Использует оптимальное количество функций что. Целевая функция потребления. Гладкие функции и системы уравнений

В условиях рыночной системы управления производственной и сбытовой деятельностью предприятий и фирм в основе принятия хозяйственных решений лежит рыночная информация, а обоснованность решений проверяется рынком в ходе реализации товаров и услуг. При таком подходе начальным пунктом всего цикла предпринимательской деятельности становится изучение потребительского спроса. Рассмотрим некоторые вопросы моделирования спроса и потребления.

Рассмотрим потребителя, который в результате своего существования потребляет некоторые блага. Уровень удовлетворения потребностей потребителя обозначим через U .Предположим, что имеется n видов благ Б 1 , Б 2 ,…, Б n . В качестве благ могут выступать:

· продовольственные товары;

· товары первой необходимости;

· товары второй необходимости;

· предметы роскоши;

· платные услуги и т. д.

Пусть количество потребления каждого блага равно х 1 , х 2 ,…, х n . Целевой функцией потребления называется зависимость между степенью (уровнем) удовлетворения потребностей U и количеством потребляемых благ: х 1 , х 2 , …, х n . Эта функция имеет вид .

В пространстве потребительских благ каждому уравнению соответствует определенная поверхность равноценных, или безразличных, наборов благ, которая называется поверхностью безразличия . Гиперповерхность такой кривой, называемой многомерной поверхностью безразличия, можно представить в виде , где С - константа. Для наглядности рассмотрим пространство двух благ, например, в виде двух агрегированных групп товаров: продукты питания Б 1 и непродовольственные товары, включая платные услуги Б 2 . Тогда уровни целевой функции потребления можно изобразить на плоскости в виде кривых безразличия, соответствующих различным значениям константы С .Для этого выражают количество потребления одного блага х 1 через другое х 2 . Рассмотрим пример.

Пример 6.3 . Целевая функция потребления имеет вид . Найти кривые безразличия.

Решение . Кривые безразличия имеют вид или , или (при этом следует отметить, что должно выполняться ).



Каждый потребитель стремится максимизировать уровень удовлетворения потребностей, то есть . Однако максимизации степени удовлетворения потребностей будут мешать возможности потребителя. Обозначим цену на единицу каждого блага через р 1 , р 2 ,…, р n , а доход потребителя через D .Тогда должно выполняться бюджетное ограничение , имеющее смысл закона, согласно которому затраты потребителя не должны превышать сумму дохода:

В результате для нахождения оптимального набора благ необходимо решать задачу оптимального программирования:

(6.3)

Рассмотрим двухфакторную функцию потребления , где х 1 - объем потребления продуктов питания и х 2 - потребление непродовольственных товаров и платных услуг. Кроме того, предположим, что весь доход потребитель направляет на удовлетворение своих потребностей. В этом случае бюджетное ограничение будет содержать только два слагаемых, и неравенство превратится в равенство. Задача оптимального программирования при этом примет вид:

(6.4)

Геометрически оптимальное решение имеет смысл точки касания кривой безразличия линии, соответствующей бюджетному ограничению.

х 2
Из бюджетного ограничения системы (6.4) можно выразить переменную . Подставив это выражение в целевую функцию, получаем функцию одной переменной , максимум которой можно найти из уравнения, приравняв производную к нулю: .

Пример 6.4 . Целевая функция потребления имеет вид . Цена на благо Б 1 равна 20, цена на благо Б 2 равна 50. Доход потребителя составляет 1800 единиц. Найти кривые безразличия, оптимальный набор благ потребителя, функцию спроса на первое благо по цене, функцию спроса на первое благо по доходу.

Решение. Кривые безразличия имеют вид:

Получаем множество гипербол, расположенных в первой координатной четверти на разном расстоянии от начала координат в зависимости от значения константы С .

Находим оптимальный набор благ. Задача оптимального программирования имеет вид:

Для ее решения выражаем из бюджетного ограничения одну переменную через другую: . Подставляем в целевую функцию

Находим производную и приравниваем ее к нулю

Получаем .

Таким образом, оптимальный набор благ составляют 30,5 и 23,8 единиц. Находим теперь функцию спроса на первое благо по цене на него. Для этого в бюджетном ограничении вместо фиксированного значения вводим цену первого блага , получая уравнение: . Выражаем

или , откуда находим функцию спроса на первое благо по цене: .

Находим теперь функцию спроса на первое благо по доходу. Для этого выражаем из бюджетного ограничения одну переменную через другую: . Подставляем в целевую функцию:

Находим производную и приравниваем ее к нулю:

Отсюда находим функцию спроса на первое благо по доходу

7. Модель
межотраслевого баланса

Балансовые модели предназначены для анализа и планирования производства и распределения продукции на различных уровнях - от отдельного предприятия до народного хозяйства в целом. Если вспомнить историю народного хозяйства как Советского Союза и России, так и других развитых стран, то можно наблюдать, что в экономике многих государств в разное время случались экономические кризисы разных крайностей от кризисов перепроизводства (США, середина ХХ века), до дефицита (Россия, конец ХХ века). Все эти экономические кризисы связаны с нарушением баланса между производством и потреблением. Из этих фактов видно, что баланс между произведенной продукцией и потреблением является важным критерием как для макроэкономики, так и для микроэкономики.

Экономико-математические модели баланса пытались выстроить многие экономисты и математики с самого начала возникновения проблемы, однако, наиболее полную балансовую модель удалось построить в 1936 г. американским экономистом В. Леонтьевым (который после революции эмигрировал в США и за свою модель получил Нобелевскую премию в области экономики). Эта модель позволяла рассчитать баланс между несколькими взаимодействующими отраслями, хотя ее можно легко обобщить и для организаций микроэкономики, например, для вычисления баланса между несколькими взаимодействующими предприятиями или между подразделениями одного предприятия (например, цехами одного завода).

Цель балансового анализа - ответить на вопрос, возникающий в макроэкономике и связанный с эффективностью ведения многоотраслевого хозяйства: каким должен быть объем производства каждой из п отраслей, чтобы удовлетворить все потребности в продукции этой отрасли? При этом каждая отрасль выступает, с одной стороны, как производитель некоторой продукции; а с другой - как потребитель продукции и своей, и произведенной другими отраслями.

Предположим, что рассматривается п отраслей промышленности, каждая из которых производит свою продукцию. Пусть общий объем произведенной продукции i -й отрасли равен . Полная стоимость продукции, произведенной i -й отраслью, будем называть валовым продуктом этой отрасли. Теперь рассмотрим, на что тратится продукция, производимая отраслью. Часть продукции идет на внутрипроизводственное потребление данной отраслью и потребление другими отраслями, связанными с этой отраслью. Количество продукции i -й отрасли, предназначенной для конечного потребления (вне сферы материального производства) личного и общественного j -й отраслью, обозначим . Оставшаяся часть предназначена для реализации во внешнюю сферу. Эта часть называется конечным продуктом. Пусть i -я отрасль производит конечного продукта.

Рассмотрим процесс производства за некоторый период времени (например, год). Так как валовой объем продукции любой i -й отрасли равен суммарному объему продукции, потребляемой n отраслями, и конечного продукта, то уравнение баланса между производством и потреблением будет иметь вид

, (i = 1, 2, …, n ). (7.1)

Уравнения (7.1) называются соотношениями баланса.

. (7.2)

Все ранее рассмотренные показатели можно записать в основную балансовую таблицу:

Отрасль Потребление отраслей, Конечный продукт, Валовойпродукт,
n
n
Чистый продукт

В результате основная балансовая таблица содержит четыре матрицы: матрицу межотраслевых производственных связей

; матрицу валовой продукции ; матрицу конечной продукции и матрицу чистой продукции .

Одной из задач балансового анализа является определение валового продукта , если известно распределение конечного . Для этого введем коэффициенты прямых затрат

Они получаются в результате деления всех элементов каждого столбца матрицы на соответствующий элемент матрицы межотраслевых производственных связей Х .Коэффициенты прямых затрат имеют смысл количества потребления продукции j -й отрасли, необходимой для производства единицы продукции i -й отраслью. Из выражения (7.3) можно получить: . Подставив последнее выражение в соотношение баланса (7.1), получим

. (7.4)

Если обозначить матрицу коэффициентов прямых затрат как , то соотношение баланса (7.4) в матричном виде можно записать в виде

Из последнего выражения можно найти значение конечного продукта при известном значении валового

где - единичная матрица того же размера, что и А .

Пример 7.1 . Баланс четырех отраслей за предыдущий период имеет матрицу межотраслевых производственных связей вида и матрицу валовой продукции вида . Необходимо определить конечный продукт Y и чистый продукт C каждой отрасли.

Конечный продукт Y получается в результате вычитания из каждого элемента матрицы валовой продукции суммы элементов соответствующих строк матрицы . Например, первое значение равно 100 – (10 + 20 + 15 + 10) = 45. Чистый продукт С получается в результате вычитания из каждого элемента матрицы валовой продукции Х суммы элементов соответствующих столбцов матрицы . Например, первое значение равно 100 – (10 + 5 + 25 + 20) = 40. В результате получим основную балансовую таблицу:

Отрасль Потребление отраслей, Конечный продукт, Валовойпродукт,
Чистый продукт, S = 210 S = 400

Поставим теперь другую задачу: рассчитаем конечный продукт каждой отрасли на будущий период, если валовой продукт окажется равным . Для решения этой задачи найдем коэффициенты прямых затрат:i -й отрасли.

Пример 7.2 . В некотором регионе имеются две основные отрасли народного хозяйства: машиностроение (м/с) и сельское хозяйство (с/х). Баланс этих отраслей за отчетный период определяется матрицами , . Вычислим остальные показатели и заполним основную балансовую таблицу

Предположим, что на будущий период планируется конечная продукция в объемах . Нужно определить, какой валовой продукт при этом нужно планировать. Найдем коэффициенты прямых затрат:

Можно выделить следующие причины, по которым экономические системы являются стохастическими:

1) система сложная, многокритериальная, описывается многоуровневой иерархической структурой;

2) система подвержена влиянию большого числа неуправляемых внешних факторов (погодные условия, внешняя политика, социальные факторы и т. д.);

3) преднамеренное искажение информации, сокрытие информации и целенаправленная экономическая диверсия.

Исходя из этого для моделирования многих экономических систем используют математические методы, основанные на применении законов теории вероятностей, которые получили название стохастических методов .

При применении стохастических методов оптимизация целевой функции ведется по среднему значению, то есть при заданных параметрах необходимо найти такое решение, когда значение целевой функции в среднем будет максимальным.

Стохастические системы в экономике описываются марковским аппаратом, в основе которого лежат марковские случайные процессы . Они применяются в случаях, когда нельзя заформализовать модель (описать аналитическим выражением) и в случае, когда система представляет собой многопараметрическую вероятностную экономическую систему.

Линейное программирование.

Краткие теоретические сведения

Постановка задач

Решение прямой задачи линейного программирования отвечает на следующий вопрос:

при каких интенсивностяхn процессов получения прибыли (оказании различных услуг, производственных процессов), в которых используютсяm видов ресурсов (факторов производства) с известными предельными интенсивностями использования этих ресурсов выручка от реализации (прибыль) будет максимальна в случае, когда интенсивность расхода каждого ресурса и интенсивность получения прибыли (выручки) в каждом из процессов линейно зависят от интенсивности этого процесса.

Решение двойственной к ней задачи отвечает на следующий вопрос:

при каких наименьших ценах на единицу ресурса экономическому агенту будет невыгодно дальнейшее расширение процесса получения прибыли за счёт приобретения новых объёмов дефицитных в сложившихся условиях экономической деятельности ресурсов.

Прямая задача линейного программирования может быть связана со следующей ситуацией. Имеются n способов получения прибыли (оказание n видов услуг) с объёмами x i (число штук i -й оказанных услуг) . При этом используются m видов ресурсов, запас j -го изкоторых равен b j . При этом расход каждого ресурса j и величина прибыли в каждом из процессов i линейно зависят от количества оказанных услуг i -го вида с коэффициентами a ji и c i , соответственно. Матрица А =(a ji ) m ´ n по смыслу аналогична такой же из первой части и также называется матрицей технологических, или структурных коэффициентов. Тогда оптимальный по критерию максимума получения прибыли план может быть получен из решения следующей прямой задачи линейного программирования:

Этой задаче можно поставить в соответствие расширенную матрицу следующего вида:

(4.1)

Двойственная к задаче (4) задача имеет следующий вид (z j – искомые предельные цены):

При такой формулировке двойственной задачи из условия минимизации цен вытекают (5.1) и (5.3), а из условия невыгодности продолжения деятельности прямо возникает условие превышения или равенства издержек над выручкой от реализации.

Основные понятия модели

Решение (план, программа)- набор, вектор конкретных значений всех переменных параметров управления модели – тех величин которые могут быть изменены по воле управляющего объектом моделирования. Решения бывают допустимые (реализуемые на практике), недопустимые (не реализуемые в силу существующих в модели ограничений) и оптимальные (лучшие из допустимых).

Целевая функция L(x) – математическое выражение, связывающее факторы (параметры) модели. Экономический смысл целевой функции отражает критерий оптимальности – показатель, имеющий экономическое содержание и служащий формализацией конкретной цели управления, например: максимизация прибыли (строка 1 в (4)), максимизация качества продукции или минимизация издержек (5.1).


Система ограничений модели – пределы, ограничивающие область допустимых (приемлемых, осуществимых) решений , фиксирующие основные внутренние и внешние свойства объекта, связанные с целью оптимизации. Уравнения связи (типа f j (x) )– математическая формализация системы ограничений (строки 2 и 3 в (4), (5.2 , 5.3)). Система ограничений отражает экономический смысл уравнений связи.

Система, состоящая из целевой функции и уравнений связи, -задача экономико- математического моделирования (ЭММ). В случае, когда целевая функция и уравнения связи линейны, а переменные управления меняются непрерывно, задача ЭММ называетсязадачей линейного программирования (ЛП) . Основное свойство множества допустимых планов (МДП) задачи ЛП - оно является выпуклым многогранником. Выпуклым называется множество, которому принадлежат все отрезки, соединяющие любые две точки этого множества. Если задача ЛП имеет решение, то оно находится в вершине МДП. Планы, находящиеся в вершинах МДП, называются базовыми. Задачи линейного программирования делятся на задачи с ограничениями в форме неравенств (общая задача ЛП) и в форме равенств (каноническая задача ЛП). При математической формализации экономических задач с помощью линейной модели получаются общие задачи ЛП – например, (4), (5). Любой общей задаче путём введения дополнительных переменных может быть сопоставлена каноническая задача. Так, задаче (4) путём введения в каждое неравенство типа “расход ресурса £ запас ресурса” (строка 2 в (4)) дополнительной переменной x n+j (неизрасходованный остаток j -го ресурса) сопоставляется следующая каноническая:

При этом размерность задачи (6) – число переменных плана - по сравнению с (4) увеличилась с n до n+m .

При решении задачи (4) важное значение имеют коэффициенты ресурсоотдачи, среди которых здесь будут использованы дифференциальные и приростные. Дифференциальный коэффициент ресурсоотдачи k ji показывает стоимость оказанных при использовании единицы j -го ресурса i –ых услуг. Те виды услуг, для которых все k ji оказываются наименьшими по всем видам услуг, являются наименее выгодными. Они не должны присутствовать в оптимальном плане. Это позволяет, путём принудительного обнуления объёмов оказания таких услуг снизить размерность задачи и, таким образом, упростить её решение. Вычисляются они следующим образом - k ji =c i /a ji .

приростной коэффициент ресурсоотдачи К j – это коэффициент пропорциональности между приращением значения целевой функции оптимального плана и вызвавшим это приращение изменением запасов j -го ресурса. Можно считать, что К j показывают, на сколько увеличится значение целевой функции исходной задачи в оптимальном плане при увеличении величины запаса j -го ресурса на единицу. С математической точки зрения является полной производной от оптимального значения целевой функции по величине запаса j -го ресурса: К j =dL opt /db j .

Целевая функция - вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

Примеры

Гладкие функции и системы уравнений

Задача решения любой системы уравнений

{ F 1 (x 1 , x 2 , … , x M) = 0 F 2 (x 1 , x 2 , … , x M) = 0 … F N (x 1 , x 2 , … , x M) = 0 {\displaystyle \left\{{\begin{matrix}F_{1}(x_{1},x_{2},\ldots ,x_{M})=0\\F_{2}(x_{1},x_{2},\ldots ,x_{M})=0\\\ldots \\F_{N}(x_{1},x_{2},\ldots ,x_{M})=0\end{matrix}}\right.}

может быть сформулирована как задача минимизации целевой функции

S = ∑ j = 1 N F j 2 (x 1 , x 2 , … , x M) (1) {\displaystyle S=\sum _{j=1}^{N}F_{j}^{2}(x_{1},x_{2},\ldots ,x_{M})\qquad (1)}

Если функции гладкие, то задачу минимизации можно решать градиентными методами.

Для всякой гладкой целевой функции можно приравнять к 0 {\displaystyle 0} частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) {\displaystyle (1)} это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

Линейное программирование

Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

Комбинаторная оптимизация

Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра. Эта функция равна длине гамильтонова цикла на графе. Она задана на множестве перестановок n − 1 {\displaystyle n-1} вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

Глава 1. Постановка основной задачи линейного программирования

  1. Линейное программирование

Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием. Такие задачи находят обширные приложения в различных сферах человеческой деятельности. Систематическое изучение задач такого типа началось в 1939 – 1940 гг. в работах Л.В. Канторовича.

К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.

Круг задач, решаемых при помощи методов линейного программирования достаточно широк.Это, например:

    задача об оптимальном использовании ресурсов при производственном планировании;

    задача о смесях (планирование состава продукции);

    задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или);

    транспортные задачи (анализ размещения предприятия, перемещение грузов).

Линейное программирование – наиболее разработанный и широко применяемый раздел математического программирования (кроме того, сюда относят: целочисленное, динамическое, нелинейное, параметрическое программирование). Это объясняется следующим:

    математические модели большого числа экономических задач линейны относительно искомых переменных;

    данный тип задач в настоящее время наиболее изучен. Для него разработаны специальные методы, с помощью которых эти задачи решаются, и соответствующие программы для ЭВМ;

    многие задачи линейного программирования, будучи решенными, нашли широкое применение;

    некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.

Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.

В общем виде модель записывается следующим образом:

целевая функция

(1.1) при ограничениях

(1.2) требования неотрицательности

(1.3) где x j – переменные (неизвестные);

- коэффициенты задачи линейного программирования.

Задача состоит в нахождении оптимального значения функции (1.1) при соблюдении ограничений (1.2) и (1.3).

Систему ограничений (1.2) называют функциональными ограничениями задачи, а ограничения (1.3) - прямыми.

Вектор, удовлетворяющий ограничениям (1.2) и (1.3), называется допустимым решением (планом) задачи линейного программирования. План, при котором функция (1.1) достигает своего максимального (минимального) значения, называется оптимальным.

1.2. Симплекс метод решения задач линейного программирования

Симплекс-метод был разработан и впервые применен для решения задач в 1947 г. американским математиком Дж. Данцигом.

Двумерные задачи линейного программирования решаются графически. Для случая N=3 можно рассмотреть трехмерное пространство и целевая функция будет достигать своё оптимальное значение в одной из вершин многогранника.

Допустимым решением (допустимым планом) задачи ЛП, данной в стандартной форме, называется упорядоченное множество чисел (х1, х2, …, хn), удовлетворяющих ограничениям; это точка в n-мерном пространстве.

Множество допустимых решений образует область допустимых решений (ОДР) задачи ЛП. ОДР представляет собой выпуклый многогранник (многоугольник).

В общем виде, когда в задаче участвуют N-неизвестных, можно сказать, что область допустимых решений, задаваемая системой ограничивающих условий, представляется выпуклым многогранником в n-мерном пространстве и оптимальное значение целевой функции достигается в одной или нескольких вершинах.

Базисным называется решение, при котором все свободные переменные равны нулю.

Опорное решение - это базисное неотрицательное решение. Опорное решение может быть невырожденным и вырожденным. Опорное решение называется невырожденным, если число его ненулевых координат равно рангу системы, в противном случае оно является вырожденным.

Допустимое решение, при котором целевая функция достигает своего экстремального значения, называется оптимальным и обозначается .

Решить данные задачи графически, когда количество переменных более 3 весьма затруднительно. Существует универсальный способ решения задач линейного программирования, называемый симплекс-методом.

Симплекс-метод - это универсальный метод решения задач ЛП, представляющий собой итерационный процесс, который начинается с одного решения и в поисках лучшего варианта движется по угловым точкам области допустимых решений до тех пор, пока не достигнет оптимального значения.

С его помощью можно решить любую задачу линейного программирования.

В основу симплексного метода положена идея последовательного улучшения получаемого решения.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений к соседней, в которой целевая функция принимает лучшее (или, по крайней мере, не худшее) значение до тех пор, пока не будет найдено оптимальное решение - вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).

Таким образом, имея систему ограничений, приведенную к канонической форме (все функциональные ограничения имеют вид равенств), находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще. Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то осуществляется переход к другому, обязательно допустимому базисному решению. Симплексный метод гарантирует, что при этом новом решении целевая функция, если и не достигнет оптимума, то приблизится к нему (или, по крайней мере, не удалится от него). С новым допустимым базисным решением поступают так же, пока не отыщется решение, которое является оптимальным.

Процесс применения симплексного метода предполагает реализацию трех его основных элементов:

    способ определения какого-либо первоначального допустимого базисного решения задачи;

    правило перехода к лучшему (точнее, не худшему) решению;

    критерий проверки оптимальности найденного решения.

Симплексный метод включает в себя ряд этапов и может быть сформулирован в виде четкого алгоритма (четкого предписания о выполнении последовательных операций). Это позволяет успешно программировать и реализовывать его на ЭВМ. Задачи с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.

6.1.Введение

Оптимизация. Часть 1

Методы оптимизации позволяют выбрать наилучший вариант конструкции из всех возможных вариантов. В последние годы этим методам уделялось большое внимание, и в результате был разработан целый ряд высокоэффективных алгоритмов, позволяющих найти оптимальный вариант конструкции при помощи ЭЦВМ. В данной главе излагаются основы теории оптимизации, рассмат-риваются принципы, лежащие в основе построения алгоритмов оптимальных решений, описываются наиболее известные алгоритмы, анализируются их достоинства и недостатки.

6.2.Основы теории оптимизации

Термином «оптимизация» в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего, или «оптимального», решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. Поэтому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

Рассматривая некоторую произвольную систему, описываемую m уравнениями с n неизвестными, можно выделить три основных типа задач. Если m=n , задачу называют алгебраической. Такая задача обычно имеет одно решение. Если m>n, то задача переопределена и, как правило, не имеет решения. Наконец, при m

Прежде чем приступить к обсуждению вопросов оптимизации, введем ряд определений.

Проектные параметры

Этим термином обозначают независимые переменные параметры, которые полностью и однозначно определяют решаемую задачу проектирования. Проектные параметры - неизвестные величины, значения которых вычисляются в процессе оптимизации. В качестве проектных параметров могут служить любые основные или произ-водные величины, служащие для количественного описания системы. Так, это могут быть неизвестные значения длины, массы, време-ни, температуры. Число проектных параметров характеризует сте-пень сложности данной задачи проектирования. Обычно число проектных параметров обозначают через n, а сами проектные пара-метры через х с соответствующими индексами. Таким образом n проектных параметров данной задачи будем обозначать через

X1, x2, x3,...,xn.

Целевая функция

Это - выражение, значение которого инженер стремится сделать максимальным или минимальным. Целевая функция позволяет количественно сравнить два альтернативных решения. С мате-матической точки зрения целевая функция описывает некоторую (n+1) - мерную поверхность. Ее значение определяется проектными параметрами

M=M(x 1 , x 2 ,...,x n).

Примерами целевой функции, часто встречающимися в инженерной практике, являются стоимость, вес, прочность, габариты, КПД. Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости (рис.6.1). Если проектных параметров два, то целевая функция будет изображаться поверх-ностью в пространстве трех измерений (рис.6.2). При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются гиперповерхностями и не поддаются изобра-

жению обычными средствами. Топологические свойства поверхности целевой функции играют большую роль в процессе оптимизации, так как от них зависит выбор наиболее эффективного алгоритма.

Целевая функция в ряде случаев может принимать самые неожиданные формы. Например, ее не всегда удается выразить в

Рис.1.Одномерная целевая функция.

Рис.6.2.Двумерная целевая функция.

замкнутой математической форме, в других случаях она может

представлять собой кусочно-гладкую функцию. Для задания целевой функции иногда может потребоваться таблица технических данных (например, таблица состояния водяного пара) или может понадобиться провести эксперимент. В ряде случаев проектные параметры принимают только целые значения. Примером может служить число зубьев в зубчатой передаче или число болтов во фланце. Иногда проектные параметры имеют только два значения - да или нет. Качественные параметры, такие как удовлетворение, которое испытывает приобретший изделие покупатель, надежность, эстетичность, трудно учитывать в процессе оптимизации, так как их практически невозможно охарактеризовать количественно. Однако в каком бы виде ни была представлена целевая функция, она должна быть однозначной функцией проектных параметров.

В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несов-местимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов и поставить в соответствие каждой целевой функции некоторый безразмерный мно-житель. В результате появляется «функция компромисса», позво-ляющая в процессе оптимизации пользоваться одной составной целевой функцией.

Поиск минимума и максимума

Одни алгоритмы оптимизации приспособлены для поиска максимума, другие - для поиска минимума. Однако независимо от типа решаемой задачи на экстремум можно пользоваться одним т тем же алгоритмом, так как задачу минимизации можно легко превратить в задачу на поиск максимума, поменяв знак целевой функции на обратный. Этот прием иллюстрируется рис.6.3.

Пространство проектирования

Так называется область, определяемая всеми n проектными параметрами. Пространство проектирования не столь велико, как может показаться, поскольку оно обычно ограничено рядом

условий, связанных с физической сущностью задачи. Ограничения могут быть столь сильными, что задача не будет иметь ни одного

Рис.6.3.Изменением знака целевой функции на противоположный

задача на максимум превращается в задачу на минимум.

удовлетворительного решения. Ограничения делятся на две группы: ограничения - равенства и ограничения - неравенства.

Ограничения - равенства

Ограничения - равенства - это зависимость между проектными параметрами, которые должны учитываться при отыскании решения. Они отражают законы природы, экономики, права, господствующие вкусы и наличие необходимых материалов. Число ограничений - равенств может быть любым. Они имеют вид

C 1 (x 1 , x 2 ,...,x n)=0,

C 2 (x 1 , x 2 ,...,x n)=0,

..................

C j (x 1 , x 2 ,...,x n)=0.

Если какое-либо из этих соотношений можно разрешить отно-сительно одного из проектных параметров, то это позволяет исключить данный параметр из процесса оптимизации. Тем самым уменьшается число измерений пространства проектирования и упрощается решение задачи.

Ограничения - неравенства

Это особый вид ограничений, выраженных неравенствами. В общем случае их может быть сколько угодно, причем все они имееют вид

z 1 r 1 (x 1 , x 2 ,...,x n) Z 1

z 2 r 2 (x 1 , x 2 ,...,x n) Z 2

.......................

z k r k (x 1 , x 2 ,...,x n) Z k

Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается не тем, где ее поверхность имеет нулевой градиент. Нередко лучшее решение соответствует одной из границ области проектирования.

Локальный оптимум

Так называется точка пространства проектирования, в которой целевая функция имеет наибольшее значение по сравнению с ее значениями во всех других точках ее ближайшей окрестности.

Рис.6.4.Произвольная целевая функция может иметь несколько

локальных оптимумов.

На рис. 6.4 показана одномерная целевая функция, имеющая два локальных оптимума. Часто пространство проектирования содержит много локальных оптимумов и следует соблюдать осторожность, чтобы не принять первый из них за оптимальное решение задачи.

Глобальный оптимум

Глобальный оптимум - это оптимальное решение для всего пространства проектирования. Оно лучше всех других решений, соответствующих локальным оптимумам, и именно его ищет конструктор. Возможен случай нескольких равных глобальных оптимумов, расположенных в разных частях пространства проектирования. Как ставится задача оптимизации, лучше всего показать на примере.

Пример 6.1

Пусть требуется спроектировать прямоугольный контейнер объемом 1м , предназначенный для перевозки неупакованного волокна. Желательно, чтобы на изготовление таких контейнеров затрачивалось как можно меньше материала (при условии посто-янства толщины стенок это означает, что площадь поверхности должна быть минимальной), так как при этом он будет дешевле. Чтобы контейнер удобно было брать автопогрузчиком, его ширина должна быть не менее 1,5м.

Сформулируем эту задачу в виде, удобном для применения алгоритма оптимизации.

Проектные параметры: x 1 , x 2 , x 3 .

Целевая функция (которую требуется минимизировать) - площадь боковой поверхности контейнера:

A=2(x 1 x 2 +x 2 x 3 +x 1 x 3), м2.

Ограничение - равенство:

Объем = x 1 x 2 x 3 =1м3.

Ограничение - неравенство:

Задачи линейного программирования

Линейное программирование (ЛП) является одним из разделов математического программирования – дисциплины, изучающей экстремальные (оптимизационные) задачи и разработкой методов их решения.

Оптимизационная задача – это математическая задача, заключающаяся в нахождении оптимального (т.е. максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (ОДЗ).

В общем виде постановка экстремальной задачи математического программирования состоит в определении наибольшего или наименьшего значения функции , называемой целевой функцией , при условиях (ограничениях) , где и – заданные функции, а – заданные постоянные величины. При этом ограничения в виде равенств и неравенств определяют множество (область) допустимых решений (ОДР), а – называют проектными параметрами .

В зависимости от вида функций и задачи математического программирования делятся на ряд классов (линейной, нелинейное, выпуклое, целочисленное, стохастическое, динамическое программирование и др.).

В общем виде задача ЛП имеет следующий вид:

, (5.1)

, , (5.2)

, , (5.3)

где , , – заданные постоянные величины.

Функцию (5.1) называют целевой функцией; системы (5.2), (5.3) – системой ограничений; условие (5.4) – условием неотрицательности проектных параметров.

Совокупность проектных параметров , удовлетворяющих ограничениям (5.2), (5.3) и (5.4), называют допустимым решением или планом .

Оптимальным решением или оптимальным планом задачи ЛП называется допустимое решение , при котором целевая функция (5.1) принимает оптимальное (максимальное или минимальное) значение.

Стандартной задачей ЛП называют задачу нахождения максимального (минимального) значения целевой функции (5.1) при условии (5.2) и (5.4), где , , т.е. т.е. ограничения только в виде неравенств (5.2) и все проектные параметры удовлетворяют условию неотрицательности, а условия в виде равенств отсутствуют:

,

, , (5.5)

.

Канонической (основной) задачей ЛП называют задачу нахождения максимального (минимального) значения целевой функции (5.1) при условии (5.3) и (5.4), где , , т.е. т.е. ограничения только в виде равенств (5.3) и все проектные параметры удовлетворяют условию неотрицательности, а условия в виде неравенств отсутствуют:

,

.

Каноническую задачу ЛП можно также записать в матричной и векторной форме.

Матричная форма канонической задачи ЛП имеет следующий вид:

Векторная форма канонической задачи ЛП.

Целевая функция – это математическое представление зависимости критерия оптимальности от искомых переменных.

2. Градиент функции.

Вектор, компонентами которого служат значения частных производных, то есть вектор

называется градиентом функции , вычисленным в точке.

3. Общая задача линейного программирования.

Стандартная математическая формулировка общей задачи линейного программирования выглядит так: требуется найти экстремальное значение показателя эффективности (целевой функции)

(линейной функции элементов решения ) при линейных ограничительных условиях, накладываемых на элементы решения:

где - заданные числа.

4. Стандартная задача лп.

В стандартной форме задача линейного программирования является задачей на максимум (минимум) линейной целевой функции. Система ограничений ее состоит из одних линейных неравенств типа « <= » или « >= ». Все переменные задачи неотрицательны.

Всякую задачу линейного программирования можно сформулировать в стандартной форме . Преобразование задачи на минимум в задачу на максимум, а также обеспечение не отрицательности переменных производится так же, как и раньше. Всякое равенство в системе ограничений равносильно системе взаимопротивоположных неравенств:

Существует и другие способы преобразования системы равенств в систему неравенств, т.е. всякую задачу линейного программирования можно сформулировать в стандартной форме.

2 вариант ответа:

Стандартная задача ЛП. или, в матричной записи,где- матрица коэффициентов. Векторназывается вектором коэффициентов линейной формы,- вектором ограничений.

5. Каноническая задача лп.

В канонической форме задача является задачей на максимум (минимум) некоторой линейной функции F , ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х 1 , х 2 , ..., х n являются неотрицательными:

К канонической форме можно преобразовать любую задачу линейного программирования.

Короткая запись канонической задачи ЛП:

Х=(х1, х2, …, хn), С=(с1, с2, …, сn).

2 вариант ответа:

Каноническая задача ЛП. или, в матричной записи,

6. Симметричные и несимметричные двойственные задачи.

Двойственная задача линейного программирования. Рассмотрим задачу ЛП (1) или, в матричной записи,(2) Задачей, двойственной к (1) (двойственной задачей), называется задача ЛП отпеременныхвида(3) или, в матричной записи,(4) где. Правила построения задачи (3) по форме записи задачи (1) таковы: в задаче (3)

переменных столько же, сколько строк в матрицезадачи (1). Матрица ограничений в (3) - транспортированная матрица. Вектор правой части ограничений в (3) служит вектором коэффициентов максимизируемой линейной форме в (1), при этом знаки неравенств меняются на равенство. Наоборот, в качестве целевой функции в (3) выступает линейная форма, коэффициентами которой задаются вектором правой части ограничений задачи (1), при этом максимизация меняется на минимизацию. На двойственные переменныенакладывается условие неотрицательности. Задача (1), в отличии от двойственной задачи (3) называется прямой.Теорема двойственности . Если взаимодвойственные задачи (2), (4) допустимы, то они обе имеют решение и одинаковое значение .

Симметричные двойственные задачи

Разновидностью двойственных задач линейного, программирования являются двойственные симметричные задачи, в которых система ограничений как исходной, так и двойственной задач задается неравенствами, причем на двойственные переменные налагается условие неотрицательности.

Если ограничивающий фактор один (например, дефицитный станок), решение может быть найдено с применением простых формул (см. ссылку в начале статьи). Если же ограничивающих факторов несколько, применяется метод линейного программирования.

Линейное программирование – это название, данное комбинации инструментов используемых в науке об управлении. Этот метод решает проблему распределения ограниченных ресурсов между конкурирующими видами деятельности с тем, чтобы максимизировать или минимизировать некоторые численные величины, такие как маржинальная прибыль или расходы. В бизнесе он может использоваться в таких областях как планирование производства для максимального увеличения прибыли, подбор комплектующих для минимизации затрат, выбор портфеля инвестиций для максимизации доходности, оптимизация перевозок товаров в целях сокращения расстояний, распределение персонала с целью максимально увеличить эффективность работы и составление графика работ в целях экономии времени.

Скачать заметку в формате , рисунки в формате

Линейное программирование предусматривает построение математической модели рассматриваемой задачи. После чего решение может быть найдено графически (рассмотрено ниже), с использованием Excel (будет рассмотрено отдельно) или специализированных компьютерных программ.

Пожалуй, построение математической модели – наиболее сложная часть линейного программирования, требующая перевода рассматриваемой задачи в систему переменных величин, уравнений и неравенств – процесс, в конечном итоге зависящий от навыков, опыта, способностей и интуиции составителя модели.

Рассмотрим пример построения математической модели линейного программирования

Николай Кузнецов управляет небольшим механическим заводом. В будущем месяце он планирует изготавливать два продукта (А и В), по которым удельная маржинальная прибыль оценивается в 2500 и 3500 руб., соответственно.

Изготовление обоих продуктов требует затрат на машинную обработку, сырье и труд (рис. 1). На изготовление каждой единицы продукта А отводится 3 часа машинной обработки, 16 единиц сырья и 6 единиц труда. Соответствующие требования к единице продукта В составляют 10, 4 и 6. Николай прогнозирует, что в следующем месяце он может предоставить 330 часов машинной обработки, 400 единиц сырья и 240 единиц труда. Технология производственного процесса такова, что не менее 12 единиц продукта В необходимо изготавливать в каждый конкретный месяц.

Рис. 1. Использование и предоставление ресурсов

Николай хочет построить модель с тем, чтобы определить количество единиц продуктов А и В, которые он доложен производить в следующем месяце для максимизации маржинальной прибыли.

Линейная модель может быть построена в четыре этапа.

Этап 1. Определение переменных

Существует целевая переменная (обозначим её Z), которую необходимо оптимизировать, то есть максимизировать или минимизировать (например, прибыль, выручка или расходы). Николай стремится максимизировать маржинальную прибыль, следовательно, целевая переменная:

Z = суммарная маржинальная прибыль (в рублях), полученная в следующем месяце в результате производства продуктов А и В.

Существует ряд неизвестных искомых переменных (обозначим их х 1 , х 2 , х 3 и пр.), чьи значения необходимо определить для получения оптимальной величины целевой функции, которая, в нашем случае является суммарной маржинальной прибылью. Эта маржинальная прибыль зависит от количества произведенных продуктов А и В. Значения этих величин необходимо рассчитать, и поэтому они представляют собой искомые переменные в модели. Итак, обозначим:

х 1 = количество единиц продукта А, произведенных в следующем месяце.

х 2 = количество единиц продукта В, произведенных в следующем месяце.

Очень важно четко определить все переменные величины; особое внимание уделите единицам измерения и периоду времени, к которому относятся переменные.

Этап. 2. Построение целевой функции

Целевая функция – это линейное уравнение, которое должно быть или максимизировано или минимизировано. Оно содержит целевую переменную, выраженную с помощью искомых переменных, то есть Z выраженную через х 1 , х 2 … в виде линейного уравнения.

В нашем примере каждый изготовленный продукт А приносит 2500 руб. маржинальной прибыли, а при изготовлении х 1 единиц продукта А, маржинальная прибыль составит 2500 * х 1 . Аналогично маржинальная прибыль от изготовления х 2 единиц продукта В составит 3500 * х 2 . Таким образом, суммарная маржинальная прибыль, полученная в следующем месяце за счет производства х 1 единиц продукта А и х 2 единиц продукта В, то есть, целевая переменная Z составит:

Z = 2500 * х 1 + 3500 *х 2

Николай стремится максимизировать этот показатель. Таким образом, целевая функция в нашей модели:

Максимизировать Z = 2500 * х 1 + 3500 *х 2

Этап. 3. Определение ограничений

Ограничения – это система линейных уравнений и/или неравенств, которые ограничивают величины искомых переменных. Они математически отражают доступность ресурсов, технологические факторы, условия маркетинга и иные требования. Ограничения могут быть трех видов: «меньше или равно», «больше или равно», «строго равно».

В нашем примере для производства продуктов А и В необходимо время машинной обработки, сырье и труд, и доступность этих ресурсов ограничена. Объемы производства этих двух продуктов (то есть значения х 1 их 2) будут, таким образом, ограничены тем, что количество ресурсов, необходимых в производственном процессе, не может превышать имеющееся в наличии. Рассмотрим ситуацию со временем машинной обработки. Изготовление каждой единицы продукта А требует трех часов машинной обработки, и если изготовлено х 1 , единиц, то будет потрачено З * х 1 , часов этого ресурса. Изготовление каждой единицы продукта В требует 10 часов и, следовательно, если произведено х 2 продуктов, то потребуется 10 * х 2 часов. Таким образом, общий объем машинного времени, необходимого для производства х 1 единиц продукта А и х 2 единиц продукта В, составляет 3 * х 1 + 10 * х 2 . Это общее значение машинного времени не может превышать 330 часов. Математически это записывается следующим образом:

3 * х 1 + 10 * х 2 ≤ 330

Аналогичные соображения применяются к сырью и труду, что позволяет записать еще два ограничения:

16 * х 1 + 4 * х 2 ≤ 400

6 * х 1 + 6 * х 2 ≤ 240

Наконец следует отметить, что существует условие, согласно которому должно быть изготовлено не менее 12 единиц продукта В:

Этап 4. Запись условий неотрицательности

Искомые переменные не могут быть отрицательными числами, что необходимо записать в виде неравенств х 1 ≥ 0 и х 2 ≥ 0. В нашем примере второе условия является избыточным, так как выше было определено, что х 2 не может быть меньше 12.

Полная модель линейного программирования для производственной задачи Николая может быть записана в виде:

Максимизировать: Z = 2500 * х 1 + 3500 *х 2

При условии, что: 3 * х 1 + 10 * х 2 ≤ 330

16 * х 1 + 4 * х 2 ≤ 400

6 * х 1 + 6 * х 2 ≤ 240

Рассмотрим графический метод решения задачи линейного программирования.

Этот метод подходит только для задач с двумя искомыми переменными. Модель, построенная выше, будет использована для демонстрации метода.

Оси на графике представляют собой две искомые переменные (рис. 2). Не имеет значения, какую переменную отложить вдоль, какой оси. Важно выбрать масштаб, который в конечном итоге позволит построить наглядную диаграмму. Поскольку обе переменные должны быть неотрицательными, рисуется только I-й квадрант.

Рис. 2. Оси графика линейного программирования

Рассмотрим, например, первое ограничение: 3 * х 1 + 10 * х 2 ≤ 330. Это неравенство описывает область, лежащую ниже прямой: 3 * х 1 + 10 * х 2 = 330. Эта прямая пересекает ось х 1 при значении х 2 = 0, то есть уравнение выглядит так: 3 * х 1 + 10 * 0 = 330, а его решение: х 1 = 330 / 3 = 110

Аналогично вычисляем точки пересечения с осями х 1 и х 2 для всех условий-ограничений:

Область допустимых значений Граница допустимых значений Пересечение с осью х 1 Пересечение с осью х 2
3 * х 1 + 10 * х 2 ≤ 330 3 * х 1 + 10 * х 2 = 330 х 1 = 110; х 2 = 0 х 1 = 0; х 2 = 33
16 * х 1 + 4 * х 2 ≤ 400 16 * х 1 + 4 * х 2 = 400 х 1 = 25; х 2 = 0 х 1 = 0; х 2 = 100
6 * х 1 + 6 * х 2 ≤ 240 6 * х 1 + 6 * х 2 = 240 х 1 = 40; х 2 = 0 х 1 = 0; х 2 = 40
х 2 ≥ 12 х 2 = 12 не пересекает; идет параллельно оси х 1 х 1 = 0; х 2 = 12

Графически первое ограничение отражено на рис. 3.

Рис. 3. Построение области допустимых решений для первого ограничения

Любая точка в пределах выделенного треугольника или на его границах будет соответствовать этому ограничению. Такие точки называются допустимыми, а точки за пределами треугольника называются недопустимыми.

Аналогично отражаем на графике остальные ограничения (рис. 4). Значения х 1 и х 2 на или внутри заштрихованной области ABCDE будут соответствовать всем ограничениям модели. Такая область называется областью допустимых решений.

Рис. 4. Область допустимых решений для модели в целом

Теперь в области допустимых решений необходимо определить значения х 1 и х 2 , которые максимизируют Z. Для этого в уравнении целевой функции:

Z = 2500 * х 1 + 3500 *х 2

разделим (или умножим) коэффициенты перед х 1 и х 2 на одно и тоже число, так чтобы получившиеся значения попали в диапазон, отражаемый на графике; в нашем случае такой диапазон – от 0 до 120; поэтому коэффициенты можно разделить на 100 (или 50):

Z = 25х 1 + 35х 2

затем присвоим Z значение равное произведению коэффициентов перед х 1 и х 2 (25 * 35 = 875):

875 = 25х 1 + 35х 2

и, наконец, найдем точки пересечения прямой с осями х 1 и х 2:

Нанесем это целевое уравнение на график аналогично ограничениям (рис. 5):

Рис. 5. Нанесение целевой функции (черная пунктирная линия) на область допустимых решений

Значение Z постоянно на всем протяжении линии целевой функции. Чтобы найти значения х 1 и х 2 , которые максимизируют Z, нужно параллельно переносить линию целевой функции к такой точке в границах области допустимых решений, которая расположена на максимальном удалении от исходной линии целевой функции вверх и вправо, то есть к точке С (рис. 6).

Рис. 6. Линия целевой функции достигла максимума в пределах области допустимых решений (в точке С)

Можно сделать вывод, что оптимальное решение будет находиться в одной из крайних точек области принятия решения. В какой именно, будет зависеть от угла наклона целевой функции и от того, какую задачу мы решаем: максимизации или минимизации. Таким образом, не обязательно чертить целевую функцию – все, что необходимо, это определить значения х 1 и х 2 в каждой из крайних точек путем считывания с диаграммы или путем решения соответствующей пары уравнений. Найденные значения х 1 и х 2 затем подставляются в целевую функцию для расчета соответствующей величины Z. Оптимальным решением является то, при котором получена максимальная величина Z при решении задачи максимизации, и минимальная – при решении задачи минимизации.

Определим, например значения х 1 и х 2 в точке С. Заметим, что точка С находится на пересечении линий: 3х 1 + 10х 2 = 330 и 6х 1 + 6х 2 = 240. Решение этой системы уравнений дает: х 1 = 10, х 2 = 30. Результаты расчета для всех вершин области допустимых решений приведены в таблице:

Точка Значение х 1 Значение х 2 Z = 2500х 1 + 3500х 2
А 22 12 97 000
В 20 20 120 000
С 10 30 130 000
D 0 33 115 500
E 0 12 42 000

Таким образом, Николай Кузнецом должен запланировать на следующий месяц производство 10 изделий А и 30 изделий В, что позволит ему получить маржинальную прибыль в размере 130 тыс. руб.

Кратко суть графического метода решения задач линейного программирования можно изложить следующим образом:

  1. Начертите на графике две оси, представляющие собою два параметра решения; нарисуйте только I-й квадрант.
  2. Определите координаты точек пересечения всех граничных условий с осями, подставляя в уравнения граничных условий поочередно значения х 1 = 0 и х 2 = 0.
  3. Нанести линии ограничений модели на график.
  4. Определите на графике область (называемую допустимой областью принятия решения), которая соответствует всем ограничениям. Если такая область отсутствует, значит, модель не имеет решения.
  5. Определите значения искомых переменных в крайних точках области принятия решения, и в каждом случае рассчитайте соответствующее значение целевой переменной Z.
  6. Для задач максимизации решение – точка, в которой Z максимально, для задач минимизации, решение – точка, в которой Z минимально.



Top