в плоскости соприкосновения двух тел, недостаточна для того, чтобы вызвать скольжение данного тела относительно другого, то возникающая сила трения называется неполной силой трения (участок OA на рис. ); она вызвана малыми (~ 1 мкм ) частично обратимыми перемещениями в зоне контакта, величина которых пропорциональна приложенной силе и изменяется с увеличением последней от 0 до некоторого максимального значения (точка А на рис. ), называемого силой трения покоя; эти перемещения называются предварительными смещениями. После того как приложенная сила превысит критическое значение, предварительное смещение переходит в скольжение, причём сила Т. в. несколько уменьшается (точка A 1) и перестаёт зависеть от перемещения (сила трения движения).

Вследствие волнистости и шероховатости каждой из поверхностей, касание двух твёрдых тел происходит лишь в отдельных «пятнах», сосредоточенных на гребнях выступов. Размеры пятен зависят от природы тел и условий Т. в. Более жёсткие выступы внедряются в деформируемое контртело, образуя единичные пятна реального контакта, на которых возникают силы прилипания (адгезня, химические связи, взаимная диффузия и др.). В результате приработки пятна касания бывают «вытянуты» в направлении движения. Диаметр эквивалентного по площади пятна касания составляет от 1 до 50 мкм в зависимости от природы поверхности, вида обработки и режима Т. в. При скольжении эти пятна наклоняются под некоторым углом к направлению движения, материал раздвигается в стороны и подминается скользящей неровностью, а пятна прилипания, образующиеся из поверхностных плёнок, покрывающих твёрдое тело, называются мостиками, непрерывно разрушаются (срезаются) и формируются вновь. В этих пятнах реализуются напряжения лишь в несколько раз меньшие теоретической прочности материала. Сопротивление оттеснению материала при сдвиге зависит от безразмерной характеристики h/R - отношения глубины h внедрения единичной неровности, моделированной сферическим сегментом, к его радиусу R . Это отношение определяет механическую составляющую силы Т. в.

Большей частью описанное формоизменение упруго и рассеяние энергии обусловлено потерями на гистерезис . В пятнах касания возникают силы межмолекулярного взаимодействия, потери на преодоление которого оцениваются безразмерной характеристикой t/s s , где t - сдвиговое сопротивление молекулярной связи, s s - предел текучести основы. Молекулярное сдвиговое сопротивление t = t 0 +bP r , где t 0 - прочность мостика при отсутствии сжимающей нагрузки, P r - фактическое давление на пятне касания, b - коэффициент упрочнения мостика. Каждое пятно касания (так называемая фрикционная связь) существует лишь ограниченное время, так как выступ выходит из взаимодействия. Продолжительность жизни фрикционной связи - важная характеристика, так как определяет температуру, развивающуюся при Т. в., износостойкость и др. Таким образом, процесс Т. в. представляет собой двойственный процесс - с одной стороны он связан с диссипацией энергии, обусловленной преодолением молекулярных связей, с другой - с формоизменением поверхностного слоя материала внедрившимися неровностями.

Общий коэффициент Т. в. определяется суммой механической и молекулярной составляющих

где К - коэффициент, связанный с расположением выступов по высоте, a г - коэффициент гистерезисных потерь. Из уравнения следует, что коэффициент Т. в. в зависимости от давления при постоянной шероховатости или от шероховатости при постоянном давлении переходит через минимум. При приработке пар трения устанавливается шероховатость, соответствующая минимуму коэффициента Т. в. Для эффективной работы пары трения существенно, чтобы поверхностный слой твёрдого тела имел меньшее сдвиговое сопротивление, чем глубжележащие слои. Это достигается применением различных жидких смазок. В этом случае трущиеся тела разделены слоем жидкости или газа, в котором проявляются объёмные свойства этих сред и вступают в силу законы жидкостного трения, характеризующиеся отсутствием трения покоя. Иногда необходимо иметь ослабленным поверхностный слой самого тела; это достигается применением поверхностно-активных веществ (присадки к смазкам), покрытий из мягких металлов, полимеров или созданием защитных плёнок с пониженным сопротивлением сдвигу.

В зависимости от характера деформирования поверхностного слоя различают Т. в. при упругом и пластическом контактированиях и при микрорезании. В определённых условиях, зависящих от нагрузки и механических свойств каждой пары трения, Т. в. переходит во внутреннее трение , для которого характерно отсутствие скачка скорости при переходе от одного тела к другому. Нагрузка, при которой Т. в. нарушается для данной пары трения, называется порогом внешнего трения.

Трение качения. Значения силы трения качения очень малы по сравнению с силами трения скольжения. Трение качения обусловлено: а) потерями на упругий гистерезис, связанный со сжатием материала под нагрузкой перед катящимся телом; б) затратами работы на передеформирование материала при формировании валика перед катящимся телом; в) преодолением мостиков сцепления. При достаточно протяжённых размерах пятна касания в зоне контакта возникает проскальзывание, приводящее к уже рассмотренному выше трению скольжения. При больших скоростях качения, сопоставимых со скоростью распространения деформации в теле, сопротивление перекатыванию резко увеличивается, и тогда выгоднее переходить к трению скольжения.

Управление трением путём подбора пар трения, конструкций узлов и правильной их эксплуатации - тема новой технической науки, называемой триботехникой.

Лит.: Дерягин Б. В., Что такое трение?, 2 изд., М., 1963; Крагельский И. В., Трение и износ, 2 изд., М.,1968; Дьячков А. К., Трение, износ и смазка в машинах, М., 1958; Трение полимеров, М., 1972; Боуден Ф. и Тейбор Д., Трение и смазка твердых тел, пер. с англ., М., 1968.

И. В. Крагельский.


Значение силы трения в зависимости от относительного смещения трущихся тел при сдвиге, переходящем в скольжение.




Top