Метод количественной оценки информации: статистический, семантический, прагматический и структурный. Меры информации синтаксического уровня

Синтаксическая мера информации

Рис. 1.1. Меры информации

Синтаксическая мера оперирует объемом данных и количеством информации I a , выраженной через энтропию (понятие неопределенности состояния системы).

Семантическая мера оперирует количеством информации, выраженной через ее объем и степень содержательности.

Прагматическая мера определяется ее полезностью, выраженной через соответствующие экономические эффекты.

Синтаксическая мера информации

Эта мера количества информации оперирует с обезличенной информацией, не выражающей смыслового отношения к объекту.

На сегодняшний день наиболее известны следующие способы количественного измерения информации: объемный, энтропийный, алгоритмический.

Объемный является самым простым и грубым способом измерения информации. Соответствующую количественную оценку информации естественно назвать объемом информации.

Объем информации – это количество символов в сообщении. Поскольку одно и то же число может быть записано многими разными способами, т. е. с использованием разных алфавитов, например двадцать один – 21– XXI– 11001, то этот способ чувствителен к форме представления (записи) сообщения. В вычислительной технике вся обрабатываемая и хранимая информация вне зависимости от ее природы (число, текст, отображение) представлена в двоичной форме (с использованием алфавита, состоящего всего из двух символов "0" и "1").

В двоичной системе счисления единица измерения – бит (bit – binary digit – двоичный разряд).

В теории информации бит – количество информации, необходимое для различения двух равновероятных сообщений; а в вычислительной технике битом называют наименьшую "порцию" памяти, необходимую для хранения одного из двух знаков "0" и "1", используемых для внутримашинного представления данных и команд. Это слишком мелкая единица измерения, на практике чаще применяется более крупная единица – байт, – равная 8 бит, необходимых для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256 = 2 8).

Широко используются также еще более крупные производные единицы информации:

1 килобайт (кбайт) = 1024 байт = 2 10 байт;

1 Мегабайт (Мбайт) = 1024 кбайт = 2 20 байт;

1 Гигабайт (Гбайт) = 1024 Мбайт = 2 30 байт.

В последнее время в связи с увеличением объемов обрабатываемой информации входят в употребление следующие производные единицы:

1 Терабайт (Тбайт) = 1024 Гбайт = 2 40 байт;

1 Петабайт (Пбайт) = 1024 Тбайт = 2 50 байт.

В десятичной системе счисления единица измерения – дит (десятичный разряд).

Сообщение в двоичной системе в виде восьмиразрядного двоичного кода 1011 1011 имеет объем данных V Д = 8 бит.

Сообщение в десятичной системе в виде шестиразрядного числа 275 903 имеет объем данных V Д = 6 бит.

В теории информации и кодирования принят энтропийный подход к измерению информации. Получение информации о какой-либо системе всегда связано с изменением степени неосведомлен-ности получателя о состоянии этой системы. Этот способ измерения исходит из следующей модели.

Пусть до получения информации потребитель имеет некоторые предварительные (априорные) сведения о системе α. После получения сообщения b получатель приобрел некоторую дополнительную информацию I(b), уменьшившую его неосведомленность. Эта информация в общем случае недостоверна и выражается вероятностями, с которыми он ожидает то или иное событие. Общая мера неопределенности (энтропия) характеризуется некоторой математической зависимостью от совокупности этих вероятностей. Количество информации в сообщении определяется тем, насколько уменьшится эта мера после получения сообщения.

Так, американский инженер Р. Хартли (1928 г.) процесс получения информации рассматривает как выбор одного сообщения из конечного наперед заданного множества из N равновероятных сообщений, а количество информации i, содержащееся в выбранном сообщении, определяет как двоичный логарифм N (формула Хартли):

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: , т. е. сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицам информации.

Другие примеры равновероятных сообщений:

1) при бросании монеты "выпала решка", "выпал орел";

2) на странице книги "количество букв четное", "количество букв нечетное".

Нельзя ответить однозначно на вопрос, являются ли равновероятными сообщения "первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина". Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский ученый Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе (формула Шеннона):

где – вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Легко заметить, что если вероятности … равны, то каждая из них равна и формула Шеннона превращается в формулу Хартли.

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определенному кругу случаев, очерченному первоначальными допущениями.

В алгоритмической теории информации (раздел теории алгоритмов) предлагается алгоритмический метод оценки информации в сообщении. Любому сообщению можно приписать количественную характеристику, отражающую сложность (размер) программы, которая позволяет ее произвести.

Коэффициент (степень) информативности (лаконичности) сообщения определяется отношением количества информации к общему объему полученных данных:

, причем 0 < Y < 1.

С увеличением Y уменьшаются объемы работ по преобразованию информации (данных) в системе. Поэтому необходимо стремиться к повышению информативности, для чего разрабатываются специальные методы оптимального кодирования информации.

1.4.2.2 Семантическая мера информации

Семантика – наука о смысле, содержании информации.

Для измерения смыслового содержания информации, т. е. ее количества на семантическом уровне, наибольшее признание получила тезаурусная мера, связывающая семантические свойства информации со способностью пользователя принимать поступившее сообщение. Одно и то же информационное сообщение (статья в газете, объявление, письмо, телеграмма, справка, рассказ, чертеж, радиопередача и т. п.) может содержать разное количество информации для разных людей в зависимости от их предшествующих знаний, уровня понимания этого сообщения и интереса к нему.

Для измерения количества семантической информации используется понятие "тезаурус пользователя", т. е. совокупность сведений, которыми располагает пользователь или система.

В зависимости от соотношений между смысловым содержанием информации S и тезаурусом пользователя S p изменяется количество семантической информации I c , воспринимаемой пользователем и включаемой им в дальнейшем в свой тезаурус. Характер такой зависимости показан на рисунке 1. 2.

Рис. 1. 2. Зависимость количества семантической информации, воспринимаемой потребителем, от его тезауруса I C = f(S p)

Рассмотрим два предельных случая, когда количество семантической информации I C равно 0:

При пользователь не воспринимает, не понимает поступающую информацию;

При пользователь все знает и поступающая информация ему не нужна.

Максимальное количество семантической информации потребитель приобретает при согласовании ее смыслового содержания S со своим тезаурусом (), когда поступающая информация понятна пользователю и несет ему ранее неизвестные (отсутствующие в его тезаурусе) сведения.

Следовательно, количество семантической информации и новых знаний в сообщении, получаемое пользователем, является величиной относительной.

Относительной мерой количества семантической информации может служить коэффициент содержательности С, определяемый как отношение количества семантической информации к ее объему.

УРОВНИ ПРОБЛЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ

При реализации информационных процессов всегда происходит перенос информации в пространстве и времени от источника ин­формации к приемнику (получателю). При этом для передачи ин­формации используют различные знаки или символы, например естественного или искусственного (формального) языка, позволя­ющие выразить ее в некоторой форме, называемой сообщением.

Сообщение - форма представления информации в виде со­вокупности знаков (символов), используемая для передачи.

Сообщение как совокупность знаков с точки зрения семиотики (от греч. semeion - знак, признак) - науки, занимающейся иссле­дованием свойств знаков и знаковых систем, - может изучаться на трех уровнях :

1) синтаксическом, где рассматриваются внутренние свойства сообщений, т. е. отношения между знаками, отражающие структуру данной знаковой системы. Внешние свойства изу­чают на семантическом и прагматическом уровнях;

2) семантическом, где анализируются отношения между знака­ми и обозначаемыми ими предметами, действиями, качест­вами, т. е. смысловое содержание сообщения, его отношение к источнику информации;

3) прагматическом, где рассматриваются отношения между со­общением и получателем, т. е. потребительское содержание сообщения, его отношение к получателю.

Таким образом, учитывая определенную взаимосвязь проблем передачи информации с уровнями изучения знаковых систем, их разделяют на три уровня: синтаксический, семантический и праг­матический.

Проблемы синтаксического уровня касаются создания теоре­тических основ построения информационных систем, основные показатели функционирования которых были бы близки к предель­но возможным, а также совершенствования существующих систем с целью повышения эффективности их использования. Это чисто технические проблемы совершенствования методов передачи со­общений и их материальных носителей - сигналов. На этом уров­не рассматривают проблемы доставки получателю сообщений как совокупности знаков, учитывая при этом тип носителя и способ представления информации, скорость передачи и обработки, раз­меры кодов представления информации, надежность и точность преобразования этих кодов и т. п., полностью абстрагируясь от смыслового содержания сообщений и их целевого предназначения. На этом уровне информацию, рассматриваемую только с синтак­сических позиций, обычно называют данными, так как смысловая сторона при этом не имеет значения.

Современная теория информации исследует в основном пробле­мы именно этого уровня. Она опирается на понятие «количество информации», являющееся мерой частоты употребления знаков, которая никак не отражает ни смысла, ни важности передаваемых сообщений. В связи с этим иногда говорят, что современная теория информации находится на синтаксическом уровне.

Проблемы семантического уровня связаны с формализацией и учетом смысла передаваемой информации, определения степени соответствия образа объекта и самого объекта. На данном уровне анализируются те сведения, которые отражает информация, рас­сматриваются смысловые связи, формируются понятия и представ­ления, выявляется смысл, содержание информации, осуществля­ется ее обобщение.

Проблемы этого уровня чрезвычайно сложны, так как смысло­вое содержание информации больше зависит от получателя, чем от семантики сообщения, представленного на каком-либо языке.

На прагматическом уровне интересуют последствия от получе­ния и использования данной информации потребителем. Пробле­мы этого уровня связаны с определением ценности и полезности использования информации при выработке потребителем решения для достижения своей цели. Основная сложность здесь состоит в том, что ценность, полезность информации может быть совершен­но различной для различных получателей и, кроме того, она зави­сит от ряда факторов, таких, например, как своевременность ее до­ставки и использования. Высокие требования в отношении скорости доставки информации часто диктуются тем, что управляющие воз­действия должны осуществляться в реальном масштабе времени, т. е. со скоростью изменения состояния управляемых объектов или процессов. Задержки в доставке или использовании информации могут иметь катастрофические последствия.

Тема 2. Основы представления и обработки информации в компьютере

Литература

1. Информатика в экономике: Учебное пособие/Под ред. Б.Е. Одинцова, А.Н. Романова. – М.: Вузовский учебник, 2008.

2. Информатика: Базовый курс: Учебное пособие/Под ред. С.В. Симоновича. – СПб.: Питер, 2009.

3. Информатика. Общий курс: Учебник/Соавт.: А.Н. Гуда, М.А. Бутакова, Н.М. Нечитайло, А.В. Чернов; Под общ. ред. В.И. Колесникова. – М.: Дашков и К, 2009.

4. Информатика для экономистов: Учебник/Под ред. Матюшка В.М. - М.: Инфра-М, 2006.

5. Экономическая информатика: Введение в экономический анализ информационных систем.- М.: ИНФРА-М, 2005.

Меры информации (синтаксическая, семантическая, прагматическая)

Для измерения информации могут применяться различные подходы, но наибольшее распространение получили статистический (вероятностный), семантический и прагматический методы.

Статистический (вероятностный) метод измерения информации был разработан К. Шенноном в 1948 году, который предложил количество информации рассматривать как меру неопределенности состояния системы, снимаемой в результате получения информации. Количественно выраженная неопределенность получила название энтропии. Если после получения некоторого сообщения наблюдатель приобрел дополнительную информацию о системе Х, то неопределенность уменьшилась. Дополнительно полученное количество информации определяется как:

где - дополнительное количество информации о системе Х , поступившее в форме сообщения;

Начальная неопределенность (энтропия) системы X ;

Конечная неопределенность (энтропия) системы X, наступившая после получения сообщения.

Если система X может находиться в одном из дискретных состояний, количество которых n , а вероятность нахождения системы в каждом из них равна и сумма вероятностей всех состояний равна единице, то энтропия вычисляется по формуле Шеннона:

где - энтропия системы Х;

а - основание логарифма, определяющее единицу измерения информации;

n – количество состояний (значений), в котором может находится система.

Энтропия величина положительная, а так как вероятности всегда меньше единицы, а их логарифм отрицательный, поэтому знак минус в формуле К.Шеннона делает энтропию положительной. Таким образом, за меру количества информации принимается та же энтропия, но с обратным знаком.

Взаимосвязь информации и энтропии можно понимать следующим образом: получение информации (ее увеличение) одновременно означает уменьшение незнания или информационной неопределенности (энтропии)

Таким образом, статистический подход учитывает вероятность появления сообщений: более информативным считается то сообщение, которое менее вероятно, т.е. менее всего ожидалось. Количество информации достигает максимального значения, если события равновероятны.

Р. Хартли предложил следующую формулу для измерения информации:

I=log2n ,

где n - количество равновероятных событий;

I – мера информации в сообщении о наступлении одного из n событий

Измерение информации выражается в ее объёме. Чаще всего это касается объёма компьютерной памяти и объёма данных, передаваемых по каналам связи. За единицу принято такое количество информации, при котором неопределённость уменьшается в два раза, такая единица информации получила название бит .

Если в качестве основания логарифма в формуле Хартли используется натуральный логарифм (), то единицей измерения информации является нат ( 1 бит = ln2 ≈ 0,693 нат). Если в качестве основания логарифма используется число 3, то - трит , если 10, то - дит (хартли).

На практике чаще применяется более крупная единица - байт (byte ), равный восьми битам. Такая единица выбрана потому, что с ее помощью можно закодировать любой из 256 символов алфавита клавиатуры компьютера (256=28).

Кроме байтов информация измеряется полусловами (2 байта), словами (4 байта) и двойными словами (8 байт). Широко используются также еще более крупные единицы измерения информации:

1 Килобайт (Кбайт - kilobyte ) = 1024 байт = 210 байт,

1 Мегабайт (Мбайт - megabyte ) = 1024 Кбайт = 220 байт,

1 Гигабайт (Гбайт - gigabyte ) = 1024 Мбайт = 230 байт.

1 Терабайт (Тбайт - terabyte ) = 1024 Гбайт = 240 байт,

1 Петабайт (Пбайт - petabyte ) = 1024 Тбайт = 250 байт.

В 1980 году российский математик Ю. Манин предложил идею построения квантового компьютера, в связи с чем появилась такая единица информации как кубит ( quantum bit, qubit) – «квантовый бит» – мера измерения объема памяти в теоретически возможном виде компьютера, использующем квантовые носители, например - спины электронов. Кубит может принимать не два различных значения («0» и «1»), а несколько, соответствующих нормированным комбинациям двух основных состояний спина, что дает большее число возможных сочетаний. Так, 32 кубита могут закодировать около 4 млрд состояний.

Семантический подход. Синтаксической меры не достаточно, если требуется определить не объем данных, а количество нужной в сообщении информации. В этом случае рассматривается семантический аспект, позволяющий определить содержательную сторону сведений.

Для измерения смыслового содержания информации можно воспользоваться тезаурусом ее получателя (потребителя). Идея тезаурусного метода была предложена Н. Винером и развита нашим отечественным ученым А.Ю. Шрейдером.

Тезаурусом называется совокупность сведений , которыми располагает получатель информации. Соотнесение тезауруса с содержанием поступившего сообщения позволяет выяснить, насколько оно снижает неопределенность..

Зависимость объема смысловой информации сообщения от тезауруса получателя

Согласно зависимости, представленной на графике, при отсутствии у пользователя какого-либо тезауруса (знаний о существе поступившего сообщении, то есть =0), или наличия такого тезауруса, который не изменился в результате поступления сообщения (), то объем семантической информации в нем равен нулю. Оптимальным будет такой тезаурус (), при котором объем семантической информации будет максимальным (). Например, семантической информации в поступившем сообщении на незнакомом иностранном языке будет ноль , но и такая же ситуация будет в том случае, если сообщение уже не является новостью, так как пользователю уже все известно.

Прагматическая мера информации определяет ее полезность в достижении потребителем своих целей. Для этого достаточно определить вероятность достижения цели до, и после получения сообщения и сравнить их. Ценность информации (по А.А. Харкевичу) рассчитывается по формуле:

где - вероятность достижения цели до получения сообщения;

Вероятность достижения цели поле получения сообщения;

Лекция № 7

Тема: Меры информации: синтаксическая, семантическая, прагматическая .

Информация - это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состояниях, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Информатика рассматривает информацию как связанные между собой сведения, изменяющие наши представления о явлении или объекте окружающего мира. С этой точки зрения информацию можно рассматривать как совокупность знаний о фактических данных и зависимостях между ними.

В процессе обработки информация может менять структуру и форму. Признаком структуры являются элементы информации и их взаимосвязь. Формы представления информации могут быть различны. Основными из них являются: символьная (основана на использовании различных символов), текстовая (текст - это символы, расположенные в определенном порядке), графическая (различные виды изображений), звуковая.

В повседневной практике такие понятия, как информация и данные, часто рассматриваются как синонимы. На самом деле между ними имеются различия. Данными называется информация, представленная в удобном для обработки виде. Данные могут быть представлены в виде текста, графики, аудио-визуального ряда. Представление данных называется языком информатики, представляющим собой совокупность символов, соглашений и правил, используемых для общения, отображения, передачи информации в электронном виде.

Информационная коммуникация – это пути процессы, обеспечивающие передачу сообщений от источника информации к её потребителю. Для потребителей информации важной характеристикой является адекватность.

Адекватность информации – определенный уровень соответствия, создаваемого с помощью полученной информации образа реальному образу, процессу или явлению.

Одной из важнейших характеристик информации является ее адекватность. От степени адекватности информации зависит правильность принятия решения.

Адекватность информации может выражаться в трех формах: синтаксической, семантической и прагматической.

Синтаксическая адекватность отображает формально-структурные характеристики информации, не затрагивая ее смыслового содержания. На синтаксическом уровне учитываются тип носителя и способ представления информации, скорость ее передачи и обработки, размеры кодов представления информации, надежность и Точность преобразования этих кодов и т. д. Информацию, рассматриваемую с таких позиций, обычно называют данными.

Семантическая адекватность определяет степень соответствия образа объекта самому объекту. Здесь учитывается смысловое содержание информации. На этом уровне анализируются сведения, отражаемые информацией, рассматриваются смысловые связи. Таким образом, семантическая адекватность проявляется при наличии единства информации и пользователя. Эта форма служит для формирования понятий и представлений, выявления смысла, содержания информации и ее обобщения.

Прагматическая адекватность отражает соответствие информации цели управления, реализуемой на ее основе. Прагматические свойства информации проявляются при наличии единртва информации, пользователя и цели управления. На этом уровне анализируются потребительские свойства информации, связанные с практическим использованием информации, с соответствием ее целевой функции деятельности системы.

Каждой форме адекватности соответствует своя мера количества информации.

Синтаксическая мера информации оперирует с обезличенной информацией, не выражающей смыслового отношения к объекту. На этом уровне объем данных в сообщении измеряется количеством символов в этом сообщении. В современных ЭВМ минимальной единицей измерения данных является бит - один двоичный разряд. Широко используются также более крупные единицы измерения: байт, равный 8 битам; килобайт, равный 1024 байтам; мегабайт, равный 1024 килобайтам, и т. д.

Семантическая мера информации используется для измерения смыслового содержания информации. Наибольшее распространение здесь получила тезаурусная мера, связывающая семантические свойства информации со способностью пользователя принимать поступившее сообщение. Тезаурус - это совокупность сведений, которыми располагает пользователь или система. Максимальное количество семантической информации потребитель получает при согласовании ее смыслового содержания со своим тезаурусом, когда поступающая информация понятна пользователю и несет ему ранее не известные сведения. С семантической мерой количества информации связан коэффициент содержательности, определяемый как отношение количества семантической информации к общему объему данных.

Информации - это что такое? На чем он базируется? Какие цели преследует и задачи выполняет? Обо всём этом мы и поговорим в рамках данной статьи.

Общая информация

В каких случаях применяется семантический способ измерения информации? Используется сущность информации, интересует содержательная сторона полученного сообщения - вот показания для его применения. Но для начала давайте дадим изъяснение того, что он собой представляет. Следует отметить, что семантический способ измерения информации - это трудно формализованный подход, который до сих пор полностью не сформировался. Используется он для того, чтобы измерять количество смысла в данных, которые были получены. Иными словами, какой объем информации из полученной является необходимым в данном случае. Такой подход используется для определения содержательной стороны получаемых сведений. И если мы говорим про семантический способ измерения информации, используется понятие тезауруса, которое неразрывно связано с рассматриваемой темой. Что же оно собой представляет?

Тезаурус

Хочется сделать небольшое введение и дать ответ на один вопрос про семантический способ измерения информации. Кем введен он? Предложил использовать этот метод основатель кибернетики Норберт Винер, но значительное развитие он получил под влиянием нашего соотечественника А. Ю. Шрейдера. Чем же является название используется для обозначения совокупности сведений, которые есть у получателя информации. Если соотнести тезаурус с содержанием сообщения, которое поступило, то можно выяснить, насколько оно снизило неопределённость. Хочется исправить одну ошибку, под влияние которой часто попадает большое количество людей. Так, они считают, что семантический способ измерения информации введен Клодом Шенноном. Неизвестно, как именно возникло это заблуждение, но это мнение неверно. Клод Шеннон ввёл статистический способ измерения информации, «наследником» которого и считается семантический.

Графический подход для определения объема смысловой информации в полученном сообщении

Для чего нужно что-то рисовать? Семантический способ измерения использует такую возможность для наглядного предоставления данных о полезности данных в виде легко понимаемых рисунков. Что же это значит на практике? Для пояснения положения дел строят зависимость в виде графика. Если у пользователя отсутствуют знания о сути сообщения, которое было получено (равняется нулю), то объем семантической информации будет равен этому же значению. Можно ли найти оптимальное значение? Да! Так называется тезаурус, где объем семантической информации максимальный. Давайте рассмотрим небольшой пример. Допустим, пользователю поступило сообщение, написанное на незнакомом иностранном языке, или же человек может прочитать, что там написано, но это для него уже не является новостью, поскольку всё это известно. В таких случаях говорят о том, что в сообщении содержится ноль семантической информации.

Историческое развитие

Вероятно, об этом следовало поговорить немного выше, но наверстать упущенное ещё не поздно. Первоначально семантический способ измерения информации введен Ральфом Хартли в 1928 году. Ранее упоминалось, что в качестве основателя часто упоминают Клода Шеннона. Почему же возникла такая путаница? Дело в том, что, хотя семантический способ измерения информации и был введён Ральфом Хартли в 1928 году, обобщили его в 1948 году именно Клод Шеннон и Уоррен Уивер. После этого основоположник кибернетики Норберт Винер сформировал идею тезаурусного метода, которая получила наибольшее признание в виде меры, разработанной Ю. И. Шнейдером. Следует отметить, что для того чтобы разобраться в этом, необходим достаточно высокий уровень знаний.

Результативность

Что же нам даёт тезаурусный метод на практике? Он является реальным подтверждением тезиса о том, что информация обладает таким свойством, как относительность. При этом следует отметить, что она обладает относительной (или же субъективной) ценностью. Для того чтобы можно было объективно оценивать научную информацию, ввели понятие общечеловеческого тезауруса. Его степень изменения и показывает значительность знаний, которые получает человечество. При этом нельзя точно сказать, какой конечный результат (или же промежуточный) можно будет получить от информации. Возьмём, к примеру, компьютеры. Вычислительная техника создавалась на основе ламповой технологии и битового состояния каждого структурного элемента и первоначально использовалась для осуществления расчетов. Сейчас же почти у каждого человека есть что-то, что работает на основании данной технологии: радио, телефон, компьютер, телевизор, ноутбук. Даже современные холодильники, плиты и умывальники содержат в себе немного электроники, в основе работы которой лежит информация об облегчении использования человеком данных бытовых устройств.

Научный подход

Где же изучается семантический способ измерения информации? Информатика - вот та наука, которая занимается различными аспектами этого вопроса. В чём же заключается особенность? В основу способа положено использование системы «истина/ложь», или же битовая система «единица/ноль». Когда поступает определённая информация, то она разбивается на отдельные блоки, которые именуются подобно единицам речи: слова, слоги и тому подобное. Каждый блок получает определённое значение. Давайте рассмотрим небольшой пример. Рядом стоят два друга. Один обращается ко второму со словами: «Завтра у нас выходной». Когда дни для отдыха - знает каждый. Поэтому ценность этой информации нулевая. Но если второй скажет, что он завтра работает, то для первого это будет неожиданность. Ведь в таком случае может оказаться, что будут нарушены планы, которые строил один человек, например, сходить поиграть в боулинг или же покопаться в мастерской. Каждую часть описанного примера можно описать с помощью единиц и нулей.

Оперирование понятиями

Но что же используется ещё, кроме тезауруса? Что ещё нужно знать, чтобы понимать семантический способ измерения информации? Основные понятия, которые дополнительно можно изучить ещё, - это знаковые системы. Под ними понимают средства выражения смысла, вроде правил интерпретации знаков или же их сочетаний. Давайте рассмотрим ещё один пример из информатики. Компьютеры оперируют условными нулями и единицами. По сути, это низкое и высокое напряжение, которое подаётся на компоненты техники. Причем передают они эти единицы и нули без конца и края. Как же делать различие между ними технике? Ответ на это был найден - прерывания. Когда передаётся эта же самая информация, то получаются различные блоки вроде слов, словосочетаний и отдельных значений. В устной человеческой речи для разбивки данных на отдельные блоки тоже используются паузы. Они настолько незаметны, что большинство из них мы замечаем на «автомате». В письме для этой цели служат точки и запятые.

Особенности

Давайте затронем ещё и тему свойств, которые есть у семантического способа измерения информации. Мы уже знаем, что так называется специальный подход, которые оценивает важность информации. Можно ли говорить, что данные, которые будут оцениваться таким способом, будут объективными? Нет, это не верно. Информация является субъективной. Давайте рассмотрим это на примере школы. Есть отличник, который идёт впереди утверждённой программы, и среднестатистический середнячок, который изучает то, что излагается на занятиях. Для первого большинство информации, которую он будет получать в школе, будет представлять достаточно слабый интерес, поскольку он это уже знает и не впервые слышит/читает. Поэтому на субъективном уровне для него это будет не очень ценно (за счёт разве что отдельных замечаний учителя, которые он подметил за время изложения своего предмета). Тогда как середнячок о новой информации что-то слыхал только отдаленно, поэтому для него ценность данных, которые будут излагаться на уроках, на порядок больше.

Заключение

Следует отметить, что в информатике семантический способ измерений информации - это не единственный вариант, в рамках которого можно решать имеющиеся задачи. Выбор должен зависеть от поставленных целей и присутствующих возможностей. Поэтому, если тема заинтересовала или же в ней существует потребность, то можно только настоятельно порекомендовать изучить её более подробно и узнать, какие ещё способы измерения информации, кроме семантического, существуют.




Top