Оптимальное значение целевой функции. Целевая функция. Построим модель задачи

Определение . Любое решение системы ограничений называется допустимым решением ЗЛП.
Определение . Допустимое решение, в котором целевая функция достигает максимального или минимального значения, называется оптимальным решением.

В силу этих определений задача ЛП может быть сформулирована следующим образом: среди всех точек выпуклой области, являющейся решением системы ограничений, выбрать такую, координаты которой минимизируют (максимизируют) линейную функцию F = с 1 x + с 2 y .
Заметим, что переменные x , y в ЗЛП принимают, как правило, неотрицательные значения (x ≥ 0, y ≥ 0), поэтому область расположена в I четверти координатной плоскости.

Рассмотрим линейную функцию F = с 1 x + с 2 y и зафиксируем какое-нибудь ее значение F . Пусть, к примеру, F = 0, т.е. с 1 x + с 2 y = 0. Графиком этого уравнения будет прямая, проходящая через начало координат (0;0) (рис.).
Рисунок
При изменении этого фиксированного значения F = d , прямая с 1 x + с 2 y = d будет смещаться параллельно и «зачертит» всю плоскость. Пусть D – многоугольник – область решения системы ограничений. При изменении d прямая с 1 x + с 2 y = d , при некотором значении d = d 1 достигнет многоугольника D , назовем эту точку А «точкой входа», и затем, пройдя многоугольник, при некотором значении d = d 2 будем иметь с ним последнюю общую точку В , назовем В «точкой выхода».
Очевидно, что своего наименьшего и наибольшего значения целевая функция F =с 1 x + с 2 y достигнет в точках «входа» А и «выхода» В .
Учитывая, что оптимальное значение на множестве допустимых решений целевая функция принимает в вершинах области D , можно предложить следующий план решения ЗЛП:

  1. построить область решений системы ограничений;
  2. построить прямую, соответствующую целевой функции, и параллельным переносом этой прямой найти точку «входа» или «выхода» (в зависимости от требования минимизировать или максимизировать целевую функцию);
  3. определить координаты этой точки, вычислить в них значение целевой функции.
Заметим, что вектор (с 1 , с 2), перпендикулярный прямой, показывает направление роста целевой функции.

При графическом решении ЗЛП возможны два случая, которые требуют особого обсуждения.

Случай 1
Рисунок 6
При перемещении прямой с 1 x + с 2 y = d «вход» или «выход» (как на рисунке) произойдет по стороне многоугольника. Это случится, если в многоугольнике есть стороны, параллельные прямой с 1 х + с 2 у = d .
В этом случае точек «выхода» (« входа») бесчисленное множество, а именно – любая точка отрезка АВ . Это означает, что целевая функция принимает максимальное(минимальное) значение не в одной точке, а во всех точках, лежащих на соответствующей стороне многоугольника D .

Случай 2
Рассмотрим случай, когда область допустимых значений неограниченна.
В случае неограниченной области целевая функция может быть задана таким образом, что соответствующая ей прямая не имеет точки «выхода» (или «входа»). Тогда максимальное значение функции (минимальное) не достигается никогда – говорят, что функция не ограничена.
Рисунок
Необходимо найти максимальное значение целевой функции F = 4x + 6y → max , при системе ограничений
Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами.
x + y = 18


x

12

9

y

6

9

0,5x + y = 12


x

12

18

y

6

3

x = 12 – параллельна оси OY ;
y = 9 – параллельна оси OX ;
x = 0 – ось OY ;
y = 0 – ось OX ;
x ≥ 0 – полуплоскость правее оси OY ;
y ≥ 0 – полуплоскость выше оси OX ;
y ≤ 9 – полуплоскость ниже y = 9;
x ≤ 12 – полуплоскость левее x = 12;
0,5x + y ≤ 12 – полуплоскость ниже прямой 0,5x + y = 12;
x + y ≤ 18 – полуплоскость ниже прямой x + y = 18.
Рисунок
Пересечением всех этих полуплоскостей является очевидно, пятиугольник ОАВСД , с вершинами в точках О (0; 0), А (0; 9), В (6; 9), С (12; 6), Д (12; 0). Этот пятиугольник и образует область допустимых решений задачи.

Рассмотрим целевую функцию задачи F = 4x + 6y → max.


x

3

0

y

–2

0

Построим прямую, отвечающую значению функции F = 0: 4x + 6y = 0. Будем двигать эту прямую параллельным образом. Из всего семейства прямых 4x + 6y = const последней вершиной, через которую пройдет прямая при выходе за границу многоугольника, будет вершина С (12; 6). Именно в ней F = 4x + 6y достигнет своего максимального значения.
Значит, при x = 12, y = 6 функция F достигает своего максимального значения F = 4 ∙ 12 + 6 ∙ 6 = 84, равного 84. Точка с координатами (12; 6) удовлетворяет всем неравенствам системы ограничений, и в ней значение целевой функции оптимально F * = 84 (оптимальное значение будем обозначать «*»).
Задача решена. Итак, необходимо выпустить 12 изделий I вида и 6 изделий II вида, при этом прибыль составит 84 тыс. руб.

Графический метод применяется для решения задач, которые имели в системе ограничений только две переменные. Этот метод может применяться и для систем неравенств, имеющих три переменных. Геометрически ситуация будет иная, роль прямых будут играть плоскости в трехмерном пространстве, а решением неравенства от трех переменных будет являться полупространство, находящееся по одну сторону от плоскости. Роль областей будут играть многогранники, являющиеся пересечением полупространств.

Целевая функция – это математическое представление зависимости критерия оптимальности от искомых переменных.

2. Градиент функции.

Вектор, компонентами которого служат значения частных производных, то есть вектор

называется градиентом функции , вычисленным в точке.

3. Общая задача линейного программирования.

Стандартная математическая формулировка общей задачи линейного программирования выглядит так: требуется найти экстремальное значение показателя эффективности (целевой функции)

(линейной функции элементов решения ) при линейных ограничительных условиях, накладываемых на элементы решения:

где - заданные числа.

4. Стандартная задача лп.

В стандартной форме задача линейного программирования является задачей на максимум (минимум) линейной целевой функции. Система ограничений ее состоит из одних линейных неравенств типа « <= » или « >= ». Все переменные задачи неотрицательны.

Всякую задачу линейного программирования можно сформулировать в стандартной форме . Преобразование задачи на минимум в задачу на максимум, а также обеспечение не отрицательности переменных производится так же, как и раньше. Всякое равенство в системе ограничений равносильно системе взаимопротивоположных неравенств:

Существует и другие способы преобразования системы равенств в систему неравенств, т.е. всякую задачу линейного программирования можно сформулировать в стандартной форме.

2 вариант ответа:

Стандартная задача ЛП. или, в матричной записи,где- матрица коэффициентов. Векторназывается вектором коэффициентов линейной формы,- вектором ограничений.

5. Каноническая задача лп.

В канонической форме задача является задачей на максимум (минимум) некоторой линейной функции F , ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х 1 , х 2 , ..., х n являются неотрицательными:

К канонической форме можно преобразовать любую задачу линейного программирования.

Короткая запись канонической задачи ЛП:

Х=(х1, х2, …, хn), С=(с1, с2, …, сn).

2 вариант ответа:

Каноническая задача ЛП. или, в матричной записи,

6. Симметричные и несимметричные двойственные задачи.

Двойственная задача линейного программирования. Рассмотрим задачу ЛП (1) или, в матричной записи,(2) Задачей, двойственной к (1) (двойственной задачей), называется задача ЛП отпеременныхвида(3) или, в матричной записи,(4) где. Правила построения задачи (3) по форме записи задачи (1) таковы: в задаче (3)

переменных столько же, сколько строк в матрицезадачи (1). Матрица ограничений в (3) - транспортированная матрица. Вектор правой части ограничений в (3) служит вектором коэффициентов максимизируемой линейной форме в (1), при этом знаки неравенств меняются на равенство. Наоборот, в качестве целевой функции в (3) выступает линейная форма, коэффициентами которой задаются вектором правой части ограничений задачи (1), при этом максимизация меняется на минимизацию. На двойственные переменныенакладывается условие неотрицательности. Задача (1), в отличии от двойственной задачи (3) называется прямой.Теорема двойственности . Если взаимодвойственные задачи (2), (4) допустимы, то они обе имеют решение и одинаковое значение .

Симметричные двойственные задачи

Разновидностью двойственных задач линейного, программирования являются двойственные симметричные задачи, в которых система ограничений как исходной, так и двойственной задач задается неравенствами, причем на двойственные переменные налагается условие неотрицательности.

Проектные параметры. Этим термином обозначают независимые переменные параметры, которые полностью и однозначно определяют решаемую задачу проектирования. Проектные параметры - неизвестные величины, значения которых вычисляются в процессе оптимизации. В качестве проектных параметров могут служить любые основные или производные величины, служащие для количественного описания системы. Так, это могут быть неизвестные значения длины, массы, времени, температуры. Число проектных параметров характеризует степень сложности данной задачи проектирования. Обычно число проектных параметров обозначают через п, а сами проектные параметры через х с соответствующими индексами. Таким образом п проектных параметров данной задачи будем обозначать через

Х1,Х2,Х3,…Хп.

Следует отметить, что проектные параметры в некоторых источниках могут называться внутренними управляемыми параметрами.

Целевая функция. Это - выражение, значение которого инженер стремиться сделать максимальным или минимальным. Целевая функция позволяет количественно сравнить два альтернативных решения. С математической точки зрения целевая функция описывает некоторую (п+1) - мерную поверхность. Ее значение определяется проектными параметрами

М = М (х1,х2,…,хп).

Примерами целевой функции, часто встречающимися в инженерной практике, являются стоимость, вес, прочность, габариты, КПД. Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости (рис.1). Если проектных параметров два, то целевая функция будет изображаться поверхностью в пространстве трех измерений (рис.2). При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются гиперповерхностями и не поддаются изображению обычными средствами. Топологические свойства поверхности целевой функции играют большую роль в процессе оптимизации, так как от них зависит выбор наиболее эффективного алгоритма.

Рисунок 1. Одномерная целевая функция.


Рисунок 2. Двумерная целевая функция.

Целевая функция в ряде случаев может принимать самые неожиданные формы. Например, ее не всегда удается выразить в замкнутой математической форме, в других случаях она может представлять собой кусочно-линейную функцию. Для задания целевой функции иногда может потребоваться таблица технических данных (например, таблица состояния водяного пара) или может понадобиться провести эксперимент. В ряде случаев проектные параметры принимают только целые значения. Примером может служить число зубьев в зубчатой передаче или число болтов во фланце. Иногда проектные параметры имеют только два значения - да или нет. Качественные параметры, такие как удовлетворение, которое испытывает приобретший изделие покупатель, надежность, эстетичность, трудно учитывать в процессе оптимизации, так как их практически невозможно охарактеризовать количественно. Однако в каком бы виде ни была представлена целевая функция, она должна быть однозначной функцией проектных параметров.

В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несовместимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов и поставить в соответствие каждой целевой функции некоторый безразмерный множитель. В результате появляется «функция компромисса», позволяющая в процессе оптимизации пользоваться одной составной целевой функцией.

Поиск минимума и максимума. Одни алгоритмы оптимизации приспособлены для поиска максимума, другие - для поиска минимума. Однако независимо от типа решаемой задачи на экстремум можно пользоваться одним и тем же алгоритмом, так как задачу минимизации можно легко превратить в задачу на поиск максимума, поменяв знак целевой функции на обратный. Этот прием иллюстрируется на рис.3.


Рисунок 3. При изменении знака целевой функции на противоположный в задаче на минимум, превращает ее в задачу на максимум.

Пространство проектирования. Так называется область, определяемая всеми п, проектными параметрами. Пространство проектирования не столь велико, как может показаться, поскольку оно обычно ограничено рядом условий, связанных с физической сущностью задачи. Ограничения могут быть столь сильными, что задача не будет иметь ни одного удовлетворительного решения. Ограничения делятся на две группы: ограничения - равенства и ограничения - неравенства.

Ограничения-равенства - это зависимость между проектными параметрами, которые должны учитываться при отыскании решения. Они отражают законы природы, экономики, права, господствующие вкусы и наличие необходимых материалов. Число ограничений - равенств может быть любым. Они имеют вид

С1 (X1, X2, Х3, . . ., Хп) = 0,

С2 (X1, X2, Х3, . . ., Х п) = 0,

..……………………………..

Сj(X1, X2, Х 3, . . ., Хп) = 0.

Ограничения-неравенства - это особый вид ограничений, выражаемых неравенствами. В общем случае их может быть сколько угодно много, причем все они имеют вид

z1 ?r1(X1, X2, Х3, . . ., Хп) ?Z1

z2 ?r2(X1, X2, Х3, . . ., Хп) ?Z2

………………………………………

zk ?rk(X1, X2, Х3, . . ., Хп) ?Zk

Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается не там, где ее поверхность имеет нулевой градиент. Нередко лучшее решение соответствует одной из границ области проектирования.

Прямые и функциональные ограничения. Прямые ограничения имеют вид

xнi ? xi ? xвi при i ? ,

где xнi , xвi - минимально и максимально допустимые значения i-го управляемого параметра; п - размерность пространства управляемых параметров. Например для многих объектов параметры элементов не могут быть отрицательными: xнi ? 0 (геометрические размеры, электрические сопротивления, массы и т.п.).

Функциональные ограничения, как правило, представляют собой условия работоспособности выходных параметров, не вошедших в целевую функцию. Функциональные ограничения могут быть:

  • 1) типа равенств
  • ш (Х) = 0; (2.1)
  • 2) типа неравенств

ц (Х) › 0, (2.2)

где ш (Х) и ц (Х) - вектор-функции.

Прямые и функциональные ограничения формируют допустимую область поиска:

ХД = {Х | ш(Х) = 0, ц (Х)›0, xi › xнi ,

xi ‹ xвi при i ? }.

Если ограничения (2.1) и (2.2) совпадают с условиями работоспособности, то допустимую область называют также областью работоспособности ХР.

Любая из точек Х принадлежащая ХД является допустимым решением задачи. Часто параметрический синтез ставится как задача определения любого из допустимых решений. Однако гораздо важнее решить задачу оптимизации - найти оптимальное решение среди допустимых.

Локальный оптимум. Так называется точка пространства проектирования, в которой целевая функция имеет наибольшее значение по сравнению с ее значениями во всех других точках ее ближайшей окрестности. На рис.4 показана одномерная целевая функция, имеющая два локальных оптимума. Часто пространство проектирования содержит много локальных оптимумов и следует соблюдать осторожность, чтобы не принять первый из них за оптимальное решение задачи.


Рисунок 4. Произвольная целевая функция может иметь несколько локальных оптимумов.

Глобальный оптимум - это оптимальное решение для всего пространства проектирования. Оно лучше всех других решений соответствующих локальным оптимумам, и именно его ищет конструктор. Возможен случай нескольких равных глобальных оптимумов, расположенных в разных частях пространства проектирования. Это позволяет выбрать наилучший вариант из равных оптимальных вариантов по целевой функции. В данном случае проектировщик может выбрать вариант интуитивно либо на основе сравнения полученных вариантов.

Выбор критериев. Основная проблема постановки экстремальных задач заключается в формулировке целевой функции. Сложность выбора целевой функции состоит в том, что любой технический объект первоначально имеет векторный характер критериев оптимальности (многокритериальность). Причем улучшение одного из выходных параметров, как правило, приводит к ухудшению другого, так как все выходные параметры являются функциями одних и тех же управляемых параметров и не могут изменяться независимо друг от друга. Такие выходные параметры называют конфликтными параметрами.

Целевая функция должна быть одна (принцип однозначности). Сведение многокритериальной задачи к однокритериальной называют сверткой векторного критерия. Задача поиска его экстремума сводится к задаче математического программирования. В зависимости от того каким образом выбираются и объединяются выходные параметры, в скалярной функции качества, различают частные, аддитивные, мультипликативные, минимаксные, статистические критерии и другие критерии. В техническом задании на проектирование технического объекта указываются требования к основным выходным параметрам. Эти требования выражаются в виде конкретных числовых данных, диапазона их изменения, условия функционирования и допустимых минимальных или максимальных значений. Требуемые соотношения между выходными параметрами и техническими требованиями (ТТ) называют условиями работоспособности и записываются в виде:

yi < TTi , i О ; yi > TTj , j О ;

yr = TTr ± ?yr; r О .

где yi, yj, yr - множество выходных параметров;

TTi, TTj, TTr - требуемые количественные значения соответствующих выходных параметров по техническому заданию;

Yr - допустимое отклонение r-го выходного параметра от указанного в техническом задании значения TTr.

Условия работоспособности имеют определяющее значение в разработке технических устройств, так как задачей проектирования является выбор проектного решения, в котором наилучшим образом выполняются все условия работоспособности во всем диапазоне изменения внешних параметров и при выполнении всех требований технического задания.

Частные критерии могут применяться в случаях, когда среди выходных параметров можно выделить один основной параметр yi(Х), наиболее полно отражающий эффективность проектируемого объекта. Этот параметр принимают за целевую функцию. Примерами таких параметров являются: для энергетического объекта - мощность, для технологического автомата - производительность, для транспортного средства - грузоподъемность. Для многих технических объектов таким параметром служит стоимость. Условия работоспособности всех остальных выходных параметров объекта относят при этом к функциональным ограничениям. Оптимизация на основе такой постановки называется оптимизацией по частному критерию.

Достоинство такого подхода - его простота, существенный недостаток - то, что большой запас работоспособности можно получить только по основному параметру, который принят в качестве целевой функции, а другие выходные параметры вообще не будут иметь запасов.

Взвешенный аддитивный критерий применяют тогда, когда условия работоспособности позволяют выделить две группы выходных параметров. В первую группу входят выходные параметры, значения которых в процессе оптимизации нужно увеличивать y+i(X) (производительность, помехоустойчивость, вероятность безотказной работы и т. п.), во вторую - выходные параметры, значения которых следует уменьшать y-i (X) (расход топлива, длительность переходного процесса, перерегулирование, смещение и пр.). Объединение нескольких выходных параметров, имеющих в общем случае различную физическую размерность, в одной скалярной целевой функции требует предварительного нормирования этих параметров. Способы нормирования параметров будут рассмотрены ниже. Пока будем считать, что все у(Х) безразмерны и среди них нет таких, которым соответствуют условия работоспособности типа равенства. Тогда для случая минимизации целевой функции свертка векторного критерия будет иметь вид

где aj>0 - весовой коэффициент, определяющий степень важности j-го выходного параметра (обычно aj выбираются проектировщиком и в процессе оптимизации остаются постоянными).

Целевую функцию в форме (2.1), выражающую аддитивный критерий, можно записать и в том случае, когда все или основные условия работоспособности имеют вид равенств. Тогда целевая функция

определяет среднеквадратичное приближение yj(X) к заданным техническим требованиям TTj.

Мультипликативный критерий может применяться в тех случаях, когда отсутствуют условия работоспособности типа равенств и выходные параметры не могут принимать нулевые значения. Тогда минимизируемая мультипликативная целевая функция имеет вид

Одним из наиболее существенных недостатков как аддитивного, так и мультипликативного критерия является неучет в постановке задачи технических требований, предъявляемых к выходным параметрам.

Критерий формы функции используют, когда ставится задача наилучшего совпадения заданной (эталонной) характеристики yТТ(Х,щ) с соответствующей выходной характеристикой y(Х,щ) проектируемого объекта, где щ - некоторая переменная, например частота, время, избранная фазовая переменная. К таким задачам относятся: проектирование системы автоматического регулирования, обеспечивающей требуемый вид переходного процесса по регулируемому параметру; определение параметров модели транзистора, дающих максимальное совпадение его теоретических вольт-амперных характеристик с экспериментальными; поиск параметров сечений балки, значения которых приводят к наилучшему совпадению заданной эпюры напряжений с расчетной, и т. п.

Использование частного критерия оптимизации в этих случаях сводится к замене непрерывных характеристик конечным множеством узловых точек и выбору одной из следующих целевых функций, подлежащих минимизации:


где р -- количество узловых точек щj на оси переменной щ; aj - весовые коэффициенты, значения которых тем больше, чем меньшее отклонение y(Х, щj) - yTT(Х, щj) нужно получить в j-и точке.

Максиминные (минимаксные) критерии позволяют достичь одной из целей оптимального проектирования - наилучшего удовлетворения условий работоспособности.

Введем количественную оценку степени выполнения j-го условия работоспособности, обозначим ее через zj и будем называть запасом работоспособности параметра yj. Расчет запаса по j-му выходному параметру можно выполнить различными способами, например,

где аj - весовой коэффициент; yjном - номинальное значение j-го выходного параметра; дj - величина, характеризующая разброс j -го выходного параметра.

Здесь предполагается, что все соотношения сведены к виду yi < TТj. Если yi > TТj , то -yj < -TТj . Следует принимать аj >1 (рекомендуемые значения 5 ? аj ? 20), если желательно достичь выполнения j-го технического требования с заданным допуском, т. е. yj = TТj ± ?yj; aj=l, если необходимо получить максимально возможную оценку zj.

Качество функционирования технической системы характеризуется вектором выходных параметров и, следовательно, вектором Z=(zm,zm,…,zm). Поэтому целевую функцию следует формировать как некоторую функцию ц(Z) вектора оценок. Например, если в качестве целевой функции рассматривается запас только того выходного параметра, который в данной точке X является наихудшим с позиций выполнения требований ТЗ, то

где m - количество запасов работоспособности.

Естественно теперь поставить задачу о выборе такой стратегии поиска X, которая максимизировала бы минимальный из запасов, т. е.

где ХД - допустимая для поиска область.

Критерий оптимизации с целевой функцией (2.6) называют максиминным критерием.

Статистические критерии. Оптимизация при статистических критериях имеет целью получение максимальной вероятности Р выполнение работоспособности. Эту вероятность принимают в качестве целевой функции. Тогда имеем задачу

Нормирование управляемых и выходных параметров. Пространство управляемых параметров - метрическое. Поэтому при выборе направлений и величин шагов поиска необходимо вводить ту или иную норму, отождествляемую с расстоянием между двумя точками. Последнее предполагает, что все управляемые параметры имеют одинаковую размерность или являются безразмерными.

Возможны различные способы нормирования. В качестве примера рассмотрим способ логарифмического нормирования, достоинством которого является переход от абсолютных приращений параметров к относительным. В этом случае i-и управляемый параметр ui преобразуется в безразмерный хi следующим образом:

где оi - коэффициент, численно равный единице параметра ui .

Нормирование выходных параметров можно выполнить с помощью весовых коэффициентов, как в аддитивом критерии, или переходом от уj к запасам работоспособности zj по (2.5).

В условиях рыночной системы управления производственной и сбытовой деятельностью предприятий и фирм в основе принятия хозяйственных решений лежит рыночная информация, а обоснованность решений проверяется рынком в ходе реализации товаров и услуг. При таком подходе начальным пунктом всего цикла предпринимательской деятельности становится изучение потребительского спроса. Рассмотрим некоторые вопросы моделирования спроса и потребления.

Рассмотрим потребителя, который в результате своего существования потребляет некоторые блага. Уровень удовлетворения потребностей потребителя обозначим через U .Предположим, что имеется n видов благ Б 1 , Б 2 ,…, Б n . В качестве благ могут выступать:

· продовольственные товары;

· товары первой необходимости;

· товары второй необходимости;

· предметы роскоши;

· платные услуги и т. д.

Пусть количество потребления каждого блага равно х 1 , х 2 ,…, х n . Целевой функцией потребления называется зависимость между степенью (уровнем) удовлетворения потребностей U и количеством потребляемых благ: х 1 , х 2 , …, х n . Эта функция имеет вид .

В пространстве потребительских благ каждому уравнению соответствует определенная поверхность равноценных, или безразличных, наборов благ, которая называется поверхностью безразличия . Гиперповерхность такой кривой, называемой многомерной поверхностью безразличия, можно представить в виде , где С - константа. Для наглядности рассмотрим пространство двух благ, например, в виде двух агрегированных групп товаров: продукты питания Б 1 и непродовольственные товары, включая платные услуги Б 2 . Тогда уровни целевой функции потребления можно изобразить на плоскости в виде кривых безразличия, соответствующих различным значениям константы С .Для этого выражают количество потребления одного блага х 1 через другое х 2 . Рассмотрим пример.

Пример 6.3 . Целевая функция потребления имеет вид . Найти кривые безразличия.

Решение . Кривые безразличия имеют вид или , или (при этом следует отметить, что должно выполняться ).



Каждый потребитель стремится максимизировать уровень удовлетворения потребностей, то есть . Однако максимизации степени удовлетворения потребностей будут мешать возможности потребителя. Обозначим цену на единицу каждого блага через р 1 , р 2 ,…, р n , а доход потребителя через D .Тогда должно выполняться бюджетное ограничение , имеющее смысл закона, согласно которому затраты потребителя не должны превышать сумму дохода:

В результате для нахождения оптимального набора благ необходимо решать задачу оптимального программирования:

(6.3)

Рассмотрим двухфакторную функцию потребления , где х 1 - объем потребления продуктов питания и х 2 - потребление непродовольственных товаров и платных услуг. Кроме того, предположим, что весь доход потребитель направляет на удовлетворение своих потребностей. В этом случае бюджетное ограничение будет содержать только два слагаемых, и неравенство превратится в равенство. Задача оптимального программирования при этом примет вид:

(6.4)

Геометрически оптимальное решение имеет смысл точки касания кривой безразличия линии, соответствующей бюджетному ограничению.

х 2
Из бюджетного ограничения системы (6.4) можно выразить переменную . Подставив это выражение в целевую функцию, получаем функцию одной переменной , максимум которой можно найти из уравнения, приравняв производную к нулю: .

Пример 6.4 . Целевая функция потребления имеет вид . Цена на благо Б 1 равна 20, цена на благо Б 2 равна 50. Доход потребителя составляет 1800 единиц. Найти кривые безразличия, оптимальный набор благ потребителя, функцию спроса на первое благо по цене, функцию спроса на первое благо по доходу.

Решение. Кривые безразличия имеют вид:

Получаем множество гипербол, расположенных в первой координатной четверти на разном расстоянии от начала координат в зависимости от значения константы С .

Находим оптимальный набор благ. Задача оптимального программирования имеет вид:

Для ее решения выражаем из бюджетного ограничения одну переменную через другую: . Подставляем в целевую функцию

Находим производную и приравниваем ее к нулю

Получаем .

Таким образом, оптимальный набор благ составляют 30,5 и 23,8 единиц. Находим теперь функцию спроса на первое благо по цене на него. Для этого в бюджетном ограничении вместо фиксированного значения вводим цену первого блага , получая уравнение: . Выражаем

или , откуда находим функцию спроса на первое благо по цене: .

Находим теперь функцию спроса на первое благо по доходу. Для этого выражаем из бюджетного ограничения одну переменную через другую: . Подставляем в целевую функцию:

Находим производную и приравниваем ее к нулю:

Отсюда находим функцию спроса на первое благо по доходу

7. Модель
межотраслевого баланса

Балансовые модели предназначены для анализа и планирования производства и распределения продукции на различных уровнях - от отдельного предприятия до народного хозяйства в целом. Если вспомнить историю народного хозяйства как Советского Союза и России, так и других развитых стран, то можно наблюдать, что в экономике многих государств в разное время случались экономические кризисы разных крайностей от кризисов перепроизводства (США, середина ХХ века), до дефицита (Россия, конец ХХ века). Все эти экономические кризисы связаны с нарушением баланса между производством и потреблением. Из этих фактов видно, что баланс между произведенной продукцией и потреблением является важным критерием как для макроэкономики, так и для микроэкономики.

Экономико-математические модели баланса пытались выстроить многие экономисты и математики с самого начала возникновения проблемы, однако, наиболее полную балансовую модель удалось построить в 1936 г. американским экономистом В. Леонтьевым (который после революции эмигрировал в США и за свою модель получил Нобелевскую премию в области экономики). Эта модель позволяла рассчитать баланс между несколькими взаимодействующими отраслями, хотя ее можно легко обобщить и для организаций микроэкономики, например, для вычисления баланса между несколькими взаимодействующими предприятиями или между подразделениями одного предприятия (например, цехами одного завода).

Цель балансового анализа - ответить на вопрос, возникающий в макроэкономике и связанный с эффективностью ведения многоотраслевого хозяйства: каким должен быть объем производства каждой из п отраслей, чтобы удовлетворить все потребности в продукции этой отрасли? При этом каждая отрасль выступает, с одной стороны, как производитель некоторой продукции; а с другой - как потребитель продукции и своей, и произведенной другими отраслями.

Предположим, что рассматривается п отраслей промышленности, каждая из которых производит свою продукцию. Пусть общий объем произведенной продукции i -й отрасли равен . Полная стоимость продукции, произведенной i -й отраслью, будем называть валовым продуктом этой отрасли. Теперь рассмотрим, на что тратится продукция, производимая отраслью. Часть продукции идет на внутрипроизводственное потребление данной отраслью и потребление другими отраслями, связанными с этой отраслью. Количество продукции i -й отрасли, предназначенной для конечного потребления (вне сферы материального производства) личного и общественного j -й отраслью, обозначим . Оставшаяся часть предназначена для реализации во внешнюю сферу. Эта часть называется конечным продуктом. Пусть i -я отрасль производит конечного продукта.

Рассмотрим процесс производства за некоторый период времени (например, год). Так как валовой объем продукции любой i -й отрасли равен суммарному объему продукции, потребляемой n отраслями, и конечного продукта, то уравнение баланса между производством и потреблением будет иметь вид

, (i = 1, 2, …, n ). (7.1)

Уравнения (7.1) называются соотношениями баланса.

. (7.2)

Все ранее рассмотренные показатели можно записать в основную балансовую таблицу:

Отрасль Потребление отраслей, Конечный продукт, Валовойпродукт,
n
n
Чистый продукт

В результате основная балансовая таблица содержит четыре матрицы: матрицу межотраслевых производственных связей

; матрицу валовой продукции ; матрицу конечной продукции и матрицу чистой продукции .

Одной из задач балансового анализа является определение валового продукта , если известно распределение конечного . Для этого введем коэффициенты прямых затрат

Они получаются в результате деления всех элементов каждого столбца матрицы на соответствующий элемент матрицы межотраслевых производственных связей Х .Коэффициенты прямых затрат имеют смысл количества потребления продукции j -й отрасли, необходимой для производства единицы продукции i -й отраслью. Из выражения (7.3) можно получить: . Подставив последнее выражение в соотношение баланса (7.1), получим

. (7.4)

Если обозначить матрицу коэффициентов прямых затрат как , то соотношение баланса (7.4) в матричном виде можно записать в виде

Из последнего выражения можно найти значение конечного продукта при известном значении валового

где - единичная матрица того же размера, что и А .

Пример 7.1 . Баланс четырех отраслей за предыдущий период имеет матрицу межотраслевых производственных связей вида и матрицу валовой продукции вида . Необходимо определить конечный продукт Y и чистый продукт C каждой отрасли.

Конечный продукт Y получается в результате вычитания из каждого элемента матрицы валовой продукции суммы элементов соответствующих строк матрицы . Например, первое значение равно 100 – (10 + 20 + 15 + 10) = 45. Чистый продукт С получается в результате вычитания из каждого элемента матрицы валовой продукции Х суммы элементов соответствующих столбцов матрицы . Например, первое значение равно 100 – (10 + 5 + 25 + 20) = 40. В результате получим основную балансовую таблицу:

Отрасль Потребление отраслей, Конечный продукт, Валовойпродукт,
Чистый продукт, S = 210 S = 400

Поставим теперь другую задачу: рассчитаем конечный продукт каждой отрасли на будущий период, если валовой продукт окажется равным . Для решения этой задачи найдем коэффициенты прямых затрат:i -й отрасли.

Пример 7.2 . В некотором регионе имеются две основные отрасли народного хозяйства: машиностроение (м/с) и сельское хозяйство (с/х). Баланс этих отраслей за отчетный период определяется матрицами , . Вычислим остальные показатели и заполним основную балансовую таблицу

Предположим, что на будущий период планируется конечная продукция в объемах . Нужно определить, какой валовой продукт при этом нужно планировать. Найдем коэффициенты прямых затрат:

Можно выделить следующие причины, по которым экономические системы являются стохастическими:

1) система сложная, многокритериальная, описывается многоуровневой иерархической структурой;

2) система подвержена влиянию большого числа неуправляемых внешних факторов (погодные условия, внешняя политика, социальные факторы и т. д.);

3) преднамеренное искажение информации, сокрытие информации и целенаправленная экономическая диверсия.

Исходя из этого для моделирования многих экономических систем используют математические методы, основанные на применении законов теории вероятностей, которые получили название стохастических методов .

При применении стохастических методов оптимизация целевой функции ведется по среднему значению, то есть при заданных параметрах необходимо найти такое решение, когда значение целевой функции в среднем будет максимальным.

Стохастические системы в экономике описываются марковским аппаратом, в основе которого лежат марковские случайные процессы . Они применяются в случаях, когда нельзя заформализовать модель (описать аналитическим выражением) и в случае, когда система представляет собой многопараметрическую вероятностную экономическую систему.

Если ограничивающий фактор один (например, дефицитный станок), решение может быть найдено с применением простых формул (см. ссылку в начале статьи). Если же ограничивающих факторов несколько, применяется метод линейного программирования.

Линейное программирование – это название, данное комбинации инструментов используемых в науке об управлении. Этот метод решает проблему распределения ограниченных ресурсов между конкурирующими видами деятельности с тем, чтобы максимизировать или минимизировать некоторые численные величины, такие как маржинальная прибыль или расходы. В бизнесе он может использоваться в таких областях как планирование производства для максимального увеличения прибыли, подбор комплектующих для минимизации затрат, выбор портфеля инвестиций для максимизации доходности, оптимизация перевозок товаров в целях сокращения расстояний, распределение персонала с целью максимально увеличить эффективность работы и составление графика работ в целях экономии времени.

Скачать заметку в формате , рисунки в формате

Линейное программирование предусматривает построение математической модели рассматриваемой задачи. После чего решение может быть найдено графически (рассмотрено ниже), с использованием Excel (будет рассмотрено отдельно) или специализированных компьютерных программ.

Пожалуй, построение математической модели – наиболее сложная часть линейного программирования, требующая перевода рассматриваемой задачи в систему переменных величин, уравнений и неравенств – процесс, в конечном итоге зависящий от навыков, опыта, способностей и интуиции составителя модели.

Рассмотрим пример построения математической модели линейного программирования

Николай Кузнецов управляет небольшим механическим заводом. В будущем месяце он планирует изготавливать два продукта (А и В), по которым удельная маржинальная прибыль оценивается в 2500 и 3500 руб., соответственно.

Изготовление обоих продуктов требует затрат на машинную обработку, сырье и труд (рис. 1). На изготовление каждой единицы продукта А отводится 3 часа машинной обработки, 16 единиц сырья и 6 единиц труда. Соответствующие требования к единице продукта В составляют 10, 4 и 6. Николай прогнозирует, что в следующем месяце он может предоставить 330 часов машинной обработки, 400 единиц сырья и 240 единиц труда. Технология производственного процесса такова, что не менее 12 единиц продукта В необходимо изготавливать в каждый конкретный месяц.

Рис. 1. Использование и предоставление ресурсов

Николай хочет построить модель с тем, чтобы определить количество единиц продуктов А и В, которые он доложен производить в следующем месяце для максимизации маржинальной прибыли.

Линейная модель может быть построена в четыре этапа.

Этап 1. Определение переменных

Существует целевая переменная (обозначим её Z), которую необходимо оптимизировать, то есть максимизировать или минимизировать (например, прибыль, выручка или расходы). Николай стремится максимизировать маржинальную прибыль, следовательно, целевая переменная:

Z = суммарная маржинальная прибыль (в рублях), полученная в следующем месяце в результате производства продуктов А и В.

Существует ряд неизвестных искомых переменных (обозначим их х 1 , х 2 , х 3 и пр.), чьи значения необходимо определить для получения оптимальной величины целевой функции, которая, в нашем случае является суммарной маржинальной прибылью. Эта маржинальная прибыль зависит от количества произведенных продуктов А и В. Значения этих величин необходимо рассчитать, и поэтому они представляют собой искомые переменные в модели. Итак, обозначим:

х 1 = количество единиц продукта А, произведенных в следующем месяце.

х 2 = количество единиц продукта В, произведенных в следующем месяце.

Очень важно четко определить все переменные величины; особое внимание уделите единицам измерения и периоду времени, к которому относятся переменные.

Этап. 2. Построение целевой функции

Целевая функция – это линейное уравнение, которое должно быть или максимизировано или минимизировано. Оно содержит целевую переменную, выраженную с помощью искомых переменных, то есть Z выраженную через х 1 , х 2 … в виде линейного уравнения.

В нашем примере каждый изготовленный продукт А приносит 2500 руб. маржинальной прибыли, а при изготовлении х 1 единиц продукта А, маржинальная прибыль составит 2500 * х 1 . Аналогично маржинальная прибыль от изготовления х 2 единиц продукта В составит 3500 * х 2 . Таким образом, суммарная маржинальная прибыль, полученная в следующем месяце за счет производства х 1 единиц продукта А и х 2 единиц продукта В, то есть, целевая переменная Z составит:

Z = 2500 * х 1 + 3500 *х 2

Николай стремится максимизировать этот показатель. Таким образом, целевая функция в нашей модели:

Максимизировать Z = 2500 * х 1 + 3500 *х 2

Этап. 3. Определение ограничений

Ограничения – это система линейных уравнений и/или неравенств, которые ограничивают величины искомых переменных. Они математически отражают доступность ресурсов, технологические факторы, условия маркетинга и иные требования. Ограничения могут быть трех видов: «меньше или равно», «больше или равно», «строго равно».

В нашем примере для производства продуктов А и В необходимо время машинной обработки, сырье и труд, и доступность этих ресурсов ограничена. Объемы производства этих двух продуктов (то есть значения х 1 их 2) будут, таким образом, ограничены тем, что количество ресурсов, необходимых в производственном процессе, не может превышать имеющееся в наличии. Рассмотрим ситуацию со временем машинной обработки. Изготовление каждой единицы продукта А требует трех часов машинной обработки, и если изготовлено х 1 , единиц, то будет потрачено З * х 1 , часов этого ресурса. Изготовление каждой единицы продукта В требует 10 часов и, следовательно, если произведено х 2 продуктов, то потребуется 10 * х 2 часов. Таким образом, общий объем машинного времени, необходимого для производства х 1 единиц продукта А и х 2 единиц продукта В, составляет 3 * х 1 + 10 * х 2 . Это общее значение машинного времени не может превышать 330 часов. Математически это записывается следующим образом:

3 * х 1 + 10 * х 2 ≤ 330

Аналогичные соображения применяются к сырью и труду, что позволяет записать еще два ограничения:

16 * х 1 + 4 * х 2 ≤ 400

6 * х 1 + 6 * х 2 ≤ 240

Наконец следует отметить, что существует условие, согласно которому должно быть изготовлено не менее 12 единиц продукта В:

Этап 4. Запись условий неотрицательности

Искомые переменные не могут быть отрицательными числами, что необходимо записать в виде неравенств х 1 ≥ 0 и х 2 ≥ 0. В нашем примере второе условия является избыточным, так как выше было определено, что х 2 не может быть меньше 12.

Полная модель линейного программирования для производственной задачи Николая может быть записана в виде:

Максимизировать: Z = 2500 * х 1 + 3500 *х 2

При условии, что: 3 * х 1 + 10 * х 2 ≤ 330

16 * х 1 + 4 * х 2 ≤ 400

6 * х 1 + 6 * х 2 ≤ 240

Рассмотрим графический метод решения задачи линейного программирования.

Этот метод подходит только для задач с двумя искомыми переменными. Модель, построенная выше, будет использована для демонстрации метода.

Оси на графике представляют собой две искомые переменные (рис. 2). Не имеет значения, какую переменную отложить вдоль, какой оси. Важно выбрать масштаб, который в конечном итоге позволит построить наглядную диаграмму. Поскольку обе переменные должны быть неотрицательными, рисуется только I-й квадрант.

Рис. 2. Оси графика линейного программирования

Рассмотрим, например, первое ограничение: 3 * х 1 + 10 * х 2 ≤ 330. Это неравенство описывает область, лежащую ниже прямой: 3 * х 1 + 10 * х 2 = 330. Эта прямая пересекает ось х 1 при значении х 2 = 0, то есть уравнение выглядит так: 3 * х 1 + 10 * 0 = 330, а его решение: х 1 = 330 / 3 = 110

Аналогично вычисляем точки пересечения с осями х 1 и х 2 для всех условий-ограничений:

Область допустимых значений Граница допустимых значений Пересечение с осью х 1 Пересечение с осью х 2
3 * х 1 + 10 * х 2 ≤ 330 3 * х 1 + 10 * х 2 = 330 х 1 = 110; х 2 = 0 х 1 = 0; х 2 = 33
16 * х 1 + 4 * х 2 ≤ 400 16 * х 1 + 4 * х 2 = 400 х 1 = 25; х 2 = 0 х 1 = 0; х 2 = 100
6 * х 1 + 6 * х 2 ≤ 240 6 * х 1 + 6 * х 2 = 240 х 1 = 40; х 2 = 0 х 1 = 0; х 2 = 40
х 2 ≥ 12 х 2 = 12 не пересекает; идет параллельно оси х 1 х 1 = 0; х 2 = 12

Графически первое ограничение отражено на рис. 3.

Рис. 3. Построение области допустимых решений для первого ограничения

Любая точка в пределах выделенного треугольника или на его границах будет соответствовать этому ограничению. Такие точки называются допустимыми, а точки за пределами треугольника называются недопустимыми.

Аналогично отражаем на графике остальные ограничения (рис. 4). Значения х 1 и х 2 на или внутри заштрихованной области ABCDE будут соответствовать всем ограничениям модели. Такая область называется областью допустимых решений.

Рис. 4. Область допустимых решений для модели в целом

Теперь в области допустимых решений необходимо определить значения х 1 и х 2 , которые максимизируют Z. Для этого в уравнении целевой функции:

Z = 2500 * х 1 + 3500 *х 2

разделим (или умножим) коэффициенты перед х 1 и х 2 на одно и тоже число, так чтобы получившиеся значения попали в диапазон, отражаемый на графике; в нашем случае такой диапазон – от 0 до 120; поэтому коэффициенты можно разделить на 100 (или 50):

Z = 25х 1 + 35х 2

затем присвоим Z значение равное произведению коэффициентов перед х 1 и х 2 (25 * 35 = 875):

875 = 25х 1 + 35х 2

и, наконец, найдем точки пересечения прямой с осями х 1 и х 2:

Нанесем это целевое уравнение на график аналогично ограничениям (рис. 5):

Рис. 5. Нанесение целевой функции (черная пунктирная линия) на область допустимых решений

Значение Z постоянно на всем протяжении линии целевой функции. Чтобы найти значения х 1 и х 2 , которые максимизируют Z, нужно параллельно переносить линию целевой функции к такой точке в границах области допустимых решений, которая расположена на максимальном удалении от исходной линии целевой функции вверх и вправо, то есть к точке С (рис. 6).

Рис. 6. Линия целевой функции достигла максимума в пределах области допустимых решений (в точке С)

Можно сделать вывод, что оптимальное решение будет находиться в одной из крайних точек области принятия решения. В какой именно, будет зависеть от угла наклона целевой функции и от того, какую задачу мы решаем: максимизации или минимизации. Таким образом, не обязательно чертить целевую функцию – все, что необходимо, это определить значения х 1 и х 2 в каждой из крайних точек путем считывания с диаграммы или путем решения соответствующей пары уравнений. Найденные значения х 1 и х 2 затем подставляются в целевую функцию для расчета соответствующей величины Z. Оптимальным решением является то, при котором получена максимальная величина Z при решении задачи максимизации, и минимальная – при решении задачи минимизации.

Определим, например значения х 1 и х 2 в точке С. Заметим, что точка С находится на пересечении линий: 3х 1 + 10х 2 = 330 и 6х 1 + 6х 2 = 240. Решение этой системы уравнений дает: х 1 = 10, х 2 = 30. Результаты расчета для всех вершин области допустимых решений приведены в таблице:

Точка Значение х 1 Значение х 2 Z = 2500х 1 + 3500х 2
А 22 12 97 000
В 20 20 120 000
С 10 30 130 000
D 0 33 115 500
E 0 12 42 000

Таким образом, Николай Кузнецом должен запланировать на следующий месяц производство 10 изделий А и 30 изделий В, что позволит ему получить маржинальную прибыль в размере 130 тыс. руб.

Кратко суть графического метода решения задач линейного программирования можно изложить следующим образом:

  1. Начертите на графике две оси, представляющие собою два параметра решения; нарисуйте только I-й квадрант.
  2. Определите координаты точек пересечения всех граничных условий с осями, подставляя в уравнения граничных условий поочередно значения х 1 = 0 и х 2 = 0.
  3. Нанести линии ограничений модели на график.
  4. Определите на графике область (называемую допустимой областью принятия решения), которая соответствует всем ограничениям. Если такая область отсутствует, значит, модель не имеет решения.
  5. Определите значения искомых переменных в крайних точках области принятия решения, и в каждом случае рассчитайте соответствующее значение целевой переменной Z.
  6. Для задач максимизации решение – точка, в которой Z максимально, для задач минимизации, решение – точка, в которой Z минимально.



Top