Как найти ооф по графику функции. Область определения функции с корнем. Сбор и использование персональной информации

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.

В математике бесконечное множество функций. И у каждой - свой характер.) Для работы с самыми разнообразными функциями нужен единый подход. Иначе, какая же это математика?!) И такой подход есть!

При работе с любой функцией мы предъявляем ей стандартный набор вопросов. И первый, самый важный вопрос - это область определения функции. Иногда эту область называют множеством допустимых значений аргумента, областью задания функции и т.п.

Что такое область определения функции? Как её находить? Эти вопросы частенько представляются сложными и непонятными... Хотя, на самом деле, всё чрезвычайно просто. В чём вы сможете убедиться лично, прочитав эту страничку. Поехали?)

Ну, что тут сказать... Только респект.) Да! Естественная область определения функции (о которой здесь идёт речь) совпадает с ОДЗ выражений, входящих в функцию. Соответственно, и ищутся они по одним и тем же правилам.

А сейчас рассмотрим не совсем естественную область определения.)

Дополнительные ограничения на область определения функции.

Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого способа задания функции.

Что касается ограничений в задании - тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.

Например, такое задание:

Найти область определения функции:

на множестве положительных чисел.

Естественную область определения этой функции мы нашли выше. Эта область:

D(f)=(-∞ ; -1) (-1; 2]

В словесном способе задания функции нужно внимательно читать условие и находить там ограничения на иксы. Иногда глаза ищут формулы, а слова свистят мимо сознания да...) Пример из предыдущего урока:

Функция задана условием: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х.

Здесь надо заметить, что речь идёт только о натуральных значениях икса. Тогда и D(f) мгновенно записывается:

D(f): х N

Как видите, область определения функции - не такое уж сложное понятие. Нахождение этой области сводится к осмотру функции, записи системы неравенств и решению этой системы. Конечно, системы бывают всякие, простые и сложные. Но...

Открою маленький секрет. Иногда функция, для которой надо найти область определения, выглядит просто устрашающе. Хочется побледнеть и заплакать.) Но стоит записать систему неравенств... И, вдруг, системка оказывается элементарной! Причём, частенько, чем ужаснее функция, тем проще система...

Мораль: глаза боятся, голова решает!)

Как найти область определения функции? Ученикам средних классов приходится часто сталкиваться с данной задачей.

Родителям следует помочь своим детям разобраться в данном вопросе.

Задание функции.

Напомним основополагающие термины алгебры. Функцией в математике называют зависимость одной переменной от другой. Можно сказать, что это строгий математический закон, который связывает два числа определенным образом.

В математике при анализе формул числовые переменные подменяют буквенными символами. Наиболее часто используют икс («х») и игрек («у»). Переменную х называют аргументом, а переменную у — зависимой переменной или функцией от х.

Существуют различные способы задания зависимостей переменных.

Перечислим их:

  1. Аналитический тип.
  2. Табличный вид.
  3. Графическое отображение.

Аналитический способ представляют формулой. Рассмотрим примеры: у=2х+3, у=log(х), у=sin(х). Формула у=2х+3 является типичной для линейной функции. Подставляя в заданную формулу числовое значение аргумента, получаем значение y.

Табличный способ представляет собой таблицу, состоящую из двух столбцов. Первая колонка выделяется для значений икса, а в следующей графе записывают данные игрека.

Графический способ считается наиболее наглядным. Графиком называют отображение множества всех точек на плоскости.

Для построения графика применяют декартовую систему координат. Система состоит из двух перпендикулярных прямых. На осях откладывают одинаковые единичные отрезки. Отсчет производят от центральной точки пересечения прямых линий.

Независимую переменную указывают на горизонтальной линии. Ее называют осью абсцисс. Вертикальная прямая (ось ординат) отображает числовое значение зависимой переменной. Точки отмечают на пересечении перпендикуляров к данным осям. Соединяя точки между собой, получаем сплошную линию. Она являться основой графика.

Виды зависимостей переменных

Определение.

В общем виде зависимость представляется как уравнение: y=f(x). Из формулы следует, что для каждого значения числа х существует определенное число у. Величину игрека, которая соответствует числу икс, называют значением функции.

Все возможные значения, которые приобретает независимая переменная, образуют область определения функции. Соответственно, все множество чисел зависимой переменной определяет область значений функции. Областью определения являются все значения аргумента, при котором f(x) имеет смысл.

Начальная задача при исследовании математических законов состоит в нахождении области определения. Следует верно определять этот термин. В противном случае все дальнейшие расчеты будут бесполезны. Ведь объем значений формируется на основе элементов первого множества.

Область определения функции находится в прямой зависимости от ограничений. Ограничения обусловливаются невозможностью выполнения некоторых операций. Также существуют границы применения числовых значений.

При отсутствии ограничений область определения представляет собой все числовое пространство. Знак бесконечности имеет символ горизонтальной восьмерки. Все множество чисел записывается так: (-∞; ∞).

В определенных случаях массив данных состоит из нескольких подмножеств. Рамки числовых промежутков или пробелов зависят от вида закона изменения параметров.

Укажем список факторов, которые влияют на ограничения:

  • обратная пропорциональность;
  • арифметический корень;
  • возведение в степень;
  • логарифмическая зависимость;
  • тригонометрические формы.

Если таких элементов несколько, то поиск ограничений разбивают для каждого из них. Наибольшую проблему представляет выявление критических точек и промежутков. Решением задачи станет объединение всех числовых подмножеств.

Множество и подмножество чисел

О множествах.

Область определения выражают как D(f), а знак объединения представлен символом ∪. Все числовые промежутки заключают в скобки. Если граница участка не входит во множество, то ставят полукруглую скобку. В ином случае, когда число включается в подмножество, используют скобки квадратной формы.

Обратная пропорциональность выражена формулой у=к/х. График функции представляет собой кривую линию, состоящую из двух веток. Ее принято называть гиперболой.

Так как функция выражена дробью, нахождение области определения сводится к анализу знаменателя. Общеизвестно, что в математике деление на нуль запрещено. Решение задачи сводится к уравниванию знаменателя к нулю и нахождению корней.

Приведем пример:

Задается: у=1/(х+4). Найти область определения.

  1. Приравниваем знаменатель к нулю.
    х+4=0
  2. Находим корень уравнения.
    х=-4
  3. Определяем множество всех возможных значений аргумента.
    D(f)=(-∞ ; -4)∪(-4; +∞)

Ответ: областью определения функции являются все действительные числа, кроме -4.

Значение числа под знаком квадратного корня не может быть отрицательным. В этом случае определения функции с корнем сводится к решению неравенства. Подкоренное выражение должно быть больше нуля.

Область определения корня связана с четностью показателя корня. Если показатель делится на 2, то выражение имеет смысл только при его положительном значении. Нечетное число показателя указывает на допустимость любого значения подкоренного выражения: как положительного, так и отрицательного.

Неравенство решают так же, как уравнение. Существует только одно различие. После перемножения обеих частей неравенства на отрицательное число следует поменять знак на противоположный.

Если квадратный корень находится в знаменателе, то следует наложить дополнительное условие. Значение числа не должно равняться нулю. Неравенство переходит в разряд строгих неравенств.

Логарифмические и тригонометрические функции

Логарифмическая форма имеет смысл при положительных числах. Таким образом, область определения логарифмической функции аналогична функции квадратного корня, за исключением нуля.

Рассмотрим пример логарифмической зависимости: y=lоg(2x-6). Найти область определения.

  • 2x-6>0
  • 2x>6
  • х>6/2

Ответ: (3; +∞).

Областью определения y=sin x и y=cos x является множество всех действительных чисел. Для тангенса и котангенса существуют ограничения. Они связаны с делением на косинус либо синус угла.

Тангенс угла определяют отношением синуса к косинусу. Укажем величины углов, при которых значение тангенса не существует. Функция у=tg x имеет смысл при всех значениях аргумента, кроме x=π/2+πn, n∈Z.

Областью определения функции y=ctg x является все множество действительных чисел, исключая x=πn, n∈Z. При равенстве аргумента числу π или кратному π синус угла равен нулю. В этих точках (асимптотах) котангенс не может существовать.

Первые задания на выявление области определения начинаются на уроках в 7 классе. При первом ознакомлении с этим разделом алгебры ученик должен четко усвоить тему.

Следует учесть, что данный термин будет сопровождать школьника, а затем и студента на протяжении всего периода обучения.




Top