Записать систему в канонической форме. Различные формы записи ЗЛП (общая, каноническая, симметрическая). Виды задач линейного программирования

В настоящее время разработано множество различных алгоритмов решения Т.з. распределительный метод , метод потенциалов, дельта-метод, венгерский метод, метод дифференциальных рент , способ двойного предпочтения , различные сетевые методы. Они относительно просты, по ним составлены десятки программ для различных вычислительных машин . Во многих снабженческих, транспортных и других организациях во всем мире с их помощью рассчитываются маршруты доставки материалов на строительные площадки, планы длительного прикрепления поставщиков металлопроката к потребителям, планы перевозок топлива. Задачи эти часто усложняются разного рода дополнительными условиями напр., в них включается расчет не только себестоимости перевозок, но и себестоимости производства продукции (производственно-транспортная задача), оптимизируется совместно доставка взаимозаменяемых видов продукции (скажем, различных кровельных материалов), оптимизируется доставка грузов с промежуточными базами (складами). Кроме того, следует учитывать, что экономико-математическая модель Т.з. позволяет описывать множество ситуаций, весьма далеких от проблемы перевозок, в частности, находить оптимальное размещение заказов на производство изделий с разной себестоимостью.  


Полученные с помощью этого алгоритма сбалансированные планы поставок ресурсов и услуг могут быть в дальнейшем оптимизированы стандартными методами (потенциалов, венгерским и др.)  

Венгерский метод в классическом варианте применим только для замкнутой модели транспортной задачи. Поэтому при разработке алгоритмов решения транспортной задачи с открытой или полуоткрытой системой ограничений исследовались и были определены эффективные методы предварительного построения замыкания исходной модели с последующим применением венгерского метода. В общем случае схема решения такой задачи представляет собой двухэтапную процедуру, где на первом этапе определяется замыкание модели, а на втором по замыканию модели отыскивается оптимум задачи.  

Описание алгоритма венгерского метода  

После конечного числа построений очередной первый этап обязательно закончится переходом на второй этап и количество независимых нулей увеличится на единицу, т. е. (к + 1)-я итерация будет завершена. Обоснование отдельных этапов алгоритма венгерского метода для задачи выбора приведено в .  

Количество возможных вариантов назначений равно факториалу числа работ и ресурсов и огромно даже в небольшой задаче. Поэтому для нахождения оптимального варианта применяют специальные алгоритмы. Среди них особенно эффективен при решении 3. о н. вручную т.н. венгерский метод.  

Оптимизация цены, объема выпуска и постоянных затрат предприятия при освоении нового продукта чисто математически может быть осуществлена на основе постановки следующий оптимизационной задачи , которая, будучи выражена линейными уравнениями выручки, переменных и совокупных издержек предприятия, а также зависимости между располагаемыми инвестициями и максимально возможным объемом выпуска продукта, обусловленным созданием на средства этих инвестиций соответствующих новых производственных и торговых мощностей. Эта задача поддается решению методами линейного целочисленного программирования (например, симплекс-методом или так называемым венгерским методом)  

Известны различные способы решения этой задачи - распределительный, венгерский, метод потенциалов и др. Как правило, для расчетов применяется ЭВМ.  

В то же время в книге изложено немало организационных решений , с успехом применяемых на венгерских промышленных предприятиях , представляющих интерес и для наших условий. К таким решениям можно отнести обоснование механизма выявления новых назревших организационных проблем, подлежащих решению процедуру разработки вариантов организационной концепции при подготовке проектов рационализации организационных систем обоснование многофакторного подхода при выборе форм и методов организации производства применение гибких методов организации и диверсификации производства и др.  

Венгерские специалисты разработали методики комплексного исследования рынка для новых товаров как производственного назначения, так и народного потребления. Различие методов обусловлено назначением товаров, в силу чего, например, точнее можно определить круг потребителей изделий производственного назначения, так как покупателями являются определенные предприятия. А это, в свою очередь, говорит производителю о довольно ограниченном объеме выпуска. Маркетинг изделий производственного назначения характерен и тем, что практически возможен опрос всех будущих потребителей, т. v процедура выяснения запросов покупателей проще, чем в случае потребительских товаров.  

Рассматриваемый метод получения ацетилена успешно изучался венгерскими и румынскими химиками в Венгрии и Румынии были построены не только лабораторные, но и опытно-промышленные установки, на которых проводились интенсивные работы по промышленному освоению метода. Промышленные установки, работающие по этому методу, имеются также в ФРГ и в Канаде.  

Существует много частных способов (например, способ Фогеля, методы потенциалов, дифференциальных рент , способ Лебедева - Тихомирова, венгерский метод и др.), а также универсальных методов (например, алгоритм симплекс-метода) решения задач линейного программирования с такого рода условиями. Представляет интерес, как сам результат вычисления, так и его интерпретация.  

Корнай (Kornai) Янош (р. 1928), венгерский экономист-математик, академик АН Венгерской республики. Окончил Будапештский университет (1955), работал в АН, Институте текстильной промышленности , вычислительном центре Академии наук с 1967 г. - профессор и руководитель отдела АН Венгрии, с 1986 г. - профессор экономики в Гарвардском университете. В конце 50-х гг. вместе с Т. Липтаком разработал метод решения задач блочного программирования - метод планирования на двух уровнях (см. Корнай-Липтака метод). Исследовал проблемы функционирования экономики в условиях неравновесия, взаимоотношения между дефицитом и инфляцией. Был одним из идеологов венгерской экономической реформы конца 60-х гг. Иностранный член Британской, Шведской, Финляндской академий наук , почетный член Американской академии искусств и наук, Американской экономической ассоциации почетный доктор университетов многих стран мира . Государственная премия ВНР - 1983 г.  

Большинство конфликтов является ситуациями для торга, сделки, но существуют и такие, в которых возможность выигрыша одной строны в значительной степени зависит от поведения и принимаемых решений другой стороны. Это возможно продемонстрировать на примере, приведенном венгерским социологом Э. Ханкишем. Последний назвал этот метод дилеммой арестанта. Суть его в том, что, добиваясь признания от двух подозреваемых, следователь ставит следующие условия  

Особое место в программе уделяется методам, чувствительным к разладке технологического процесса , в частности, методу регулирования с предупреждающими границами и методу кумулятивных сумм . В программу включены документы по контрольным картам кумулятивных сумм для средних арифметических значений, дисперсий и размахов, числа дефектов и дефектных единиц продукции. По предложению Венгерской Народной Республики в программу внесено общее методическое руководство по применению контрольных карт . Разработка методов регулирования предусмотрена на основе использования критерия проверки гипотез Кеймана-Пирсона или, когда критерий Неймана-Пирсона оказывается неприемлемым, принципа

Предварительный этап .

Шаг 1 . При максимизации целевой функции С найти максимальный элемент и каждый элемент этого столбца вычесть из максимального. При минимизации целевой функции (суммы показателей эффективности назначений) в каждом столбце матрицы С найти минимальный элемент и вычесть его из каждого элемента этого столбца.

С с неотрицательными элементами. В каждом столбце матрицы С имеется, по крайней мере, один нуль.

Шаг 2 . В каждой строке матрицы С найти минимальный элемент и вычесть его из каждого элемента этой строки.

В результате образуется матрица С 0 с неотрицательными элементами. В каждом столбце и каждой строке матрицы С 0 имеется, по крайней мере, по одному нулю.

Шаг 3 . Отме­тить произвольный нуль в первом столбце звездочкой. Начиная со второго столбца просматривать каждый столбец матрицы С 0 и отмечать в нем звездочкой нуль, расположенный в строке, где нет нуля со звездочкой. В каждом столбце можно отметить звездочкой только один нуль. Очевидно, что нули матрицы С 0 , отмеченные звездочкой, являются по построению независимыми. На этом предварительный этап заканчи­вается.

( k + 1)-я итерация . Допустим, что k -я итерация уже проведена и в результате получена матрица С k . Если в матрице С k имеется ровно п нулей со звездочкой, то процесс решения заканчивается. Если же число нулей со звездочкой меньше п , то переходим к (k + 1)-й ите­рации.

Каждая итерация начинается первым и заканчивается вторым эта­пом. Между ними может несколько раз проводиться пара этапов: третий – первый . Перед началом итерации знаком «+» выделяют столбцы матрицы С k , которые содержат нули со звездочкой .

Первый этап . Просмотреть невыделенные столбцы матри­цы С k . Если среди них не окажется нулевых элементов, то перейти к третьему этапу .

Если же невыделенный нуль матрицы С k обнаружен, то возможен один из двух случаев:

    эта строка не содержит нуля со звездочкой.

В первом случае невыделенный нуль отметить штрихом и выделить строку , в которой он содержится, постановкой справа от нее зна­ка «+». Затем уничтожить знак «+», обводя его кружком над тем столбцом , на пересечении которого с данной выделенной строкой со­держится нуль со звездочкой.

 Если такой нуль найден и он единственный в столбце, то отметить его штрихом и выделить строку (строки), содержащую такой нуль (нули), знаком «+». Затем просмотреть эту строку (строки), отыскивая в них нуль со звез­дочкой.

 Если такой нуль в столбце найден, но он не единственный в столбце, то из этих нулей следует выбрать:

    в первую очередь такой нуль, в одной строке с которым, нет 0*;

    во вторую очередь такой нуль, в одной строке с которым имеется 0*, но в одном столбце с этим 0* имеется невыделенный нуль;

    в последнюю очередь такой нуль, в одной строке с которым имеется 0*, но в одном столбце с этим 0* отсутствует невыделенный нуль;

Этот процесс законечное число шагов заканчивается одним изследующих исходов:

Исход 1 . Все нули матрицы С k выделены, т. е. находятся в выделенных строках или столбцах. В этом случае перейти к третьему этапу ;

Исход 2 . Имеется невыделенный нуль в строке, где нет нуля со звездочкой. Тогда перейти ко второму этапу , отметив последний по порядку нуль штрихом .

Во втором случае , отметив невыделенныйнуль штрихом, сразупереходят ко второму этапу.

Второй этап . Построить следующую цепочку из элементов матрицы С k : исходный нуль со штрихом, нуль со звездочкой, располо­женный в одном столбце с первым, нуль со штрихом, расположенный в одной строке с предшествующим нулем со звездочкой, и т. д. Итак, цепочка образуется передвижением от 0" к 0* по столбцу , от 0* к 0" по строке и т. д.

Можно доказать, что описанный алгоритм построения цепочки однозначен и конечен. При этом цепочка всегда начинается и закан­чивается нулем со штрихом . Далее над элементами цепочки, стоящими на нечетных местах (0"), поставить звездочки, уничтожая их над четными элементами (0*). Затем уничтожить все штрихи над элементами мат­рицы С k и знаки «+». При этом количество независимых нулей будет увеличено на единицу . (k + 1)-я итерация закончена .

Третий этап . К этому этапу следует переходить после первого этапа в случае, если все нули матрицы С k выделены , т. е. находятся в выделенных строках или столбцах. В таком случае среди невыделенных элементов матрицы С k выбрать минимальный элемент и обозначить его h > 0.

    вычесть h из всех элементов матрицы С k , расположенных в невыделенных стро­ках , и

    прибавить h ко всем элементам матрицы С k , расположенным в выделенных столбцах .

В результате получается новая матрица , эквивалентнаяС k .

Поскольку среди невыделенных элементов матрицы
появятся новые нули (согласно определению), следует перейти к первому этапу, а вместо матрицыС k рассматривать матрицу
.

Завершив первый этап либо перейти ко второму этапу , если невыделенный нуль находится в строке, которая не содержит нуля со звездочкой , либо вновь возвратиться к третье­му этапу , если в результате выполнения первого этапа все нули матрицы
окажутся выделенными .

В первом случае после проведения второго этапа итерация закан­чивается .

Во втором случае после проведения третьего этапа получается матрица
~
~С k . В матрице
появятся невыделенные нули, и всю последовательность операций, начиная с первого этапа, надо повторить.После конечного числа повторений очередной первый этап обязательно закончится переходом на второй этап , при выполнении которого количество независимых нулей увеличится на единицу, а после выполнения которого (k + 1)-я итерация за­канчивается .

Пример 9. Решим венгерским методом задачу:

На боевом надводном корабле имеется 5 зенитных огневых средств (ЗОС). На корабль совершается одновременный налет авиации противника в количестве 5 единиц. Поражающий потенциал каждого i –го ЗОС по j –му летательному аппарату противника равен (количество потенциально уничтожаемыхj –х летательных аппаратов за время атаки НК одним ЛА). Предполагается, что любое ЗОС может обстрелять любую цель.

Распределить ЗОС по ВЦ таким образом, чтобы суммарный поражающий потенциал был максимален, при условиях:

    на одну ВЦ может быть назначено только одно ЗОС;

    все цели должны быть обстреляны ЗОС.

Решение :

Предварительный этап .



Первая итерация .

Первый этап .

+ +


В

+ +

торой этап .


Вторая итерация .

П

+ +

ервый этап .


Поскольку все нули матрицы С 1 выделены следует перейти к третьему этапу.

Третий этап .

+ +

+ +

h =1 

Первый этап .

Второй этап .


В результате решения задачи о назначениях венгерским методом получили, что последовательность
=4,
=4,
=3,
=2,
=2 дает максимальное значение целевой функции=15. Из этого следует, что для отражения атаки СВН противника наиболее эффективным будет следующий вариант назначения ЗОС на ВЦ:

Упражнения .

    Найти опорный план транспортной задачи методами «Северо-западного угла», «Наименьшей стоимости», «Фогеля»:

a i

Заявки b j

    Решить транспортную задачу из задания 1 распределительным методом.

    Решить транспортную задачу из задания 1 методом потенциалов.

    Венгерским методом решить задачу назначения при поиске максимума:

    Венгерским методом решить задачу назначения при поиске минимума:

Контрольные вопросы :

    Дайте формулировку транспортной задачи линейного программирования.

    Чем отличается сбалансированная транспортная задача от не сбалансированной транспортной задачи?

    Сколько в сбалансированной транспортной задаче должно быть базисных переменных?

    Дайте определение понятиям: план, допустимый план, опорный допустимый план, оптимальный план, используемым при решении транспортной задачи.

    Сформулируйте алгоритм нахождения опорного плана методом северо-западного угла.

    Сформулируйте алгоритм нахождения опорного плана методом наименьшей стоимости.

    Сформулируйте алгоритм нахождения опорного плана методом Фогеля.

    Сформулируйте алгоритм нахождения оптимального плана распределительным методом.

    Сформулируйте алгоритм нахождения оптимального плана методом потенциалов.

    Дайте формулировку задачи о назначениях.

    Каким образом в задаче о назначениях при разных количествах объектов и средств формируется квадратная матрица назначений?

    Сформулируйте алгоритм решения задачи о назначениях Венгерским методом.

    Каким образом на предварительном этапе формируется исходная матрица назначений при максимизации целевой функции?

    Каким образом на предварительном этапе формируется исходная матрица назначений при минимизации целевой функции?

    В чем заключается суть первого этапа решения задачи о назначениях Венгерским методом?

    В чем заключается суть второго этапа решения задачи о назначениях Венгерским методом?

    В чем заключается суть третьего этапа решения задачи о назначениях Венгерским методом?

    Сколько первых, вторых и третьих этапов может находиться в одной итерации решения задачи о назначениях Венгерским методом? Какова последовательность выполнения этапов в итерации?

    Сколько независимых нулей должно быть в матрице назначений для принятия решения о том, что оптимальное назначение средств на объекты найдено?

При обсуждении постановки задачи о назначениях было отмечено, что эта задача является частным случаем классической транспортной задачи и, как следствие, является задачей транспортного типа. Применительно к задаче о назначениях симплексный метод не эффективен, так как любое ее допустимое базисное решение является вырожденным. Специфические особенности задачи о назначениях позволили разработать эффективный метод ее решения, известный как венгерский метод.

Частным случаем транспортной задачи является задача о назначениях, в которой число пунктов производства равно числу пунктов назначения, т.е. транспортная таблица имеет форму квадрата. Кроме того, в каждом пункте назначения объем потребности равен 1, и величина предложения каждого пункта производства равна 1. Любая задача о назначениях 2может быть решена с использованием методов линейного программирования или алгоритма решения транспортной задачи. Однако ввиду особой структуры данной задачи был разработан специальный алгоритм, получивший название Венгерского метода.

Венгерский метод является одним из интереснейших и наиболее распространенных методов решения транспортных задач.

Рассмотрим основные идеи венгерского метода на примере решения задачи выбора (задачи о назначениях), которая является частным случаем Т-задачи, а затем обобщим этот метод для произвольной Т-задачи.

Постановка задачи. Предположим, что имеется различных работ и механизмов, каждый из которых может выполнять любую работу, но с неодинаковой эффективностью. Производительность механизма при выполнении работы обозначим, и = 1,...,n; j = 1,...,n. Требуется так распределить механизмы по работам, чтобы суммарный эффект от их использования был максимален. Такая задача называется задачей выбора или задачей о назначениях.

Формально она записывается так. Необходимо выбрать такую последовательность элементов из матрицы

чтобы сумма была максимальна и при этом из каждой строки и столбца С был выбран только один элемент.

Введем следующие понятия.

Нулевые элементы матрицы С называются независимыми нулями, если для любого строка и столбец, на пересечении которых расположен элемент, не содержат другие такие элементы.

Две прямоугольные матрицы С и D называются эквивалентными (C ~ D), если для всех i,j . Задачи о назначениях, определяемые эквивалентными матрицами, являются эквивалентными (т.е. оптимальные решения одной из них будут оптимальными и для второй, и наоборот).

Задача: Решить задачу о назначениях на максимум.

Не будем приводить какое-либо словесное условие, они могут быть разные, например «На работу устраиваются 6 кандидатов на 6 вакансий и они получили соответствующие оценки при собеседовании на каждую вакансию, провести набор кандидатов на шесть вакансий так, чтобы суммарная оценка кандидатов была максимальной» или «шесть станков выполняют шесть работ за время, заданное в таблице, составить производственный план…». Будем считать, что перед нами матрица (платежная, временная и т.д.) и нужно решить задачу о назначениях венгерским методом на максимум, т.е. выбрать по одной клетке в строке и столбцу так, чтобы из сумма была максимальна.

Решение:
Шаг 1:
Замечание: первый шаг требуется только для решения задачи на максимум, если вам требуется решить её на минимум, то пропустите его.

Преобразуем матрицу, заменив каждый элемент матрицы разностью максимального элемента этой строки и самого элемента.


Вычтем

Шаг 2.

Требуется получить нули в каждой строке и в каждом столбце. В третьем, пятом и шестом столбцах нулей нет, вычтем из элементов этих столбцов минимальный элемент соответствующего столбца.


Вычтем

Шаг 3.

Получили матрицу, в которой в каждой строки и каждом столбце есть ноль. Нашей целью является отметить по одной ячейке в каждой строке и каждом столбце так, чтобы они были нулевые. В этой матрице только первые четыре строки и столбца удовлетворяют этому требованию. Отметим соответствующие ячейки рамкой.

Отметим как «недовольную строку», 5-ю, в которой мы такой ноль отметить не смогли, и второй столбец, он содержит ноль в пятой строке. Но второй столбец также содержит ноль в первой строке, отметим и ее как «недовольную». Первая строка нулей больше не содержит, т.е. процесс отмечания недовольных строк закончен, и мы получили ситуацию под названием «узкое место».

В таблице будем отмечать недовольные строки и столбцы звездочками, а число рядом со звездочкой будет означать порядок отмечания (для лучшего понимания процесса) .

Выберем минимальный элемент в помеченных строках вне отмеченных строк. Это 3, стоящая в пятом столбце и пятом столбце.
Вычтем этот элемент из отмеченных строк и прибавим в полученных столбцах.

Выполним действия, заметим, что теперь можно отметить ноль в пятой строке и пятом столбце.


Шаг 4.

Не хватает еще нуля в 6-ой строке. Отметим её как недовольную, она имеет ноль в первом столбце, отметим его как недовольный, он, в свою очередь, содержит ноль во второй строке, отметим её, но она более нулей не содержит, процесс отмечания законен.

  • Tutorial

Привет, друзья! В этой статье хотел бы рассказать про интересный алгоритм из дисциплины «Исследование операций» а именно про Венгерский метод и как с его помощью решать задачи о назначениях. Немного затрону теории про то, в каких случаях и для каких задач применим данный алгоритм, поэтапно разберу его на мною выдуманном примере, и поделюсь своим скромным наброском кода его реализации на языке R. Приступим!

Пару слов о методе

Для того чтобы не расписывать много теории с математическими терминами и определениями, предлагаю рассмотреть пару вариантов построения задачи о назначениях, и я думаю Вы сразу поймете в каких случаях применим Венгерский метод:
  • Задача о назначении работников на должности. Необходимо распределить работников на должности так, чтобы достигалась максимальная эффективность, или были минимальные затраты на работу.
  • Назначение машин на производственные секции. Распределение машин так, чтобы при их работе производство было максимально прибыльным, или затраты на их содержание минимальны.
  • Выбор кандидатов на разные вакансии по оценкам. Этот пример разберем ниже.
Как Вы видите, вариантов для которых применим Венгерский метод много, при этом подобные задачи возникают во многих сферах деятельности.

В итоге задача должна быть решена так, чтобы один исполнитель (человек, машина, орудие, …) мог выполнять только одну работу, и каждая работа выполнялась только одним исполнителем.

Необходимое и достаточное условие решения задачи – это ее закрытый тип. Т.е. когда количество исполнителей = количеству работ (N=M). Если же это условие не выполняется, то можно добавить вымышленных исполнителей, или вымышленные работы, для которых значения в матрице будут нулевыми. На решение задачи это никак не повлияет, лишь придаст ей тот необходимый закрытый тип.

Step-by-step алгоритм на примере

Постановка задачи: Пусть намечается важная научная конференция. Для ее проведения необходимо настроить звук, свет, изображения, зарегистрировать гостей и подготовиться к перерывам между выступлениями. Для этой задачи есть 5 организаторов. Каждый из них имеет определенные оценки выполнения той, или иной работы (предположим, что эти оценки выставлены как среднее арифметическое по отзывам их сотрудников). Необходимо распределить организаторов так, чтобы суммарная их оценка была максимальной. Задача имеет следующий вид:


Если задача решается на максимум (как в нашем случае), то в каждой строке матрицы необходимо найти максимальный элемент, его же вычесть из каждого элемента соответствующей строки и умножить всю матрицу на -1. Если задача решается на минимум, то этот шаг необходимо пропустить.


В каждой строке и в каждом столбце должен быть только один выбранный ноль. (т.е. когда выбрали ноль, то остальные нули в этой строке или в этом столбце уже не берем в расчет). В этом случае это сделать невозможно:


(Если задача решается на минимум, то необходимо начинать с этого шага ). Продолжаем решение далее. Редукция матрицы по строкам (ищем минимальный элемент в каждой строке и вычитаем его из каждого элемента соответственно):


Т.к. все минимальные элементы – нулевые, то матрица не изменилась. Проводим редукцию по столбцам:


Опять же смотрим чтобы в каждом столбце и в каждой строке был только один выбранный ноль. Как видно ниже, в данном случае это сделать невозможно. Представил два варианта как можно выбрать нули, но ни один из них не дал нужный результат:


Продолжаем решение дальше. Вычеркиваем строки и столбцы, которые содержат нулевые элементы (ВАЖНО! Количество вычеркиваний должно быть минимальным ). Среди оставшихся элементов ищем минимальный, вычитаем его из оставшихся элементов (которые не зачеркнуты) и прибавляем к элементам, которые расположены на пересечении вычеркнутых строк и столбцов (то, что отмечено зеленым – там вычитаем; то, что отмечено золотистым – там суммируем; то, что не закрашено – не трогаем):


Как теперь видно, в каждом столбце и строке есть только один выбранный ноль. Решение задачи завершаем!


Подставляем в начальную таблицу месторасположения выбранных нулей. Таким образом мы получаем оптимум, или оптимальный план, при котором организаторы распределены по работам и сумма оценок получилась максимальной:


Если же вы решаете задачу и у вас до сих пор невозможно выбрать нули так, чтобы в каждом столбце и строке был только один, тогда повторяем алгоритм с того места где проводилась редукция по строкам (минимальный элемент в каждой строке).

Реализация на языке программирования R

Венгерский алгоритм реализовал с помощью рекурсий. Буду надеяться что мой код не будет вызывать трудностей. Для начала необходимо скомпилировать три функции, а затем начинать расчеты.

Данные для решения задачи берутся из файла example.csv который имеет вид:


#Подключаем библиотеку для удобства расчетов library(dplyr) #Считываем csv фаил (первый столбик - названия строк; первая строка - названия столбцов) table <- read.csv("example.csv",header=TRUE,row.names=1,sep=";") #Проводим расчеты unique_index <- hungarian_algorithm(table,T) #Выводим cat(paste(row.names(table)," - ",names(table)),sep = "\n") #Считаем оптимальный план cat("Оптимальное значение -",sum(mapply(function(i, j) table, unique_index$row, unique_index$col, SIMPLIFY = TRUE))) #____________________Алгоритм венгерского метода__________________________________ hungarian_algorithm <- function(data,optim=F){ #Если optim = T, то будет искаться максимальное оптимальное значение if(optim==T) { data <- data %>% apply(1,function(x) (x-max(x))*(-1)) %>% t() %>% as.data.frame() optim <- F } #Редукция матрицы по строкам data <- data %>% apply(1,function(x) x-min(x)) %>% t() %>% as.data.frame() #Нахождение индексов всех нулей zero_index <- which(data==0, arr.ind = T) #Нахождение всех "неповторяющихся" нулей слева-направо unique_index <- from_the_beginning(zero_index) #Если количество "неповторяющихся" нулей не равняется количеству строк в исходной таблице, то.. if(nrow(unique_index)!=nrow(data)) #..Ищем "неповторяющиеся" нули справа-налево unique_index <- from_the_end(zero_index) #Если все еще не равняется, то продолжаем алгоритм дальше if(nrow(unique_index)!=nrow(data)) { #Редукция матрицы по столбцам data <- data %>% apply(2,function(x) x-min(x)) %>% as.data.frame() zero_index <- which(data==0, arr.ind = T) unique_index <- from_the_beginning(zero_index) if(nrow(unique_index)!=nrow(data)) unique_index <- from_the_end(zero_index) if(nrow(unique_index)!=nrow(data)) { #"Вычеркиваем" строки и столбцы которые содержат нулевые элементы (ВАЖНО! количество вычеркиваний должно быть минимальным) index <- which(apply(data,1,function(x) length(x)>1)) index2 <- which(apply(data[-index,],2,function(x) length(x)>0)) #Среди оставшихся элементов ищем минимальный min_from_table <- min(data[-index,-index2]) #Вычитаем минимальный из оставшихся элементов data[-index,-index2] <- data[-index,-index2]-min_from_table #Прибавляем к элементам, расположенным на пересечении вычеркнутых строк и столбцов data <- data+min_from_table zero_index <- which(data==0, arr.ind = T) unique_index <- from_the_beginning(zero_index) if(nrow(unique_index)!=nrow(data)) unique_index <- from_the_end(zero_index) #Если все еще количество "неповторяющихся" нулей не равняется количеству строк в исходной таблице, то.. if(nrow(unique_index)!=nrow(data)) #..Повторяем весь алгоритм заново hungarian_algorithm(data,optim) else #Выводим индексы "неповторяющихся" нулей unique_index } else #Выводим индексы "неповторяющихся" нулей unique_index } else #Выводим индексы "неповторяющихся" нулей unique_index } #_________________________________________________________________________________ #__________Функция для нахождения "неповторяющихся" нулей слева-направо___________ from_the_beginning <- function(x,i=0,j=0,index = data.frame(row=numeric(),col=numeric())){ #Выбор индексов нулей, которые не лежат на строках i, и столбцах j find_zero <- x[(!x[,1] %in% i) & (!x[,2] %in% j),] if(length(find_zero)>2){ #Записываем индекс строки в вектор i <- c(i,as.vector(find_zero)) #Записываем индекс столбца в вектор j <- c(j,as.vector(find_zero)) #Записываем индексы в data frame (это и есть индексы уникальных нулей) index <- rbind(index,setNames(as.list(find_zero), names(index))) #Повторяем пока не пройдем по всем строкам и столбцам from_the_beginning(find_zero,i,j,index)} else rbind(index,find_zero) } #_________________________________________________________________________________ #__________Функция для нахождения "неповторяющихся" нулей справа-налево___________ from_the_end <- function(x,i=0,j=0,index = data.frame(row=numeric(),col=numeric())){ find_zero <- x[(!x[,1] %in% i) & (!x[,2] %in% j),] if(length(find_zero)>2){ i <- c(i,as.vector(find_zero)) j <- c(j,as.vector(find_zero)) index <- rbind(index,setNames(as.list(find_zero), names(index))) from_the_end(find_zero,i,j,index)} else rbind(index,find_zero) } #_________________________________________________________________________________


Результат выполнения программы:


Top