Гибридные процессоры amd а10 для ноутбуков. Гибридные процессоры AMD А-серии для настольных ПК. Производительность гетерогенных вычислений

Сегодня у нас на повестке дня очередное «проходное» тестирование, связанное в первую очередь со сменой тестовой методики, а не с выпуском новых процессоров. Тем более, что темой будет платформа, где с выходом новых моделей дела обстоят не лучшим образом, несмотря на все ее привлекательные стороны: вот уже больше года как появился A10-7850K, и он же продолжает оставаться самым мощным решением в линейке. Более того, никакого существенного изменения ситуации в ближайшем будущем не планируется. Примерно в середине года должен появиться A10-8850K, однако кроме совсем незначительного увеличения тактовых частот от него (равно как и от других моделей обновленной линейки) ничего не ожидается. Таким образом, специально ждать появления процессоров Kaveri Refresh не имеет смысла, а что-то более интересное может появиться лишь в следующем году (и в рамках абсолютно новой платформы, скорее всего полностью несовместимой с сегодняшней). В общем, если необходимость что-то приобрести есть, это можно делать сейчас. Причем даже не обязательно выбирать именно Kaveri - хотя отгрузка процессоров на базе предыдущей архитектуры уже прекращена, в торговой сети они все еще встречаются, причем по более привлекательным, чем современные модели, ценам. Вопрос только один: разумна ли экономия? Да и нужна ли топовая модель? Но это без тестов выяснить невозможно, так что сейчас мы к ним и приступим.

Конфигурация тестовых стендов

Процессор AMD A10-6800K AMD A10-7800 AMD A10-7850K
Название ядра Richland Kaveri Kaveri
Технология пр-ва 32 нм 28 нм 28 нм
Частота ядра std/max, ГГц 4,1/4,4 3,5/3,9 3,7/4,0
Кол-во ядер(модулей)/потоков вычисления 2/4 2/4 2/4
Кэш L1 (сумм.), I/D, КБ 128/64 192/64 192/64
Кэш L2, КБ 2×2048 2×2048 2×2048
Кэш L3, МиБ - - -
Оперативная память 2×DDR3-2133 2×DDR3-2133 2×DDR3-2133
TDP, Вт 100 65/45 95
Графика Radeon HD 8670D Radeon R7 Radeon R7
Кол-во ГП 384 512 512
Частота std/max, МГц 844 720 720
Цена $138(), T-10387700 $154(), T-10674780 $162(), T-10674781

A10-6800K и A10-7850K мы уже сравнивали в конце прошлого года и пришли к выводу, что эти модели примерно эквивалентны по производительности, но первая стоит дешевле. Однако обновление программного обеспечения в новой версии методики вполне может привести к тому, что и расклад изменится - вот это-то мы и проверим. Заодно добавив к испытуемым A10-7800: он немного экономичнее и немного медленнее, чем топовая модель, чем и интересен. Отметим, что как раз 7800 - фактически единственное существенное расширение ассортимента процессоров для FM2+ в 2014 году: ранее настольные A10 на базе Kaveri в TDP 65 Вт и менее не укладывались. Если же рассматривать работу с уменьшенным до 45 Вт теплопакетом (что может быть актуально для компактного решения), ситуация и вовсе усугубляется тем, что и для FM2 AMD ранее выпускала лишь пару пригодных моделей, которые было не так-то просто приобрести. Сейчас же проблема отпала. И единственный вопрос - каковы будут потери в производительности. Особенно на фоне топовых моделей, которые заведомо «не влазят» в небольшие корпуса Mini-ITX из-за «серьезного» теплопакета.

Процессор Intel Core i7-5500U
Название ядра Broadwell
Технология пр-ва 14 нм
Частота ядра std/max, ГГц 2,4/3,0
Кол-во ядер/потоков вычисления 2/4
Кэш L1 (сумм.), I/D, КБ 64/64
Кэш L2, КБ 2×256
Кэш L3, МиБ 4
Оперативная память 2×DDR3-1600
TDP, Вт 15
Графика HDG 5500
Кол-во ГП 96
Частота std/max, МГц 300/950

С кем эти процессоры сравнить? Такой вопрос всегда является актуальным в начале цикла тестирований - слишком мала база уже полученных тестовых результатов. Поэтому волевым решением мы не стали подыскивать конкурентов «в лоб», а взяли цифры, полученные при тестировании Core i7-5500U. Понятно, что модель ультрабучная, хотя... Хотя многих в наше время волнуют вопросы непосредственного сравнения производительности ноутбуков и десктопов, так что интересно поискать на него непосредственный ответ.

Методика тестирования

Для оценки производительности мы использовали нашу методику измерения производительности с применением бенчмарков и iXBT Game Benchmark 2015 . Все результаты тестирования в первом бенчмарке мы нормировали относительно результатов референсной системы, которая в этом году будет одинаковой и для ноутбуков, и для всех остальных компьютеров, что призвано облегчить читателям нелегкий труд сравнения и выбора:

iXBT Application Benchmark 2015

Несмотря на то, что эти приложения загружают процессоры «по полной», включая и видеоядро, ультрабучный Broadwell оказался не сильно-то хуже настольных APU AMD - фактически уровень производительности, демонстрируемый им, A10-6800К и A10-7800 в «режиме 45 Вт» одинаковый. Но в штатном режиме A10-7800 заметно быстрее, а вот A10-7850К обгоняет его уже совсем незначительно, что делает его не самым лучшим на сегодня выбором.

Здесь и вовсе топовые APU AMD поголовно отстают от Core i7-5500U, что иначе как издевательством не назовешь:) Распределение мест среди них почти не меняется. Разве что A10-6800K сумел не уступить A10-7800 с «зажатым» теплопакетом, но если в этом необходимости нет, то в новых версиях ПО последний предпочтительнее.

Работа с фотографиями аналогична обработке видео. Правда вот требования к производительности со стороны пользователя тут пониже, поскольку медлительность компьютера (при наличии таковой) мешает меньше - сами по себе рабочие процессы короче.

Adobe Illustrator бодро меняет номера версий, но сами по себе программные алгоритмы похоже все те же, что и 10 лет назад. С таким вот любопытным эффектом - флагман для FM2 даже чуть-чуть быстрее нового топового решения. Впрочем, незначительно.

В Audition же A10-6800К и A10-7850К примерно равны в пользу более нового процессора. Но сравнение с i7-5500U показывает, что это просто еще один «неудобный» для AMD случай. Совсем неудобный - где настольные модели процессоров проигрывают не только ноутбучным, но уже и ультрабучным (а если дело и дальше так пойдет, то скоро и планшетным начнут).

В предыдущей версии программы A10-6800К держался на уровне A10-7800 с TDP 65 Вт, сейчас же «сполз» на паритет с 45 Вт: как видим, обновление ПО положительно сказывается на внутрифирменной конкуренции. Правда маловато как-то полученного эффекта:)

А вот архиваторы, несмотря на все обновления кода, являются более «консервативными» приложениями, так что A10-7850K (не говоря уже о более медленных моделях) все еще не может догнать флагмана предыдущей линейки. Отставание, впрочем, микроскопическое, но оно есть. Что особенно расстраивает на фоне того, что у Intel нынче даже CULV-решения временами заметно быстрее.

Все примерно равны, за исключением A10-7800 в режиме сниженного TDP - судя по всему, для экономии энергии процессор пытается большую часть времени проводить в спящем режиме, выход из которого занимает определенное время, что особенно заметно при таких типах нагрузки.

А файловые операции чем-то похожи на, например, архиваторы, что не удивительно - распаковка ISO-образа идеологически близка к ним. Формально, впрочем, эти подтесты процессор работой почти не нагружают, так что разница между ними в основном обусловлена именно особенностями режимов энергосбережения.

Когда-то старшие модели APU AMD успешно конкурировали по производительности процессорной части с настольными Core i3. Теперь же, как видим, их способны обгонять и двухъядерные процессоры для ультрабуков, с чем мы компанию и «поздравляем». В общем, необходимость модернизации в этом семействе давно назрела. И жаль, что ее не будет еще как минимум год. Да и всякое может быть - обновление программного обеспечения в тестовой методике позволило, конечно, A10-7850K в общем зачете обойти более старый A10-6800K, но каких-то 5% прироста производительности, как нам кажется, вовсе не то, что требовалось. Основным же эффектом от выхода Kaveri оказалась возможность выпуска более экономичных моделей, типа A10-7800. Вот то, что этот процессор выступает на уровне A10-6800K при куда более «узком» теплопакете - уже хорошо. Хотя для конкуренции с Intel в области процессорной производительности все равно недостаточно. Но есть у продукции компании такой козырь, как мощное графическое ядро. Попробуем его разыграть.

Игровые приложения

По понятным причинам, для компьютерных систем такого уровня мы ограничиваемся режимом минимального качества, причем не только в «полном» разрешении, но и с его уменьшением до 1366×768 (Core i7-5500U в таком режиме протестирован не был, но нам сейчас это и не слишком важно - для качественного сравнения хватит и одного режима). Несмотря на то, что интегрированная графика настольных процессоров линейки A10 - это лучшее из того, что есть на рынке, пока еще даже она не способна удовлетворить требовательного к качеству картинки геймера. А вот если добровольно согласиться на «минималки», можно здорово сэкономить. Это мы уже хорошо знаем по предыдущим тестированиям, а сегодня просто посмотрим, как на этих процессорах работает наш обновленный игровой набор.

Производительность GPU в A10 почти вдвое выше, чем у HD Graphics 5500, что секретом не является. А результат - возможность играть пусть и в минимальном качестве, но в полном разрешении Full HD.

Игра очень процессорозависима, причем требуется ей в основном «однопоточная» производительность, так что тут уже оторваться от решений Intel не удается. Но с практической точки зрения это не так и важно - главное, что поиграть на всем можно.

Как и в Grid2. Где, впрочем, требования к GPU повыше, так что и какая-никакая разница между испытуемыми появляется.



Игры серии Metro как раз очень требовательны к графике, так что здесь и A10 пока еще не хватает на FHD, но достаточно для того, чтобы играть, снизив разрешение.

В Hitman старших Kaveri почти хватает на FHD, а при сниженном разрешении можно играть с комфортом.

Thief пока еще слишком «тяжел» для интегрированной графики, хотя определенный прогресс в этой области наблюдается, так что процессоры линейки Kaveri Refresh, возможно, уже и «вытянут» хотя бы режимы низкого разрешения.

Tomb Raider спокойно себя чувствует даже в режиме «полного» разрешения - тут и процессоров Intel лишь немного «не хватает». В общем, в такие игрушки поиграть уже как-то можно.



И два примера того, как переход с Richland на Kaveri дает уже не только количественный, но и качественный эффект при практически полном отсутствии межфирменной конкуренции.

Итого

Что ж, как видим, обновление программного обеспечения благотворно сказалось на Kaveri: новый флагман теперь хотя бы быстрее старого, поскольку ранее их равенство вызывало мягко говоря сложные чувства:) Однако... Однако именно A10-7850K все равно выглядит не слишком интересно, поскольку появился A10-7800, производительность которого лишь немногим ниже, а требования к охлаждению - «ниже многим». Впрочем, на радикальный прорыв это все равно не тянет, поскольку собственно «как процессоры» APU слабее решений Intel. И слабее даже решений совсем других классов - в одном сегменте это можно было бы еще как-то перетерпеть. А вот в разных - эффект слабо компенсируется даже приличным видеоядром, поскольку геймеру все равно однозначно стоит смотреть в сторону дискретной графики, благо ее применение в настольных системах (пусть даже компактных) не несет никаких сложностей. Поэтому настольное семейство A10 так и остается нишевым решением: достаточно дорогим, но, тем не менее, не слишком игровым и не слишком производительным вне игр. Причем косметические доработки явно неспособны существенно изменить положение дел - тут уже не кровати переставлять надо, а девочек менять:)

Обзор APU AMD A10-7890K | Введение

Что делать, если вы анонсировали новую технологию, но пока не готовы выпускать продукцию на ее основе? AMD как раз в такой ситуации: процессоры Summit Ridge и Bristol Ridge в ближайшее время не появятся, так что компании нужно чем-то разбавить образовавшийся застой.

Эту задачу призван осуществить новый APU AMD A10-7890K . По сравнению с A10-7870K он нарастил тактовую частоту на 200 МГц и получил в комплекте мощный кулер Wraith. Процессор ориентирован на тех, кто много играет в онлайн игры и не особо нуждается в дискретной графике.

Архитектуру Kaveri и ее маленькое ответвление под названием Godovari можно назвать полностью зрелой, но AMD решила выйти с ней на бис. Скорее всего, это стало возможно благодаря небольшим улучшениями техпроцесса 28 нм, что вполне правдоподобно, учитывая большой и длительный опыт AMD с данными APU и их архитектурой.

Помимо того, можно связать увеличение базовой тактовой частоты APU AMD A10-7890K до 4,1 ГГц и пиковой частоты Turbo Core до 4,3 ГГц с появление кулера Wraith, который поставляет в комплекте с чипом. Он значительно повышает эффективность охлаждения по сравнению со старым штатным радиатором и вентилятором.


Кулер AMD Wraith разработан с учетом тепловыделения процессоров с тепловым пакетом 125 Вт. Следовательно, он должен без проблем охлаждать APU AMD с TDP 95 Вт (на практике в некоторых наших тестах модель APU AMD A10-7890K перешагивала порог в 125 Вт).

Благодаря приросту тактовой частоты новый APU предлагает теоретическую вычислительную мощность 1,02 TFLOPS без графической нагрузки. Для этого параметра у нас есть специальный тест, который покажет, почему APU от AMD так трудно добиться хорошего баланса в работе центрального и графического процессоров.

Прежде чем мы познакомим вас с нашим тестовым ПК, который был сконфигурирован специально для чипов AMD, давайте посмотрим характеристики семейства процессоров AMD x86 на архитектуре Steamroller:

APU AMD A10-7890K AMD A10-7870K AMD A10-7860K AMD A8-7670K AMD A8-7650K AMD A6-7470K
Поколение Godavari Kaveri Godavari Kaveri Kaveri Godavari
Кол-во ядер/потоков 2/4 2/4 2/4 2/4 2/4 1/2
Базовая частота, ГГц 4,1 3,9 3,6 3,6 3,3 3,7
Частота Turbo, ГГц 4,3 4,1 4 3,9 3,8 4
Кэш L2, Мбайт 4 4 4 4 4 4
Графическое ядро GCN
Radeon R7 Series
GCN
Radeon R7 Series
GCN
Radeon R7 Series
GCN
Radeon R7 Series
GCN
Radeon R7 Series
GCN
Radeon R5 Series
Кол-во шейдерных ядер 512 512 512 384 384 256
Тактовая частота GPU, МГц 866 866 757 757 720 800
TDP, Вт 95 95 65 95 95 65

Обзор APU AMD A10-7890K | Собираем ПК для онлайн игр

Испытания на открытом тестовом стенде со временем наскучивают, так что мы решили собрать на базе тестируемого APU недорогой ПК, предлагающий оптимальную производительность для таких игр как Dota 2. Эта система будет использоваться как основа для всех сегодняшних тестов.

Мы остановились на системной плате формата ATX, поскольку нам не удалось подобрать подходящую альтернативу с учетом выдвинутых требований. Оказалось не так просто найти компактную платформу с процессорным разъемом Socket FM2+ и портом DisplayPort. DisplayPort, как вы уже поняли, нужен для тестирования технологии FreeSync. Наш 24-дюймовый монитор AOC G2460PF идеально подходит для такой системы.

Если FreeSync вам не нужна, есть неплохие альтернативные варианты матплат. К примеру, можно найти плату формата mini-ITX по цене до $50 для компактных систем.

Было принято решение установить железо в корпус Aerocool GT-RS ATX Cube. Это относительно недорогой корпус с двумя камерами, по форме напоминающий нечто среднее между "Средней башней" и "Кубом". Розничная цена составляет $75 и в целом подходит для бюджетных систем и ПК среднего класса.

Завершает наш легкий игровой ПК недорогой SSD от Crucial емкостью 240 Гбайт и DVD-привод, который можно установить вертикально. Такая конфигурация или ее разновидности, должна идеально подойти геймерам, предпочитающим не очень ресурсоемкие онлайн игры, при условии, что пользователи понимают ограничения APU AMD и готовые с ними мириться. Ниже мы расскажем более подробно об этих ограничениях.

Обзор APU AMD A10-7890K | Разгон и энергопотребление

Разгон: CPU, GPU или оба?

На сегодняшний день мы можем с уверенностью сказать, что вы можете разогнать ЦП до 4,5 ГГц без потери стабильности, но это не даст увеличения производительности, если чип используется как APU, то есть задействуется встроенное графическое ядро.

Гораздо важнее, что есть возможность разгона интегрированного GPU со штатной частоты 866 МГц до 1040 МГц и даже больше. Прирост графической производительности не только впечатляет в цифрах, но и чувствуется субъективно, особенно в паре с быстрой оперативной памятью DDR3-2400.

Энергопотребления в различных сценариях

Сначала мы измеряем потребляемую энергию в различных задачах. Не трудно заметить, что APU может превышать предел в 125 Вт, когда GPU простаивает. Но чтобы довести APU AMD A10-7890K до 128 Вт потребляемой мощности нам потребовался стресс-тест Prime95. В реальных приложениях, нагружающих все четыре потока (мы проверили это с помощью фотоэлектрического моделирования, включающего солнечное излучение и затенение), пиковая потребляемая мощность может достигать 123 Вт при средних значения в районе 117 Вт. Заявленный AMD тепловой пакет в 95 Вт здесь явно превышен, причем процент превышения довольно большой.

Можно предположить, что показатели энергопотребления в играх будут еще выше, поскольку работает не только хост-процессор, но и графическое ядро. Однако в действительности мы наблюдаем противоположный эффект. Показания потребляемой мощности снизились до 90 – 100 Вт.

Потребляемая мощность APU A10-7890K в различных приложениях, Вт (меньше - лучше)

Чтобы понять эти противоречащие на первый взгляд результаты, необходимо разобраться, как APU регулирует энергопотребление. Когда GPU начинает потреблять слишком много энергии, например, около 50 Вт, так называемая функция Power Control существенно сокращает потребление ЦП. Это достигает за счет значительно понижения тактовой частоты хост процессора.

Мы попробуем продемонстрировать это с помощью записи изменения тактовой частоты во время игрового теста. Обещанная AMD базовая частота 4 ГГц падает до 3 ГГц, причем на ускорение посредством Turbo Core можно не надеяться. Не поможет и ручной разгон ЦП в BIOS. Как только активизируется GPU, частота ЦП снижается.

Изменение тактовой частоты APU A10-7890K в игре Counter Strike: Global Offensive, МГц (больше - лучше)

График выше наводит на мысль, что мы вряд ли увидим разницу в производительности между A10-7870K и APU AMD A10-7890K в играх. Преимущество по тактовой частоте последнего исчезает, как только в работу включается графическое ядро.

Любопытно, что разгон интегрированного GPU не влияет на частоту ЦП. Вот почему мы ставим ударение на разгоне ядра Radeon вместо ЦП.

Посмотрим на показатели энергопотребления APU AMD A10-7890K в различных сценариях:

Энергопотребление APU A10-7890K в различных приложениях, Вт (меньше - лучше)

Между A10-7870K AMD и APU AMD A10-7890K в действительности есть только одно большое отличие. APU последнего поддерживает более высокий устойчивый разгон графического процессора. Однако у нас только два образца для тестов, поэтому мы не можем с уверенностью сказать, связано это с улучшениями производственного техпроцесса или нам просто попался удачный чип.

В таблице ниже приведены характеристики нашего ПК для онлайн игр:

Тестовая конфигурация
Метод тестирования Безконтактное измерение тока на слоте PCIe (с помощью карты расширения)
Безконтактное измерение тока на внешнем кабеле итания БП
Прямое измерение напряжения на блоке питания
Мониторинг и запись инфракрасной видеокамерой в реальном времени
Оборудование для тестирования 2 x Rohde & Schwarz HMO 3054, 500 МГц (четырёхканальный осциллограф с функцией записи данных)
4 x Rohde & Schwarz HZO50 (токовые клещи)
4 x Rohde & Schwarz HZ355 (осциллографический пробник 10:1, 500 МГц)
1 x Rohde & Schwarz HMC 8012 (мультиметр с фукнцией записи данных)
Тестовая система Intel Core i7-6700K, MSI Z170A Gaming M7
Core i3-4160, MSI Z97A Gaming 6
Штатный кулер Intel
2x 8GB Corsair Dominator DDR3-2133
Тестовая система AMD AMD A10-7890K, AMD A10-7870K, AMD A10-7850K
Кулер Wraith
Asus A88X-Pro
2x 8GB Radeon Memory DDR3-2400
1x Crucial BX200, 240GB SSD
Kolink KL 400 80 PLUS Bronze
Aerocool GT-RS ATX Cube
Windows 10 Pro (со всеми обновлениями)
Драйверы AMD: Radeon Software 15.301 B35 (Press Beta Driver, февраль 2016)
Intel: Beta 15.40.18.4380, 09.02.2016

Комплектующие от Intel мы использовали в целях сравнения результатов.

AMD A10-4600M представляет собой мобильный четырехъядерный процессор на базе архитектуры Trinity. Он был официально представлен во втором квартале 2012 года, и является прямым преемником APU Llano A-серии. В настоящее время это самый быстрый APU Trinity на рынке. Производится чип по 32-нм нормам технологического процесса SOI. APU включает в себя процессор с частотой 2.3 ГГц (до 3.2 ГГц с Turbo Core), достаточно быструю встроенную видеокарту Radeon HD 7660G , а также двухканальный контроллер памяти, видео кодеры/декодеры и северный мост.

Процессорные ядра основаны на архитектуре Piledriver, преемнице архитектуры Bulldozer. Хотя на рынке A10-4600M заявлен как четырехъядерный процессор, он включает в себя только два модуля с четырьмя целочисленными ядрами и два ядра, выполняющие операции с числами с плавающей запятой. Следовательно, процессор четырехъядерным, как таковым, не является.

По сравнению с ядрами предыдущей архитектуры Bulldozer, AMD смогла улучшить IPC производительность ядер Trinity, повысив тактовую частоту. Однако, по сравнению с предшественником Llano, многопоточная производительность Trinity лишь слегка улучшилась. Технология Turbo Core 3.0 функционирует также в режиме ускорения однопоточной производительности, хотя такой же эффективности, как технология Turbo Boost от Intel, она пока не достигла. Впрочем, компания AMD смогла внедрить другие не менее полезные функции, например, такие как расширение AVX (в том числе FMA) и поддержка шифрования AES.

С точки зрения общей производительности, A10-4600M может выполнять работу до 25% быстрее, чем процессор A8-3520M на архитектуре Llano. Особенно прирост производительности в новых процессорах заметен при однопоточных нагрузках.

Процессор A10-4600M стоит примерно на одном уровне с Intel Core i3-2310M Sandy Bridge по результатам, полученным в тестах, хотя в реальных ситуациях, данные могут несколько отличаться. Но, тем не менее, производительности 4600M должно быть вполне достаточно для выполнения ежедневных задач, таких как Office, веб-серфинг, просмотра видео и воспроизведения игр.

Интегрированная видеокарта Radeon HD 7660G поддерживает DirectX 11 и имеет 384 шейдерных ядра. Благодаря технологии Turbo Core она будет работать на частоте от 497 до 686 МГц в зависимости от текущей нагрузки. В среднем, GPU HD 7660G можно сравнить с дискретной Radeon HD 6650M , также она ощутимо быстрее, чем встраиваемая в процессоры Ivy Bridge графика HD Graphics 4000 от Intel.

TDP A10-4600M APU составляет 35 Вт, это сопоставимо с энергопотреблением двухъядерных процессоров Ivy Bridge. Следовательно, A10-4600M лучше всего подходит для ноутбуков с диагональю 14-дюймов и более.

26.02.2014 | master | (67)

1 - AMD APU Kaveri и платформа Socket FM2+ 2 - Процессор AMD A10-7850K 3 - Результаты тестирования. Выводы Отобразить одной страницей

В последнее время никого не удивляет, что на рынке высокопроизводительных центральных процессоров «правит бал» компания Intel. Все попытки извечного антагониста — Advanced Micro Devices — представить достойного конкурента старшим моделям Core i5 и Core i7 не приносят заметных результатов. Увы, даже самая прогрессивная из микроархитектур, имеющихся в распоряжении AMD — Piledriver уступает процессорам Intel в энергоэффективности и быстродействии. Но есть сфера, где продукция Advanced Micro Device имеет очень сильные позиции, речь идет о так называемые гибридных процессорах или APU — Accelerated Processing Unit, которые имеют в своем составе видеоускоритель. Вместе с таким подходом компания активно развивает концепцию гетерогенных вычислений — использование графических ядер для выполнения ресурсоемких расчетов. В 2011 году Advanced Micro Device анонсировала революционные на тот момент APU Llano , которые положили начало широкому использованию гибридных процессоров в настольных системах, а год спустя чипмейкер представил второе поколение десктопных APU Trinity , задавших новую планку быстродействия встроенной видеоподсистемы. Вышедший в прошлом году Richland не принес заметных изменений по сравнению с предшественником, поэтому, компьютерная общественность с нетерпением ждала появления нового поколения гибридных процессоров AMD. И вот, преодолев длинный и нелегкий путь в нашей тестовой лаборатории оказался AMD A10-7850К — старший APU из семейства Kaveri, с обзором которого я вас сегодня и познакомлю.

Особенности архитектуры APU Kaveri

По сравнению с гибридными процессорами предыдущего поколения в Kaveri было сделано столько изменений, что в пору говорить о настоящей революции! Прежде всего, изменился процесс производства, в то время как Richland выпускаются по 32-нм нормам с применением технологии SOI (Silicon on isolator), кристаллы новейших APU изготавливаются с 28-нм детализацией. От SOI было решено отказаться в пользу технологического процесса SHP (Super High Performance), который позволяется добиться значительного повышения плотности элементов ценою некоторого снижения тактовой частоты. Кремниевый кристалл Kaveri состоит из 2410 млн. транзисторов и занимает при этом площадь 245 кв. мм. Для сравнения, полупроводниковое ядро Richland площадью 246 кв. мм насчитывает «всего» 1300 млн. транзисторов, а для четырехъядерных Intel Haswell аналогичные показатели составляют 177 кв. мм и 1400 млн. соответственно, так что, производство новейших гибридных процессоров на фабриках GlobalFoundries обходится AMD вряд ли дороже, чем моделей предыдущего поколения.


Около половины площади полупроводникового кристалла занимает интегрированное графическое ядро Radeon R7, содержащее до восьми вычислительных модулей GCN (Graphics Core Next), подобных тем, что лежат в основе самых современных видеоакселераторов AMD Hawaii . Помимо высокого быстродействия в 3D-играх микроархитектура GCN отлично подходит для неграфических вычислений. Для этого в составе APU имеются восемь блоков ACE (Asynchronous Compute Engines), отвечающие за распределение заданий. Каждый из восьми вычислительных модулей GCN состоит из 64 потоковых процессоров, одного блока растеризации и четырех текстурных юнитов. В максимальной конфигурации графическое ядро Radeon R7, встроенное в APU Kaveri, может иметь до 512 потоковых процессоров, 32 TMU и 8 ROP. Видеоускоритель поддерживает API DirectX 11.2, OpenCL 1.2 и технологию аппаратной обработки звуковых эффектов AMD TrueAudio. В состав графического акселератора входит блок VCE (Video Coding Engine), отвечающий за кодирования видео высокой четкости, а также блок UVD (Unified Video Decoder), призванный разгрузить вычислительные модули при воспроизведении видеопотока.


Еще одной инновацией, реализованной в новейших APU, стала поддержка API Mantle. Этот низкоуровневой программный интерфейс, продвигаемый AMD в качестве альтернативы DirectX и OpenGL, разработан с учетом сильных сторон архитектуры GCN и позволяет оптимально использовать гетерогенный дизайн гибридных процессоров. С помощью Mantle разработчики могут создавать кросс-платформенные продукты, одинаково хорошо работающие как на игровых консолях, так и на персональных компьютерах. При использовании нового API чипмейкер обещает существенный рост быстродействия, правда, на сегодняшний день существует единственная игра с поддержкой Mantle — Battlefield 4, но, как говорится, это только начало.


Что касается процессорной части, то APU Kaveri получил обновленную микроархитектуру Steamroller, которая стала логическим развитием дизайна Piledriver и призвана исправить некоторые его недостатки. Структурной единицей микроархитектуры является модуль, состоящий из одного блока вычислений с плавающей точкой (FPU), двух юнитов для целочисленных вычислений (ALU) и массива кэш-памяти второго уровня размером 2 МБ. Как и раньше пара ALU делят общий блок выборки, но теперь каждый из целочисленных блоков получил собственный декодер инструкций, кроме того, изменения в механизме выборки позволили уменьшить на 30% количество ошибочно предсказанных переходов. Также, были внесены доработки в сами блоки ALU, а емкости кэшей L1 для инструкций были увеличена до 96 КБ, в результате чего возросла эффективность выполнения некоторых целочисленных операций.


Весьма значимые изменения коснулись и модели взаимодействия отдельных узлов гибридного процессора. Важнейшим шагом на пути к развитию гетерогенных вычислений стало внедрение hUMA (heterogeneous Memory Unified Access) и hQ (heterogeneous Queue). Технология hUMA обеспечивает процессорным и графическим ядам равноправный доступ ко всей области системной памяти, а hQ позволяет гибко распределять задания между различными типами вычислительных модулей. Особенность hUMA и hQ заключается в их аппаратной реализации, что вместе с использованием оптимизированного программного обеспечения дает формальное право называть гибридные процессоры Kaveri… 12-ядерными, если под «ядрами» подразумевать вычислительные модули любых типов.


Технологии управления энергоэффективностью в Kaveri получили дальнейшее развитие. Динамическое управление частотой отдельных узлов в зависимости от нагрузки было реализовано еще в APU Trinity, а в новейших гибридных процессорах появилась возможность ручной настройки TDP. Например, для А10-7850К пользователи могут самостоятельно задать тепловой пакет на уровне 45 Вт или 65 Вт, либо оставить параметр TDP в значении по умолчанию 95 Вт, тем самым выбирая между максимальным быстродействием или энергоэффективностью.

Таким образом, новейшие AMD A-Series выглядят очень многообещающе, по сравнению с APU предыдущих поколений прогресс заметен по всем фронтам: в архитектуре вычислительных и графических ядер, в улучшении поддержки гетерогенных вычислений, а также управлении энергопотреблением. Насколько хороши Kaveri в сравнении с предшественниками и конкурентами — вы узнаете совсем скоро, а пока предлагаю взглянуть на платформу Socket FM2+ и модельный ряд AMD A-Series.

Платформа Socket FM2+

Очередное поколение APU получило новый процессорный разъем Socket FM2+, который обратно совместим с гибридными процессорами Trinity и Richland, тогда как поддержки Kaveri на платах Socket FM2, увы, не будет. Все дело в разном количестве контактов: у Socket FM2 их 904, тогда как у версии «плюс» — 906, а также ином расположении направляющих ключей. Хорошо, что крепление системы охлаждения осталось прежним, то есть можно ставить кулеры, предназначенные для Socket AM3+ и Socket FM2.


Для новой платформы AMD предлагает три версии системной логики: A88X для старших материнских плат, A78 для продуктов среднего ценового диапазона и А55 для решений начального уровня. По своим возможностям чипсеты А88Х и А78 в точности наследуют модели предыдущих поколений — А85Х и А75 соответственно, а между собой микросхемы FCH (Fusion Communication Hub) отличаются количеством поддерживаемых портов USB 3.0 и SATA 6 Гбит/с. Единственное заметное отличие новой платформы — официальная поддержка шины PCI Express 3.0, и та доступна только в случае установки APU нового поколения.

На момент анонса продуктовая линейка Kaveri состоит всего из двух наименований: A10-7850 и А10-7700К, но в течение первого квартала 2014 года ассортимент будет расширен за счет экономичной модели А8-7600. Спецификации семейства новейших AMD A-Series в сравнении с предшественниками представлены в следующей таблице:

Процессор A10-7850K A10-7700К A8-7600 A10-6800K A10-6790K A10-6700 A10-6700T A8-6600K A8-6500 A8-6500T
Ядро Kaveri Kaveri Kaveri Richland Richland Richland Richland Richland Richland Richland
Разъем FM2+ FM2+ FM2+ FM2 FM2 FM2 FM2 FM2 FM2 FM2
Техпроцесс, нм 28 28 28 32 32 32 32 32 32 32
Число ядер 4 4 4 4 4 4 4 4 4 4
Номинальная частота, МГц 3700 3400 3300 4100 4000 3700 2500 3900 3500 3500
Частота Turbo Core, МГц 4000 3800 3800 4400 4300 4300 3500 4200 4100 4100
L1-кеш, Кбайт 16 x 4 + 96 x 2 16 x 4 + 96 x 2 16 x 4 + 96 x 2 16 x 4 + 64 x 2 16 x 4 + 64 x 2 16 x 4 + 64 x 2 16 x 4 + 64 x 2 16 x 4 + 64 x 2 16 x 4 + 64 x 2 16 x 4 + 64 x 2
L2-кеш, Мбайт 4 4 4 4 4 4 4 4 4 4
Графическое ядро Radeon R7 series Radeon R7 series Radeon R7 series Radeon HD 8670D Radeon HD 8670D Radeon HD 8670D Radeon HD 8670D Radeon HD 8570D Radeon HD 8570D Radeon HD 8570D
Число унифицированных шейдерных процессоров 512 384 384 384 384 384 384 256 256 256
Частота графического ядра, МГц 720 720 720 844 844 844 720 844 800 800
Поддерживаемый тип памяти DDR3-2133 DDR3-2133 DDR3-2133 DDR3-2133 DDR3-1866 DDR3-1866 DDR3-1866 DDR3-1866 DDR3-1866 DDR3-1866
TDP, Вт 95* 95* 45/65 100 100 65 45 100 65 45
Рекомендованная стоимость, $ 173 152 119 142 122 142 142 97 97 112
* — может принимать значения от 45 до 65 Вт, или 95 Вт.

Помимо разницы в тактовых частотах и количеству потоковых процессоров встроенных видеокарт между APU разных поколений бросается в глаза увеличившаяся стоимость гибридных процессоров AMD. Так старший A10-7850K стоит дороже любого двухъядерного процессора Intel Core i3, но несколько дешевле младших модификаций Core i5, поэтому, прямых конкурентов у него нет, тогда как A10-7700К предстоит соперничать с Intel Core i3-4330, имеющим аналогичную стоимость. Зато, оба APU обладают разблокированным на повышение множителем, следовательно, их быстродействие можно повысить путем разгона, а что касается TDP, то пользователи смогут самостоятельно выбрать требуемое значение в диапазоне от 45 Вт, 65 Вт или 95Вт.

Попавший в нашу тестовую лабораторию AMD A10-7850K оказался не инженерным образцом, а нормальным розничным экземпляром, так что можно рассказать о его комплекте поставки. Старший гибридный процессор продается в небольшой картонной коробке, выполненной в агрессивных черно-красных тонах.


Внутри коробки помимо процессора обнаружился простенький кулер, состоящий из алюминиевого радиатора и 70-мм вентилятора AVC DESC0715B2U с ШИМ-управлением скорости вращения. На своих максимальных оборотах в 4100 об/мин крыльчатка ощутимо шумит, а в разгоне кулер не способен защитить APU от перегрева. В общем, система охлаждения подойдет для штатного режима эксплуатации, тогда как любители разгона и поклонники тишины будут вынуждены искать альтернативные решения.


Внешне A10-7850K не отличается от других гибридных процессоров AMD, полупроводниковый кристалл скрыт под металлической крышкой теплораспределителя.


C обратной стороны находятся 906 позолоченных ножек, различия с моделью для Socket FM2 видны только при непосредственном сравнении.


Согласно паспортным данным старший Kaveri функционирует на частоте 3700 МГц при напряжении Vcore, равном 1,336 В, встроенный северный мост при этом работает на 1800 МГц.


В приложениях, не оптимизированных для многопоточного выполнения, вычислительные модули разгоняются до 4000 МГц с одновременным повышением напряжения до 1,4 В.


В моменты простоя частота снижается до 1700 МГц, а Vcore падает до 0,8 В, обеспечивая гибридному процессору невысокое энергопотребление.


Встроенное в A10-7850K графическое ядро Radeon R7 series функционирует на частоте 720 МГц. При отсутствии нагрузки видеоакселератор замедляется до 350 МГц, помогая экономить электроэнергию.


Что касается разгонного потенциала, то штатные напряжения достаточно высоки, как для 28-нм полупроводникового кристалла, поэтому, я не рискнул увеличивать Vcore более чем на 10%. В итоге, при подаче на вычислительные ядра 1,47 В гибридный процессор заработал на частоте 4400 МГц, а северный мост удалось разогнать до 2000 МГц при повышении VDDNB до 1,3 В. В таком режиме A10-7850K без сбоев проходил стресс-тест в Prime95, но малейшее повышение частоты приводило к ошибкам в программе и возникновению BSOD.


Во время поиска фактора, сдерживающего разгон, выяснилось, что программный мониторинг AIDA64 не совсем корректно отображает температуру APU. Пришлось воспользоваться утилитой HWiNFO64 версии 4.33-2115, которая позволила определить истинный температурный режим гибридного процессора. Судя по данным с датчика CPU 0 Package вычислительные ядра прогревались до 92° С, и это при том, что для охлаждения использовался мощный воздушный кулер Noctua NH-U14S . Скорее всего, эффективности термоинтерфейса между кристаллом и крышкой процессора недостаточно для нормального отвода тепла, и дальнейший рост частоты ограничен из-за перегрева.

Результаты разгона встроенного графического ядра не слишком впечатлили, с повышением напряжения APU1.2V Voltage на 0,1 В до 1,15 В удалось увеличить частоту интегрированной видеокарты на 25%, то есть до 900 МГц.


Похоже, что новые APU Kaveri — отнюдь не чемпионы по разгону. Тем не менее, у пользователей есть возможность хоть немного, но повысить их быстродействие, тогда как у компании Intel в ценовом диапазоне до 200 долларов США нет ни одной модели процессора из серии «К».Тестовый стенд

Прежде чем приступить к описанию тестовых стендов, стоит привести аргументацию выбора соперников для тестирования AMD A10-7850K. Прежде всего, интересно оценить прирост быстродействия в сравнении с гибридным процессором предыдущего поколения, для этих целей использовался A10-6800K. Что касается продукции Intel, то прямого конкурента у старшего APU Kaveri нет, поэтому мы не были ограничены в выборе модели и взяли старшую модель Haswell c возможностью разгона — i5-4670K. Возможно, такое сравнение не слишком корректное, поскольку рекомендованная стоимость процессора Intel почти на 50% больше, зато, будет интересно сравнить быстродействие новинки с настоящими четырехъядерным процессором. Сравнительные характеристики участников тестирования приведены в следующей таблице:

AMD A10-6800K Intel Core i5-4670K
Разъем Socket FM2+ Socket FM2 LGA1150
Техпроцесс CPU, нм 28 32 22
Количество транзисторов, млн. 2410 1300 н/д
Площадь кристалла, кв. мм 245 246 н/д
Число ядер (потоков) 4 (4) 4 (4) 4 (4)
Номинальная частота, МГц 3700 4100 3400
Частота Turbo Core, МГц 4000 4400 3800
Множитель 37 41 35
Объем L1 кэша, КБ 16 x 4 + 96 x 2 16 x 4 + 64 x 2 32 x 4+ 32 x 4
Объем L2 кэша, КБ 2048 x 2 2048 x 2 256 x 4
Объем L3 кэша, МБ - - 6
Встроенное видеоядро Radeon R7 Radeon HD8670D HD 4600
Частота ядра, МГц 720 844 1200
Количество потоковых процессоров 512 384 20
Количество текстурных блоков 32 24 н/д
Каналов памяти 2 2 2
Поддерживаемый тип памяти DDR3 1333/1600/1866/2133 DDR3 1333/1600/1866/2133 DDR3 1333/1600
Шина для связи с чипсетом 2 Gb/s UMI 2 Gb/s UMI 5 GT/s DMI 2.0
TDP, Вт 95 100 85
Рекомендованная стоимость, $ 173 142 243

Для тестирования процессоров в исполнении Socket FM2/FM2+ использовался следующий набор аппаратного обеспечения:
  • системная плата: ASUS A88X-Pro (AMD A88X, UEFI Setup 0703 от 03.01.2014);
  • кулер: Noctua NH-U14S
  • термопаста: Noctua NT-H1 ;
  • оперативная память:
  • видеокарта: ASUS GTX670-DCMOC-2GD5 (NVIDIA GeForce GTX 670);
  • накопитель: GoodRAM C100 Series (120 ГБ, SATA 6Gb/s);
  • драйвер чипсета: AMD Catalyst 13.301;
Процессор Intel Core i5-4670K работал в составе тестового стенда следующей конфигурации:
  • системная плата: ASUS Maximus VI Hero (Intel Z87, UEFI Setup 1301 от 14.01.2014);
  • кулер: Noctua NH-U14S (вентилятор NF-A15 PWM, 140 мм, 1300 об/мин);
  • термопаста: Noctua NT-H1 ;
  • оперативная память: G.Skill TridentX F3-2400C10D-8GTX (2x4 ГБ, DDR3-2400, CL10-12-12-31);
  • видеокарта: ASUS GTX670-DCMOC-2GD5 (NVIDIA GeForce GTX 670);
  • накопитель: GoodRAM C100 Series (120 ГБ, SATA 6Gb/s);
  • блок питания: Seasonic X-650 (650 Вт);
  • операционная система: Windows 7 Enterprise 64 bit SP1;
  • драйвер чипсета: Intel INF Update Utility 9.4.0.1017 и Intel Management Engine 9.5.0.1345;
  • драйвер видеокарты: GeForce 331.65.
Во время тестов процессорные функции энергосбережения, технологии AMD Trubo Core и Intel Turbo Boost работали в штатном режиме. В операционной системе брандмауэр, UAC, Windows Defender и файл подкачки отключались, никаких других оптимизаций не проводилось, настройки видеодрайвера не изменялись. Для тестовых стендов быстродействие оценивалось как в штатном режиме, так и в разогнанном состоянии. Параметры повышенного быстродействия приведены ниже:
AMD A10-6800K AMD A10-6800K OC Core i5-4670К Core i5-4670К OC
Частота CPU, МГц 3700 4400 4100 4800 3400 4800
Напряжение Vcore, В 1,336 1,47 1,36 1,5 1,105 1,38
Частота NB, МГц 1800 2000 1500 2200 3400 4500
Частота iGPU, МГц 720 900 844 1086 1200 1600
Частота ОЗУ, МГц 1600 2400 1600 2400 1600 2400
Тайминги 9-9-9-24-1Т 10-12-12-31-2T 9-9-9-241Т 10-12-12-31-2T 9-9-9-24-1Т 10-12-12-31-2T

Использовался следующий набор тестового ПО:
  • AIDA64 4.20.2800 (Cache & Memory benchmark);
  • SuperPI XS 1.5;
  • wPrime Benchmark 2.10;
  • Futuremark PCMark 8 v2.0.204;
  • 7-zip 9.20 (встроенный тест);
  • Adobe Photoshop CS5 (Retouch Artist Benchmark);
  • Cinebench R15 (64bit);
  • POV-Ray 3.7.0;
  • LuxMark v2.0;
  • TrueCrypt 7.1a (встроенный тест);
  • SVPmark 3.0.3b;
  • x264 HD Benchmark v5.0;
  • Futuremark 3DMark;
  • Batman: Arkham City;
  • Hitman: Absolution;
  • F1 2012;
  • Metro: Last Light.
Производительность с дискретной видеокартой

Синтетические бенчмарки





Как показали результаты в Cache & Memory Benchmark из состава AIDA64, производительность контроллера памяти APU Kaveri превосходит показатели гибридного процессора AMD A10-6800K, но заметно уступает в быстродействии аналогичному узлу Intel Haswell. Вместе с тем, подсистема ОЗУ А10-7850К продемонстрировала худшие показатели латентности.



Тестирование в синтетических бенчмарках SuperPi и wPrime продемонстрировало преимущество новой микроархитектуры в целочисленных вычислениях. Несмотря на превосходство в частоте AMD A10-6800K проиграл новинке, как в штатном режиме, так и после разгона. Правда, до показателей i5-4670K APU Kaveri все равно не дотянул.





В полусинтетическом бенчмарке Futuremark PCMark 8, который отражает уровень быстродействия в типичных повседневных задачах, в штатном режиме скорость работы новинки в точности соответствует показателям APU Richland. И это несмотря на ощутимое преимущество последнего по частоте, а в подтесте MS Office 2010 А10-7850К легко обходит предшественника. Между тем, производительность Intel высока, и даже разгон не позволяет гибридным процессорам AMD приблизиться к результатам конкурента.

Прикладное ПО



Тестирование в архиваторе 7-zip показало, что в штатном режиме оба APU демонстрируют примерно идентичные результаты. Что касается Core i5-4670K, то его превосходство достигает 50% и никакие улучшения в микроархитектуре Steamroller неспособны помочь опередить оппонента.


Результаты встроенного бенчмарка TrueCrypt показали, что скорость аппаратного шифрования у Kaveri выше, чем у предшественника, но гораздо меньше, чем у четырехъядерного Intel. Разгон позволил A10-7850K приблизиться к результатам Core i5-4670K, работающего в штатном режиме.


При выполнении тестового задания в графическом редакторе Adobe Photoshop гибридный процессор Kaveri оказался быстрее APU Richland, как в разгоне, так и в режиме по умолчанию. Впрочем, до быстродействия процессора Intel новинке очень и очень далеко.




Движок 3D-рендеринга Cinebench R15 не использует микроархитектурных улучшений Steamroller, в итоге, AMD А10-6800К показал лучшие результаты, чем новичок, особенно в тесте визуализации OpenGL. Зато, в программе POV-Ray, использующей метод трассировки лучей, APU Kaveri функционировал быстрее своего предшественника, но даже это не помогло ему догнать четырехъядерный Haswell.



В задаче преобразования HD-видео с помощью кодека h.264 разница в быстродействии гибридных процессоров при втором проходе достигла 10% в пользу AMD A10-7850K, тогда как при выполнении первого прохода быстродействие обоих APU оказалось практически идентичным. Результаты Core i5-4670K в комментариях не нуждается, он почти вдвое быстрее Kaveri.

Тесты в 3D-играх

Прежде чем приступить к тестам в видеоиграх, была проведена оценка быстродействия в Futuremark 3DMark.




В шутере Batman: Arkham City и гоночном симуляторе F1 2012 гибридный процессор A10-7850K уступил представителю предыдущего поколения, тогда как в двух оставшихся игровых проектах наблюдается примерный паритет. Преимущество четырехъядерного Intel Haswell безоговорочно и может достигать двух раз.

Энергопотребление

Для оценки энергопотребления тестовых стендов использовалось устройство Basetech Cost Control 3000. С его помощью было измерено среднее потребление электроэнергии при отсутствии нагрузки, а также пиковые значения потребляемой мощности во время прохождения стресс-теста Prime95 в режиме In-Place large FFTs.


В штатном режиме при просторе все участники тестирования показали похожие результаты, а во время стресс-теста энергопотребление стендов расположилось в соответствии с заявленным TDP процессоров. Таким образом, новичок оказался экономичнее AMD А10-6800К, но проиграл в энергоэффективности Core i5-4670K. После разгона ситуация резко поменялась, самым экономичным оказался A10-7850K, как при отсутствии нагрузки, так и при работе программы Prime95.

Быстродействие встроенного графического ядра в 3D-играх





Прежде всего, были проведены тесты в графическом бенчмарке Futuremark 3DMark. В подтесте Cloud gate победу одержал Intel Haswell, скорее всего, за счет лучшего быстродействия процессорных ядер, тогда как в более тяжелом Fire strike A10-7850K продемонстрировал 50% большую производительность, чем у Core i5-4670K. Комплексный разгон гибридного процессора принесло неплохие дивиденды, очевидно, за счет увеличения пропускной способности подсистемы памяти, в которую «упирается» скорость работы встроенного видеоядра Radeon R7.





Поскольку новые APU позиционируются как решения, достаточные для запуска современных 3D-игр в разрешении Full HD, тестирование выполнялось с высокими, но не максимальными настройками качества при экранном разрешении 1920х1080. Увы, AMD A10-7850K обеспечил комфортный геймплей только в двух играх: Batman: Arkham City и F1 2012, тогда как в Hitman: Absolution и Metro: Last Light частота смены кадров оказалась ниже комфортного порога, но уменьшением разрешения и оптимизацией настроек можно легко добиться быстродействия в 24 fps и выше. По результатам тестов превосходство графического ядра Kaveri над встроенной видеокартой APU прошлого поколения достигает порой 25%, а что касается разгона, то AMD A10-7850K очень чутко отреагировал на повышение частоты, позволившее поднять быстродействие в играх до 40%. Влияние пропускной способности ОЗУ на производительность, а также быстродействие в популярных видеоиграх, в том числе при использовании AMD DualGraphics мы обязательно рассмотрим в одном из наших следующих материалов.

Энергопотребление

В режиме использования встроенной графики оценивалось среднее потребление электроэнергии тестовыми стендами за время прохождении игровых тестов и бенчмарка Futuremark 3DMark, а также уровень потребляемой энергии при простое.


В штатном режиме наилучшую энергоэффективность показал тестовый стенд, построенный на Intel Core i5-4670K, но система на базе AMD A10-7850K уступила ему в экономичности совсем незначительно. После разгона ситуация изменилась в пользу Kaveri: герой сегодняшнего обзора показал наименьшее энергопотребление в нагрузке, но проиграл системному блоку на Intel Haswell в простое.

Производительность гетерогенных вычислений

Одним из главных преимуществ гибридных процессоров нового поколения является улучшенное быстродействие в гетерогенных вычислениях с использованием API OpenCL. Увы, приложений, эффективно утилизирующих ресурсы графических ядер, совсем немного, а эффективных средств измерения скорости работы GPGPU — еще меньше. К счастью, комплексный тестовый пакет Futuremark PCMark 8 с недавних пор получил поддержку OpenCL, что позволяет определить прирост от его применения.




При использовании гетерогенных вычислений быстродействие APU Kaveri возросла от 35% в подтесте Home до 75% в тестовом сценарии Work. Активация OpenCL позволила AMD A10-7850K опередить четырехъядерный Intel Haswell, который, к слову, показал совсем незначительный прирост от использования для вычислений встроенного видеоядра. Что касается AMD А10-6800К, то эффективность использования интегрированного графического ускорителя достаточно высока и в отдельных случаях достигает 50%.


Гетерогенные вычисления отлично подходят для построения 3D-изображений методом трассировки лучей, примером может служить программа LuxMark. Результаты расчетов силами вычислительных модулей на гибридных процессорах не слишком впечатлили, особенно на фоне четырехъядерного Intel Haswell. Зато, после задействования графических ядер результаты AMD A10-7850K выросли в 2,5 раза, что позволило на равных соперничать с более дорогим Core i5-4670K. Эффект от включения поддержки OpenCL у последнего есть, но он не превысил 50%, а для APU Richland данный показатель составил около 70%.


Приложение SVP (Smooth Video Project), которое обеспечивает плавность изображения видеофайлов путем формирования промежуточных кадров, оптимизировано для вычислений GPGPU. И вновь эффективность от использования OpenCL для APU Kaveri достигла 50%, а для A10-6800K прирост составил порядка 45%. Увы, этого оказалось недостаточно, чтобы опередить процессор Intel Haswell, выполняющий задачу исключительно силами вычислительных ядер.

Выводы

Без сомнения, APU Kaveri ознаменовали новую веху в истории развития гибридных процессоров AMD и на это есть масса причин. Переход вычислительных модулей на микроархитектуру Steamroller улучшил быстродействие гибридного процессора, обеспечив прирост до 20% в зависимости от задачи. Совершенно новое графическое ядро, обладающее дизайном старших видеоакселераторов AMD Hawaii, превосходит решения предыдущего поколения как по быстродействию в современных видеоиграх, так и в скорости вычислений GPGPU, причем, при грамотной оптимизации ПО эффект от использования OpenCL может достигать нескольких раз. Настоящим подарком стала возможность конфигурирования TDP, отныне у покупателей нет нужды искать энергоэффективные модификации, так как один и тот же APU может работать как в составе тихого мультимедйиного центра развлечений, так и внутри игрового системного блока начального уровня. Единственное, что огорчает — это решение AMD использовать для APU Kaveri новый разъем Socket FM2+, которое не совместим с существующие инфраструктурой и требует приобретения новой системной платы.

Что касается AMD A10-7850K, то старший гибридный процессор получился весьма интересным. Несмотря на то, что его тактовая частота на 400 МГц меньше, чем у флагмана предыдущего поколения A10-6800K, среднее быстродействие героя сегодняшнего обзора оказалось выше на 4%, а в отдельных задачах прирост достигает 10% и более. Тем не менее, этого совершенно недостаточно для полноценной конкуренции с четрехъядерными процессорами Intel Haswell, которые, впрочем, стоят несколько дороже. Сильнейший «козырь в рукаве» гибридных решений AMD — мощная графическая подсистема и здесь конкуренту особенно нечем похвастаться.

Разгонный потенциал новинки особенно не впечатлил. Повышение тактовой частоты на 10% сверх номинала — сомнительное достижение, причем, требующее эффективной системы охлаждения. Причина банальна — низкая эффективность термоинтерфейса между крышкой теплораспределителя и полупроводниковым кристаллом. Вызывает вопрос и завышенная розничная стоимость AMD A10-7850K — почти на 20% больше, чем у старшей модели предыдущего поколения. С учетом перехода на 28-нм детализацию и новый технологический процесс SHP производство полупроводниковых кристаллов обходятся Kaveri вряд ли существенно дороже, чем тех же Richland, так что у чипмейкера есть хороший запас для снижения цены, после чего новейшие гибридные процессоры могут стать новым бестселлером в среднем ценовом диапазоне.

Выпуск процессоров Kaveri — это, вне всяких сомнений, самый главный анонс AMD в этом году. Вместе с новым поколением APU — процессоров, гармонично объединяющих ресурсы параллельных графических и скалярных вычислительных ядер, — компания представляет и гораздо более совершенную стратегию их совместного использования. С этой точки зрения Kaveri очень далеко ушли от первого поколения APU, Llano, которое было представлено в 2011 году. Сделав ставку на создание высокоинтегрированных гибридных устройств, AMD смогла разработать новый класс процессоров, которые, если всё будет идти по намеченному компанией плану, могут захватить лидерство как минимум в сегменте массовых решений. Именно поэтому запуск Kaveri имеет такое значение: в этой новинке находят применение все ключевые инновации — HSA, hUMA, hQ и прочие , делающие из комбинации представленных в APU разнородных ядер единый сплав.

Но есть и другая сторона: многочисленные пользователи персональных компьютеров на самом деле ждут от AMD не каких-то новых идей, которые, несмотря на всю их кажущуюся продуктивность, способны «выстрелить» лишь в перспективе и при условии их широкой поддержки со стороны разработчиков программного обеспечения, а простых процессоров с хорошей вычислительной производительностью. В течение последних нескольких лет AMD заметно отстала от своего основного конкурента в разработке процессорных микроархитектур и утратила возможность выпуска CPU верхней ценовой категории. Kaveri же даёт надежду, что предложения AMD смогут закрепиться хотя бы в среднем ценовом сегменте, ведь в них нашла применение новая и усовершенствованная модификация микроархитектуры Bulldozer — Steamroller. И пока HSA представляет интерес главным образом для разработчиков, простые пользователи рассчитывают на то, что Kaveri даст им возможность выбора платформы при следующем походе в компьютерный магазин.

К сожалению, по результатам нашего первого знакомства с процессорами Kaveri о новых чипах сложилось не слишком благоприятное впечатление. На фоне отказа AMD от дальнейшего развития производительных процессоров серии FX (хочется надеяться, что всё-таки временного) новые APU показали свою полную неспособность соперничать с классическими CPU средней и верхней ценовой категорий в плане вычислительной производительности . А это значит, что интеловские процессоры класса Core i5 и Core i7 норовят стать безальтернативным вариантом в том случае, если речь идёт о построении системы, оборудованной хорошей дискретной видеокартой. Однако столь нелицеприятные для AMD выводы нельзя было считать окончательными, так как они были сделаны нами при тестировании лишь средней модели в линейке Kaveri, A8-7600, которую по какой-то причине представительство AMD предоставило нам вместо флагманской модификации.

Сегодня же мы имеем шанс скорректировать наше мнение и дать окончательный ответ на вопрос о том, могут ли Kaveri претендовать на нечто большее, чем присутствие в недорогих компьютерах, опирающихся на использование небыстрой, встроенной в процессор графики. Для этого мы подробно протестировали старшую десктопную модель Kaveri, A10-7850K, которую AMD позиционирует в качестве альтернативы четырёхъядерным процессорам конкурента семейства Core i5.

⇡ Подробнее о AMD A10-7850K

Подробно о том, чем отличаются процессоры Kaveri от предшествующих поколений APU компании AMD, мы говорили в нашем обзоре A8-7600 . Поэтому здесь мы не будем ещё раз останавливаться на архитектурных тонкостях, а лишь напомним основные моменты применительно к сегодняшнему главному герою, процессору A10-7850K.

Процессоры Kaveri представляют собой объединённые на общем полупроводниковом кристалле четыре x86-ядра (скомпонованных в два модуля) с микроархитектурой Steamroller, графическое ядро поколения GCN и северный мост, содержащий контроллер памяти и контроллер графической шины PCI Express 3.0. Сам полупроводниковый кристалл Kaveri изготавливается по новой для процессорной продукции AMD 28-нм технологии на предприятии GlobalFoundries.

Следует подчеркнуть, что технологический производственный процесс, применяемый в данном случае, является APU-оптимизированным. Это означает, что при тонкой настройке техпроцесса приоритет отдан не максимальному частотному потенциалу, а повышению плотности размещения транзисторов с целью интеграции как можно большего массива параллельных графических шейдеров. В итоге на кристалле площадью 245 мм 2 уместилось 2,41 млрд транзисторов, 47 процентов которых участвует в работе графического ядра. Это означает, что по удельной плотности размещения транзисторов Kaveri заметно превосходит Haswell и приближается к современным графическим ускорителям. Однако такой подход к проектированию потребовал от AMD занизить тактовые частоты процессорной части. Номинальной частотой для старшей модели Kaveri, A10-7850K, стала 3,7 ГГц, что на 400 МГц ниже частоты, достигнутой в APU поколения Richland.

Падение вычислительной производительности, вызванное снижением частоты, AMD скомпенсировала микроархитектурными улучшениями, внедрёнными в Steamroller. Инженеры выявили наиболее критичные узкие места двухъядерных модулей Piledriver и попытались по возможности их ликвидировать. Хотя основа микроархитектуры осталась нетронутой, и вычислительные ядра в Kaveri так же, как и раньше, попарно объединены в модули с двумя комплектами целочисленных исполнительных устройств, но разделяемым FPU, изменений было сделано немало . Самое главное: каждое из ядер получило собственный независимый декодер инструкций, в то время как в Piledriver на двухъядерный модуль приходился один декодер. В результате микроархитектура Steamroller увеличила свою эффективность за счёт лучшей загрузки исполнительных устройств, в особенности целочисленных, собственный комплект которых есть в каждом ядре. Попутно были выполнены и другие оптимизации: объём кеша инструкций увеличился с 64 до 96 Кбайт; а качество работы блока предсказания переходов улучшилось на 20 процентов за счёт роста объёма буферов. Кроме того, в Steamroller удвоена пропускная способность ядер на операциях сохранения данных.

Но графическая часть процессоров Kaveri изменилась ещё сильнее. Главное: она переведена на самую современную архитектуру GCN 1.1, которая используется актуальной линейкой видеокарт Hawaii. При этом максимальная версия графического ядра, которая реализована в A10-7850K, получила в своё распоряжение 512 шейдеров, которые разделены по восьми вычислительным кластерам. За счёт этого производительность графического движка в очередной раз выросла, так как в старших версиях Richland присутствовало не более 384 шейдеров с архитектурой VLIW4. С точки же зрения мощности графического ядра процессор A10-7850K можно сравнивать с Radeon HD 7750, и это позволяет надеяться, что этот APU даст возможность строить интегрированные игровые системы с приемлемой для многих пользователей производительностью.

Однако мощное видеоядро Kaveri предназначается не только для 3D-графики. Не имея возможности предложить пользователям производительные x86-ядра, с выходом процессоров Kaveri AMD решила делать особый упор на счётную производительность графики и гетерогенные вычисления. Для этого компания активно продвигает парадигму HSA (Heterogeneous System Architecture — «гетерогенная системная архитектура»). Графическое ядро Kaveri содержит восемь асинхронных вычислительных движков Asynchronous Compute Engines (ACE), каждый из которых может загружать шейдерные кластеры независимыми счётными задачами и имеет собственный доступ к кеш-памяти. То есть графические вычислительные кластеры получили равноправный с x86-ядрами доступ к системной памяти, и теперь AMD предлагает считать их самостоятельными процессорными ядрами.

Такой подход имеет право на жизнь, так как благодаря HSA вычислительные кластеры действительно могут выполнять собственные процессы вне зависимости от других ядер, не требуя какой-либо активности от x86-ядер. Поэтому, например, A10-7850K, располагающий четырьмя вычислительными ядрами и восемью графическими кластерами, производитель продвигает как 12-ядерный гетерогенный процессор. Однако следует понимать, что эти 12 ядер не эквивалентны, они нуждаются в различном программном коде, и операционная система увидит в A10-7850K лишь четыре традиционных x86-ядра. За загрузку же вычислительной работой шейдерных кластеров несут ответственность разработчики программ, которые должны будут внедрить в свои продукты специализированный OpenCL-код. Иными словами, хоть AMD и преподносит Kaveri как многоядерные процессоры с гетерогенной архитектурой, пока о них можно говорить лишь как о четырёхъядерных CPU с мощным OpenCL-совместимым графическим ядром, способным исполнять параллельные вычисления.

Семейство процессоров Kaveri для настольных компьютеров делится на две подгруппы: энергоэффективные модели с тепловым пакетом 45/65 Вт и обычные модификации, имеющие типичное расчётное тепловыделение на уровне 95 Вт. С представителями первой подгруппы мы уже знакомились на примере A8-7600 , и, как показало тестирование, они оказались не слишком привлекательными для пользователей, заинтересованных в построении производительных систем. Главный же герой настоящего обзора — старший 95-ваттный процессор Kaveri, A10-7850K. Если сравнить эту модель с предыдущими флагманскими APU, процессорами A10-6800K и A10-5800K поколения Richland и Trinity, получится нижеследующая таблица.

AMD A10-7850K AMD A10-6800 K AMD A10- 5800 K
Кодовое имя Kaveri Richland Trinity
Ядра 4 ядра (2 модуля) 4 ядра (2 модуля) 4 ядра (2 модуля)
Микроархитектура Steamroller Piledriver Piledriver
Процессорный разъём Socket FM2+ Socket FM2/FM2+ Socket FM2/FM2+
Разблокированный множитель Есть Есть Есть
Тактовая частота 3,7 ГГц 4,1 ГГц 3,8 ГГц
Частота в турборежиме До 4,0 ГГц До 4,4 ГГц До 4,2 ГГц
L2-кеш 2x2 Мбайт 2x2 Мбайт 2x2 Мбайт
Графическое ядро Radeon R7 Radeon HD 8670D Radeon HD 7660D
Архитектура GPU GCN VLIW4 VLIW4
Шейдерные процессоры 512 384 384
Частота GPU 720 МГц 844 МГц 800 МГц
Поддержка DDR3 DDR3-2133 DDR3-2133 DDR3-1866
TDP 95 Вт 100 Вт 100 Вт
Средняя цена, руб. 6 900 5 100 4 000

К сожалению, отсутствие признаков явного превосходства Kaveri над предшественниками в приведённой таблице — это отражение реальности. Новый флагманский гибридный процессор, A10-7850K, рядом с Richland хорошо смотрится лишь в части графического ядра. На фоне 15-процентного снижения частоты графики число шейдерных процессоров выросло на треть, плюс сменилась на более совершенную версию и их внутренняя архитектура, что дополнительно привнесло и увеличение числа текстурных блоков. Всё это позволяет надеяться, что встроенная в A10-7850K графика сможет с полным правом претендовать на роль игрового решения начального уровня. Если, конечно, её производительность не упрётся в пропускную способность двухканальной DDR3-памяти, процессорный контроллер которой в Kaveri не претерпел никаких существенных изменений.

С x86-частью рассматриваемого процессора всё выглядит гораздо грустнее. Тактовая частота снизилась настолько сильно, что по этой характеристике A10-7850K уступает даже A10-5800K. Хочется надеяться, что по мере совершенствования нового 28-нм технологического процесса AMD сможет поднять частоту хотя бы до 4 ГГц. Однако пока можно надеяться лишь на то, что перечисленных выше микроархитектурных усовершенствований в Steamroller хватит, чтобы A10-7850K оказался не медленнее A10-6800K в традиционных программах. Тем более что, как показывает практика, турборежим в новых процессорах не слишком агрессивен, и средняя реальная частота работы A10-7850K при серьёзной многопоточной нагрузке находится на уровне 3,8 ГГц. В моменты же простоя она снижается до 1,7 ГГц.

С учётом всего этого у старшей модели Kaveri очень странно выглядит одна из основных потребительских характеристик — цена. Для A10-7850K AMD установила официальную стоимость на уровне $173, то есть компания позиционирует этот процессор как альтернативу младшим представителям серии Intel Core i5.

Более ранние модификации APU на соперничество с четырёхъядерниками конкурента были явно не способны, и мы их всегда сопоставляли с представителями семейства Core i3. Неужели с выходом Kaveri что-то принципиально изменилось? Или всему виной возросшие амбиции производителя, подогреваемые предстоящим возможным внедрением HSA? Очевидно, пора переходить к тестам.




Top