Формула волнового сопротивления кабеля. Волновое сопротивление кабеля. Защита от помех коаксиальным кабелем. Причина возникновения помех

Волновое сопротивление

Зная комплексные амплитуды электрического и магнитного полей в коаксиальной линии передачи, можно вычислить мощность электромагнитного поля, переносимую вдоль оси :

Подставляя сюда выражения для комплексных амплитуд поля и проводя интегрирование, получаем

, Вт

Эту формулу можно рассматривать как выражение для мощности, выделяемой на некотором резисторе при подаче на него синусоидального напряжения . Поскольку , можно записать

.

Величина носит название волнового сопротивления коаксиальной линии передачи и имеет большое значение при решении вопросов ее реализации. Это объясняется тем, что часто используют последовательное включение линий передачи, обладающих различающимися параметрами, например, диаметрами проводников. Естественным требованием, предъявляемым к стыку двух линий, является согласование, т. е. отсутствие отражений от данной сосредоточенной неоднородности. Поскольку в плоскости стыка напряжение есть непрерывная функция координаты , мощность может быть целиком передана из одной линии в другую лишь при условии согласования:

Данная формула во многих случаях служит критерием согласования с достаточной для инженерных целей точностью. Приближенность ее заключается в том, что здесь не учитывается изменения структуры поля в непосредственной близости от плоскости скачка геометрических размеров, происходящее за счет возбуждения нераспространяющихся колебаний высших типов.

Возможность использования понятия волнового сопротивления для линий передачи с волнами ТЕМ объясняется тем, что здесь напряжение , в отличие от волноводов, может быть введено однозначным образом. Поэтому волновое сопротивление полностью характеризуется геометрическими параметрами поперечного сечения, а также диэлектрической проницаемостью использованного материала.

Отметим также, что волновое сопротивление линии можно выразить через ее погонную емкость. В случае ТЕМ-волны в любой однородной идеальной линии текут только продольные поверхностные токи. Их плотность связана с плотностью поверхностных зарядов уравнением непрерывности

,

которое можно записать в виде

.

Интегрируя последнее равенство по контуру поперечного сечения проводника, по которому течет рассматриваемый ток, получим

где − комплексная амплитуда заряда на единицу длины проводника. Учитывая общее выражение для волнового сопротивления и определение понятия емкости конденсатора , получим

,

где − погонная емкость линии. В случае коаксиальной линии определяется выражением для емкости цилиндрического конденсатора, которое получается при рассмотрении задач электростатики в курсе общей физики.

Одним их параметров любой токопроводящей линии является волновое сопротивление. Особенную актуальность оно приобретает в высокочастотной радиопередающей технике, где малейшее рассогласование работы контура приводит к существенным искажениям на выходе. С другой стороны, каждый владелец компьютера, связанного с другими в локальную сеть, ежедневно сталкивается с понятием «волновое сопротивление». Стоит отметить, что появление сетей Ethernet на основе витой пары позволило конечному пользователю особо не задумываться о коннекторах, заземлениях, терминаторах и качестве разъемов, как это имело место при коаксиальных кабельных линиях на 10 мегабит (и меньше). Однако даже в отношении витой пары применим термин «волновое сопротивление». Вообще, на особенностях эксплуатации компьютерных сетей остановимся чуть позже.

Итак, что же такое волновое сопротивление? Как уже указывалось, это одна их характеристик токопроводящей линии на основе металлических проводников. Последняя оговорка необходима, чтобы не смешивать современные оптические линии передачи данных и классические медные провода, где носителями энергии выступают не заряженные частицы, а свет - там действуют другие законы. Эта величина указывает, какое значение сопротивления линия оказывает генератору (источнику модулированных электрических колебаний). Не следует путать которое можно измерить обычным мультиметром, и волновое сопротивление среды, так как это совершенно разные вещи. Последнее не зависит от длины проводника (уже этого достаточно, чтобы сделать выводы о «сходстве» сопротивлений). Физически оно равняется из отношения индуктивности (Генри) к емкости (Фарады). Небольшая ремарка: несмотря на то, что в расчетах используются реактивные составляющие линии, волновое сопротивление контура всегда в расчетах считается активным.

Лучше всего рассмотреть все на примере. Представим себе простейшую цепь, состоящую из источника энергии (генератора, R1), проводников, обладающих волновым сопротивлением (R2), и потребителя (нагрузки, R3). При равенстве всех трех сопротивлений вся переданная энергия достигает потребителя и там выполняет полезную работу. Если же на каком-либо участке это равенство не соблюдается, то возникает несогласованный режим работы. В точке, где нарушается соответствие, появляется отраженная волна, и часть электромагнитной энергии возвращается назад - к генератору. Соответственно, приходится повышать его мощность, чтобы компенсировать величину отраженной энергии. Другими словами, часть энергии затрачивается «впустую», а это означает потери и неоптимальный режим работы. Кроме того, в некоторых случаях рассогласование вообще нарушает функционирование всей линии.

Теперь вернемся к компьютерным сетям, где волновое сопротивление играет важную роль. Для линий на основе (50 Ом) важно соблюдение условия: сопротивления и проводника между ними должны быть равны. Только в этом случае работает система терминаторов и заземлений. Если же какой-либо участок кабельной линии физически немного растянуть (подвесить на проводнике груз), то из-за изменения диаметра проводников в этом месте изменится волновое сопротивление, возникнет отраженная волна, нарушающая работу системы. При этом замеренное активное сопротивление линии может практически не измениться (бюджетные приборы вообще не зарегистрируют увеличение сопротивления). Попытки восстановить линию путем пайки проводников на поврежденном участке еще больше усугубят ситуацию, так как появится не просто переходное сопротивление, а смесь различных сред (олово, медь), в которых волны распространяются по-разному.

Волновое сопротивление, или импеданс, - это сопротивление, которое встречает электромагнитная волна при распространении вдоль любой однородной (то есть без отражений) направляющей системы, в том числе и витой пары.

Оно свойственно данному типу кабеля и зависит только от его первичных параметров и частоты.

Волновое сопротивление связано с первичными параметрами следующим простым соотношением:

Z=√((R+jωL)/(G+jωC))

Волновое сопротивление численно равно входному сопротивлению линии бесконечной длины, которая имеет оконечную нагрузку, равную ее собственному волновому сопротивлению. Оно измеряется в омах и определяет количественное соотношение между электрической и магнитной составляющей электромагнитной волны. В общем случае волновое сопротивление является комплексной величиной, его модуль падает по мере роста частоты и на высоких частотах стремится к фиксированному активному сопротивлению:

Z ∞ =lim ω → ∞ √((R+jωL)/(G+jωC)) = √(L/C)

Кабели на витых парах на звуковых частотах, то есть при передаче телефонных сигналов, имеют сопротивление около 600 Ом, по мере увеличения частоты оно быстро падает и на частотах свыше 1 МГц вплоть до верхней граничной частоты конкретного кабеля не должно отличаться от 100 Ом более чем на + 15%.

Затухание

При распространении по витой паре электромагнитный сигнал постепенно теряет свою энергию.

Этот эффект называется ослаблением, или затуханием.

Затухание принято оценивать в децибелах как разность между уровнями сигналов на выходе передатчика и входе приемника.

Один децибел соответствует изменению мощности в 1,26 раза или напряжения в 1,12 раза.

Принято различать собственное и рабочее затухание кабеля.

Под собственным затуханием кабеля понимается затухание при работе в идеальных условиях.

В обобщенном виде его величину теоретически можно определить как реальную часть так называемого коэффициента распространения γ, который связан с первичными параметрами следующим простым соотношением:

γ=√((R+jωL)(G+jωC))

Экспериментально собственное затухание кабеля можно определить как разность уровней входного и выходного сигналов в том случае, если сопротивление источника сигнала и нагрузки равны между собой и волновому сопротивлению кабеля.

В процессе реальной эксплуатации это условие выполняется не во всех случаях, что обычно сопровождается увеличением затухания.

Такое затухание называется рабочим.

Из изложенного следует важный практический вывод о том, что для минимизации рабочего затухания и его приближения к собственному сопротивление источника сигнала и нагрузка должны быть равны волновому сопротивлению, то есть, по терминологии электротехники, должна быть обеспечена согласованная нагрузка как источника сигнала, так и самого кабеля.


Из формулы выше следует, что затухание является частотнозависимой величиной и, как все входящие в него параметры, зависит от длины кабеля.

Результаты анализа формулы показывают, что затухание связано с длиной витой пары линейной зависимостью на всех частотах.

Для упрощения выполнения инженерных расчетов удобно пользоваться параметром коэффициента затухания или погонного затухания α, который численно равен затуханию кабеля фиксированной длины (применительно к кабелю типа витой пары это обычно 100 м).

Величины коэффициента затухания α, длины L и затухания А связаны между собой следующим простым соотношением:

А |дБ| = α |дБ/100 м| х L |м|/100

Чем меньше величина затухания, тем более мощным оказывается сигнал на входе приемника и тем устойчивее при прочих равных условиях связь. Затухание вызывается активным сопротивлением и потерями в диэлектрической изоляции. Определенный вклад в затухание вносят также излучение электромагнитной энергии и отражения.

Любой проводник, по которому течет переменный ток, является источником излучения в окружающее пространство. Оно отбирает у сигнала энергию и ведет к возрастанию затухания сигнала. Это явление резко возрастает с увеличением частоты сигнала. При λ < а, где λ - длина волны электромагнитного сигнала, а - расстояние между проводами, большая часть энергии идет на излучение в окружающее пространство и передача в неэкранированной направляющей системе становится невозможной. Для стандартной витой пары величина параметра а имеет значение порядка 2 мм, то есть критическая частота для нее будет равна 15 ГГц, что на два порядка ниже рабочих частот самых совершенных витых пар (-150 МГц). С ростом частоты потери на электромагнитное излучение возрастают. Для минимизации потерь на излучение применяют балансную передачу и скрутку проводников в пары.

Как было отмечено выше, в идеальной симметричной цепи электромагнитное излучение отсутствует. На практике таких идеальных симметричных цепей не существует. Дело в том, что в такой цепи проводники должны бесконечно плотно прилегать друг к другу и в пределе быть стянутыми в бесконечно тонкую линию, суммарный протекающий через которую ток равен нулю. Проводники с меньшим диаметром и более тонкой изоляцией плотнее прилегают друг к другу. Однако чрезмерное уменьшение сечения проводника и утоньшение изоляции ведет к повышению затухания за счет роста активного сопротивления и увеличения проводимости изолирующих покровов.


Частотная зависимость первичных параметров электрического кабеля

Из эквивалентной схемы можно сделать вывод о том, что затухание с ростом частоты имеет тенденцию к росту. Это обусловлено как ростом сопротивления продольной ветви в основном за счет элемента L, так и падением сопротивления поперечной ветви, которое обусловлено главным образом наличием емкости (элемент С). По стандарту TIA/EIA-568-А на длине 100 м и при температуре 20° С частотная характеристика A(f) максимально допустимого затухания, начиная с 0,772 МГц, для кабелей категорий 3, 4 и 5 определяется согласно следующему выражению

A (f) = k1√f + k2f + k3√f,

А, дБ - максимальное допустимое затухание

f, МГц - частота сигнала

k1, k2, k3 - константы, определяемые в зависимости от категории кабеля (см. таблицу ниже)

Кроме аналитического задания величины затухания стандарт TIA/EIA-568-А определяет этот параметр также в табличной форме с расширением нормируемых значений в область нижних частот. Это бывает полезным при выполнении инженерных расчетов трактов связи, предназначенных для поддержки работы некоторых приложений, а также позволяет сразу же получить необходимую информацию без выполнения вычислений.


Максимальное допустимое затухание кабелей категории 3,4 и 5 на длине 100 м при t=20ºС по стандарту TIA/EIA-568-A

На рисунке выше показаны частотные зависимости предельно допустимых затуханий кабелей различных категорий, вычисленные по формуле выше.

Аппроксимация по формуле оказалась очень удачной и достаточно часто используется многими производителями кабельной продукции для описания характеристик их изделий. При этом принимаются свои значения коэффициентов k 1 -k 3 , а область действия распространяется на частоты до 400 и даже 550 МГц.

Переходное затухание

При передаче сигнала часть его энергии вследствие неидеальности балансировки витой пары переходит в электромагнитное излучение, которое вызывает наведенные токи в соседних парах. Этот эффект называется переходными наводками. Наводки, накладываясь на полезные сигналы, передаваемые по соседним парам, могут приводить к ошибкам приема и в конечном итоге снижают качество связи.

Разность между уровнями передаваемого сигнала и создаваемой им помехи на соседней паре называется переходным затуханием. В зависимости от места и метода измерения этого параметра различают несколько видов переходного затухания, см. рисунок, на котором через Ii обозначены токи наводок, создаваемые различными участками влияющей витой пары во влияемой.


Переходные наводки на ближнем (слева) и дальнем (справа) концах соседней пары

Если источник сигнала и точка измерения находятся на одном конце, то говорят о переходном затухании на ближнем конце, если на разных - то о переходном затухании на дальнем конце. В технике СКС первое из них традиционно имеет заимствованное из англоязычной технической литературы обозначение NEXT (Near End Crosstalk), а второе - FEXT (Far End Crosstalk). В отечественной технической литературе, посвященной кабелям городской и междугородной связи, аналогичные параметры обозначаются соответственно А 0 и А 1 .

Чем выше значение NEXT и FEXT, тем меньший уровень имеет наводка в соседних парах, и соответственно тем более качественным является кабель. С практической точки зрения представляет интерес частотная зависимость переходного затухания на ближнем и дальнем концах, а также зависимость этих параметров от длины линии. Влияющая пара и пара, подверженная влиянию, проложены параллельно под общей защитной оболочкой. За счет этого их проводники могут рассматриваться как обкладки конденсатора. Это означает, что с ростом частоты переходное затухание падает. Стандарт TIA/EIA-568-A нормирует минимальные значения переходного затухания на ближнем конце при длине кабеля 100 м. Для определения минимально допустимого параметра NEXT на частотах, превышающих 0,772 МГц, используется следующее аппроксимирующее выражение:

NEXT(f) = NEXT(0,772) - 15 lg (f/0,772)

NEXT(0,772) - минимально допустимое переходное затухание на ближнем конце на частоте 0,772 МГц, которое для кабелей категорий 3, 4 и 5 принимается равным 43, 58 и 64 дБ соответственно

f, МГц - частота сигнала.

Дополнительно стандарт нормирует значения NEXT на частотах менее 0,772 МГц, что бывает необходимо для некоторых приложений. Нормируемые значения в этом случае представляются в табличной форме.

Результаты расчетов по формуле выше приведены на рисунке.


Максимально допустимые значения NEXT для кабелей категории 3,4 и 5 на длине 100 м по стандарту TIA/EIA-568-A

Суммирование отдельных составляющих одной частоты переходной помехи на ближнем конце происходит с различными фазами (по напряжению). Поэтому реальный график частотной зависимости величины NEXT имеет вид шумообразной кривой с резкими перепадами величин переходного затухания на близких частотах. Стандарты нормируют только минимальную величину параметра NEXT, и кабель считается соответствующим требованиям стандарта, если во всем рабочем частотном диапазоне реальная величина NEXT не падает ниже определенного нормами значения.

Типовая зависимость переходного затухания на ближнем и дальнем концах от длины линии показана на рисунке.


Зависимость переходного затухания не дальнем и ближнем концах от длины линии

Переходное затухание на ближнем конце с увеличением длины линии сначала несколько уменьшается, а затем стабилизируется. Качественное объяснение этого эффекта состоит в том, что, начиная с определенной длины линии, токи помех с отдаленных участков приходят на ближний конец настолько ослабленными, что практически не увеличивают взаимного влияния между цепями, и величина NEXT остается постоянной. Отсюда следует, что значения NEXT для двух концов одной пары могут существенно различаться между собой, поэтому все стандарты требуют его измерения с обеих сторон. График зависимости переходного затухания на дальнем конце от длины линии носит экстремальный характер. Вначале, пока длина линии мала, увеличение ее протяженности увеличивает мощность помехи. По мере увеличения длины начинает проявляться рост затухания помеховых составляющих, и FEXT монотонно возрастает.

Для улучшения параметра NEXT в симметричных кабелях применяют различный шаг скрутки витых пар. Кроме ослабления электромагнитной связи отдельных пар такое решение не позволяет им плотно прилегать друг к другу по всей длине, что дополнительно увеличивает переходное затухание.

Известно, что сетевое оборудование различного назначения по-разному использует симметричный кабель как среду передачи. Поэтому в зависимости от приложения и метода использования кабеля нормирование величины переходных помех или, что эквивалентно, переходного затухания выполняется по-разному.

Наиболее популярными ЛВС в настоящее время являются сети Ethernet. При использовании полнодуплексного режима передатчик и приемник работают одновременно, и эта аппаратура использует для работы две витые пары одного кабеля. Этот случай в схематическом виде изображен на рисунке.


К определению NEXT

При этом ослабленный после прохождения по витой паре информационный сигнал взаимодействует на входе приемника с мощной переходной помехой работающего на этом же конце передатчика. Поэтому достаточно нормировать следующий параметр:

NEXT = Р с - max Р п

Р с - уровень сигнала,

Р п - уровень создаваемой им переходной помехи

Величина max Р п берется на наихудший случай, так как заранее неизвестно, какие две пары будут использоваться сетевым оборудованием для организации информационного обмена.

В последнее время при построении сетевого оборудования четко обозначилась тенденция использования им для передачи информации одновременно нескольких пар (оборудование ЛВС 100Base-T4, 100VG AnyLAN и 1000Base-TX). С другой стороны, сигналы нескольких приложений все чаще передаются в одном многопарном кабеле. В данной ситуации нормирование только параметра NEXT оказывается недостаточным, так как на приемник одновременно действует несколько источников помех. Для учета этого обстоятельства используется более сложная расчетная модель, которая для 4-парного кабеля имеет вид, изображенный на рисунке (все пары действуют на одну), и нормируется параметр так называемой суммарной мощности (power sum).


К определению PS-NEXT

Из-за разного расстояния между парами, различного шага скрутки и т.д. разность между величинами NEXT и PS- NEXT оказывается равной не 4,8 д Б, а примерно 2 дБ.

Наконец, в новейших перспективных приложениях типа Gigabit Ethernet вход приемника и выход передатчика развязаны с помощью дифференциальной системы. Это позволяет одновременно использовать одну витую пару для приема и передачи сигналов. В этой ситуации дополнительно к переходным помехам на ближнем конце необходимо учитывать также помехи на дальнем конце и соответственно нормировать величину переходного затухания на дальнем конце:

FEXT=P c - max P п

P п - уровень переходной помехи на дальнем конце


К определению PS-NEXT

Аналогично переходной помехе на ближнем конце можно также ввести параметр PS-FEXT. Аналогично переходной помехе на ближнем конце может нормироваться и значение суммарной переходной помехи на дальнем конце. Переходная помеха на дальнем конце обычно оказывается меньшей по сравнению с переходной помехой на ближнем конце. Однако в отличие от помех на.ближнем конце эти помеховые составляющие достаточно часто суммируются синфазно или с небольшой разностью фаз, что может дополнительно увеличить их мощность.

И, наконец, некоторые производители начинают нормировать так называемую глобальную переходную помеху GXT (global crosstalk), которая равна сумме наведенных переходных помех на обоих концах кабеля.

В настоящий момент официальными редакциями стандартов задаются только величины NEXT и PS-NEXT (последнее значение приводится для многопарных и комбинированных кабелей), нормирование величин FEXT и GXT производится ограниченным количеством фирм.

Защищенность

Для оценки качества передачи информации в технике проводной связи широко используется параметр защищенности от помех, или просто защищенности, который представляет собой разность между уровнями полезного сигнала и помехи в рассматриваемой точке.


К определению NEXT

Для расчетной модели уровень сигнала составляет Р с = Р пер - А, а уровень переходной помехи Р пп = Р пер - NEXT. Защищенность согласно определению будет равна:

то есть зависит только от величин затухания и переходного затухания.


Параметр ACR определяет величину превышения помехи полезным сигналом и поэтому является интегральной характеристикой качества кабеля. Использованная для обозначения защищенности аббревиатура ACR означает Attenuation to Crosstalk Ratio. По мере увеличения величины ACR при прочих равных условиях начинает возрастать отношение сигнал/шум, и соответственно растет устойчивость связи. Из-за того что NEXT и А зависят от частоты, параметр ACR также является частотно-зависимым. Стандарт ISO/IEC 11801 регламентирует минимально допустимые значения ACR для кабелей категории 5 на частотах 20 МГц и выше. TIA/EIA-568-A специально не оговаривает предельных значений ACR на разных частотах, однако они могут быть вычислены по формуле ACR = NEXT - А. Результаты этих расчетов для кабелей категорий 3, 4 и 5 на длине 100 м представлены на рисунке.


Расчетные значения минимально допустимых параметров ACR по данным стандарта TIA/EIA-568-A для кабелей категории 3,4 и 5 на длине 100 м

Из этого рисунка видно, что, в худшем случае, сигнал на входе приемника должен превышать шумы наводок от соседней пары не менее чем на 10 дБ, что эквивалентно отношению сигнал/шум в 3,16 раз по напряжению или в 10 раз по мощности.

Введение параметра ACR позволяет конкретизировать понятие верхней граничной частоты кабеля. Считается, что кабели из витых пар с установленными на них оконечными разъемами обеспечивают устойчивую полнодуплексную работу любого приложения с такой верхней граничной частотой, на которой параметр ACR составляет 10 дБ. Это положение отдельно выделено на рисунке.


К определению параметра защищенности

Исключением из данного правила являются кабели категории 4, у которых на частоте 20 МГц ACR = 26 дБ. При этом верхнюю граничную частоту приложения не следует путать с максимальной частотой кабеля, на которой изготовитель сертифицирует его параметры, так как зачастую на ней значения ACR получаются отрицательными (особенно ярко это проявляется для неэкранированных конструкций с относительно невысоким NEXT). Необходимость сертификации параметров кабеля на этих частотах возникает для оценки возможности его использования для полудуплексной или однонаправленной (симплексной) передачи каких-либо сигналов, например телевизионных.

В случае высокочастотных приложений, которые в процессе работы используют для передачи информации все витые пары и одновременно в двух направлениях, нормирование только величины ACR оказывается недостаточным. Для расчета помеховой составляющей, создаваемой наводками на дальнем конце, используется аналогичная ACR величина

Применяемое для обозначения этого параметра сокращение ELFEXT означает Equal Lewel for Far End Crosstalk - эквивалентный уровень переходного затухания на дальнем конце.

При решении различного рода прикладных задач акустики, важное значение приобретают величины различных акустических сопротивлений - акустического, удельного акустического и механического.

Все эти сопротивления имеют активную и реактивную (управляемую гибкостью или массой)·составляющие.

Акустическое сопротивление

, (1)

где Ρ - звуковое давление;

- колебательная скорость в системе;

S - площадь, для которой определяют сопротивление.

Акустическое сопротивление используют при исследовании вопросов распространения звуковых волн в звукопроводах переменного сечения с поперечными размерами меньше длины волны. В этом случае сопротивление остается постоянным, так как давление вдоль канала не изменяется, а колебательная скорость изменяется обратно пропорционально площади поперечного сечения.

Удельное акустическое сопротивление, называемое иногда также волновым, определяется отношением величины звукового давления в определенной точке среды к величине колебательной скорости в этой же точке:

. (2)

Удельное акустическое сопротивление безграничной среды определяется произведением плотности на величину скорости распространения звука в среде:

. (3)

Таким образом, измерение удельного акустического сопротивления для безграничной однородной среды (практически это соответствует случаю, когда размеры образцов исследуемого материала значительно превышают длину звуковой волны) сводится κ измерению плотности среды и скорости распространения в ней звука.

Для малых размеров вещества по сравнению с длиной волны, неоднородных, имеющих сложную форму, удельное акустическое сопротивление по формуле (3) определить нельзя, кроме того, оно имеет комплексный характер, что обусловлено наличием угла сдвига фаз между звуковым давлением и колебательной скоростью.

Механическое сопротивление

численно равно отношению силы F, действующей на входе колебательной системы, к вызываемой ею колебательной скорости: . (4)

Пусть плоская волна

падает нормально на плоскую границу z=0 между двумя однородными средами. В первой среде возникает отраженная волна , а во второй - прошедшая .

Мы увидим сейчас, непосредственно произведя расчет, что отражение и прохождение всегда правильные. Отраженную и прошедшую волны можно записать в виде

, , и определяются свойствами сред и не зависят от формы волны. Для гармонических волн падающую, отраженную и прошедшую волны можно записать в виде , , .

Величины коэффициента отражения

и коэффициента прохождения нужно подобрать так, чтобы были удовлетворены граничные условия. Граничных условий два: равенство давлений и равенство скоростей частиц по обе стороны границы. Со стороны первой среды берется суммарное поле падающей и отраженной волны, со стороны второй - поле прошедшей волны.

Условие равенства давлений по обе стороны границы, или, что то же, непрерывность давления при переходе через границу, реально выполняется всегда. Нарушение этого условия вызвало бы бесконечное ускорение границы, так как сколь угодно тонкий слой сколь угодно малой массы, включающий внутри себя границу, находился бы тогда под действием конечной разности давлений по обеим сторонам слоя. В результате разность давлений выровнялась бы мгновенно.

Условие равенства скоростей выражает неразрывность среды на границе: среды не должны отдаляться друг от друга или проникать взаимно друг в друга. Это требование может на практике оказаться нарушенным, например, при кавитации, когда внутри жидкости образуются разрывы (разрывы возникают легче на границе двух сред, чем внутри одной среды). Будем считать, что нарушения граничных условий не происходит. В противном случае нижеследующий расчет неприменим, а отражение и прохождение окажутся неправильными.

Скорости частиц в падающей, отраженной и прошедшей волнах даются формулами

, , .

Граничные условия можно написать так:

, , .

Подставляя сюда соответственные выражения для давлений и скоростей частиц, найдем, сокращая на p(t):

, (5)

Число граничных условий равно числу возникающих (помимо падающей) волн - отраженной и прошедшей, так что, подбирая соответственным образом оставшиеся пока неопределенными множители

и , всегда можно удовлетворить обоим граничным условиям, причем единственным образом. И это правило общее. В других акустических задачах число граничных условий может оказаться другим. Тогда возникнет и другое число волн, но оно снова равно числу граничных условий.

В исключительных случаях удается удовлетворить граничным условиям меньшим числом волн (например, коэффициент отражения может обратиться в нуль), но никогда не бывает, чтобы при данном числе граничных условий падающая волна вызывала бы возникновение большего числа различных волн: так как равным числом волн уже можно удовлетворять граничным условиям, то получилось бы, что при одной и той же падающей волне и одних тех же препятствиях могут возникнуть различные волновые поля, а это противоречит принципу причинности.

Система (5) имеет единственное решение:

, . (6)

Это - так называемые формулы Френеля (для нормального падения). Мы видим, что коэффициенты отражения и прохождения зависят только от волновых сопротивлений сред, и если эти сопротивления равны для обеих сред, то для нормального падения плоской волны среды акустически неразличимы: отражение от границы отсутствует и волна проходит во вторую среду целиком, как если бы все пространство было заполнено только первой средой. Для такого полного прохождения вовсе не требуется, чтобы плотности обеих сред и скорости звука в них равнялись друг другу в отдельности, т. е. чтобы совпадали механические свойства сред: достаточно равенства произведений плотности на скорость звука.

В вопросах статики более жесткой средой естественно называть среду с меньшей сжимаемостью. Поведение таких сред ближе к поведению абсолютно жесткого тела, чем поведение сред с большей сжимаемостью. В акустике сжимаемость еще не определяет того, ведет ли себя данная среда по отношению к падающей на нее волне как податливая или как жесткая граница. В акустике следует сравнивать волновые сопротивления сред, т. е. отношения плотности к сжимаемости: та из двух сред жестче, для которой это ношение больше. Это обстоятельство снова подчеркивает своеобразие волновых задач сравнительно с задачами механики тел.

Меняя местами рс и р"с", найдем коэффициенты отражения и прохождения и для волны, падающей из второй среды на границу с первой: абсолютная величина коэффициента отражения будет та же, что и при падении из первой среды, но знак его изменится на обратный. Коэффициент прохождения изменится в отношении волновых сопротивлений сред. По абсолютной величине коэффициент отражения всегда меньше единицы (что следует и прямо из закона сохранения энергии); он положителен, если волна падает из среды с меньшим волновым сопротивлением, и отрицателен в обратном случае. Коэффициент прохождения всегда положителен и не превосходит 2.

Таким образом, отраженная и прошедшая волны равны:

, .


Top