Передача и прием устной информации. Способы организации передачи информации. Как добиться стройности изложения

Временное разделение каналов

Принцип временного разделения каналов (ВРК) состоит в том, что групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы (рисунок 6.5). В зарубежных источниках для обозначения принципа временного разделения каналов используется термин Time Division Multiply Access (TDMA).

Рисунок 6.5 – Принцип временного разделения каналов

При передаче используется дискретизация во времени (импульсная модуляция). Сначала передается импульс 1-го канала, затем следующего канала и т.д. до последнего канала за номером N, после чего опять передается импульс первого канала и процесс повторяется периодически. На приеме устанавливается аналогичный коммутатор, который поочередно подключает групповой тракт к соответствующим приемникам. В определенный короткий промежуток времени к групповой линии связи оказывается подключена только одна пара приемник/передатчик.

Это означает, что для нормальной работы многоканальной системы с ВРК необходима синхронная и синфазная работа коммутаторов на приемной и передающей сторонах. Для этого один из каналов занимают под передачу специальных импульсов синхронизации.

На рисунке 6.6, а, б, в приведены графики трех непрерывных аналоговых сигналов S 1 (t ), S 2 (t ) и S 3 (t ) и соответствующие им АИМ-сигналы. Импульсы разных АИМ-сигналов сдвинуты друг относительно друга по времени. При объединении индивидуальных каналов образуется групповой сигнал S г (t ) (рисунок 6.6, г) с частотой следования импульсов в N раз большей частоты следования индивидуальных импульсов. Интервал времени между ближайшими импульсами группового сигнала TK называется канальным интервалом или тайм-слотом (Time Slot ). Промежуток времени между соседними импульсами одного индивидуального сигнала называется циклом передачи ТЦ . От соотношения ТЦ и TK зависит число импульсов, которое можно разместить в цикле, т.е. число временных каналов.

Рисунок 6.6 – Временные диаграммы преобразования сигналов при ВРК

При временном разделении так же как и при ЧРК существуют взаимные помехи, в основном обусловленные двумя причинами. Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характеристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. При временном разделении сигналов это приведет к тому, что импульсы одного канала будут накладываться на импульсы других каналов. Иначе говоря, между каналами возникают взаимные переходные помехи или межсимвольная интерференция . Кроме того, взаимные помехи могут возникать за счет несовершенства синхронизации тактовых импульсов на передающей и приемной сторонах.

В силу данных причин временное разделение каналов на основе АИМ не получило практического применения. Временное разделение широко используют в цифровых системах передачи плезиохронной и синхронной иерархий.

В общем случае для снижения уровня взаимных помех приходится вводить "защитные" временные интервалы, что соответствует некоторому расширению спектра сигналов. Так, в системах передачи полоса эффективно передаваемых частот F =3100 Гц; в соответствии с теоремой Котельникова минимальное значение частоты дискретизации f 0 =1/Т Д =2F =6200 Гц. Однако в реальных системах частоту дискретизации выбирают с некоторым запасом: f 0 =8 кГц. При временном разделении каналов сигнал каждого канала занимает одинаковую полосу частот, определяемую в идеальных условиях согласно теореме Котельникова из соотношения (без учета канала синхронизации) Dt K =T 0 /N= 1/( 2NF)= 1/( 2F ОБЩ), где F ОБЩ =FN , что совпадает с общей полосой частот системы при частотном разделении.

Хотя теоретически временное и частотное разделения позволяют получить одинаковую эффективность использования частотного спектра, тем не менее, системы временного разделения уступают системам частотного разделения по этому показателю. Вместе с тем, системы с временным разделением имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов разных каналов отсутствуют переходные помехи нелинейного происхождения. Кроме того, аппаратура временного разделения значительно проще, чем при частотном разделении, где для каждого индивидуального канала требуются соответствующие полосовые фильтры.

Для разделения сигналов могут использоваться не только такие очевидные признаки, как частота, время и фаза. Общим признаком сигналов является форма. Различающиеся по форме сигналы могут передаваться одновременно и иметь перекрывающиеся частотные спектры, и тем не менее, такие сигналы можно разделить, если выполняется условие их ортогональности. В зарубежных источниках для обозначения данного принципа применяется понятие кодового разделения каналов Code Division Multiply Access (CDMA ). В последние годы успешно развиваются цифровые методы разделения сигналов по их форме, в частности, в качестве переносчиков различных каналов используются дискретные ортогональные последовательности в виде функций Уолша, Радемахера и другие. Широкое развитие методов разделения по форме сигналов привело к созданию систем связи с разделением "почти ортогональных" сигналов, представляющих собой псевдослучайные последовательности, корреляционные функции и энергетические спектры которых близки к аналогичным характеристикам "ограниченного" белого шума. Такие сигналы называют шумоподобными (ШПС).

При временном разделении каналов (ВРК) сигналы каждого канала дискретизируются и их мгновенные значения передаются последовательно во времени. Таким образом, каждое сообщение передается короткими импульсами - дискретами. По одной линии связи за определенный промежуток времени - период повторения, который отводится для передачи, можно передать соответствую­щее число таких сообщений.

Структурная схема системы передачи информации с ВРК. На рис. 4.3 представлена упрощенная структурная схема системы с ВРК. Сообщение, например, при телефонной связи в виде зву­ковых сигналов, поступает во П вх, где звуковые колебания пре­образуются в электрические. Распределители передающей Р1 и приемной Р2 сторон должны работать синхронно и синфазно. Пе­реключение распределителей осуществляется от импульсов, посту­пающих от ГТИ. В конце каждого цикла в линию связи поступает фазирующий импульс для обеспечения синфазности работы обоих распределителей. Синхронность их работы обеспечивается стабиль­ностью частоты ГТИ передающей и приемной сторон.

Распределитель последовательно подключает цепи для переда­чи сообщений по соответствующему каналу. Поскольку для передачи сообщений отводится незначительное время, то по линии связи будут следовать короткие импульсы, длительность которых определяется временем подключения распределителем данной цепи. На приемной стороне вследствие синхронной и синфазной работы распределителей, короткие импульсы поступают на П ВЫ х, где происходит обратное преобразование электрических сигналов в звуковые.

При ВРК между сигналами каждого канала, передаваемыми последовательно во времени по линии связи, вводится защитный временной интервал (рис. 4.4), который необходим для устра­нения взаимного влияния (перекрытия) каналов. Последнее воз­никает из-за наличия фазочастотных искажений в линии связи, чем вызывается неравномерность времени распространения сигна­лов различных частот.

Число каналов при ВРК зависит от длительности канальных импульсов и частоты их повторения, которая при передаче не­прерывных сообщений определяется теоремой Котельникова о преобразовании непрерывных сигналов в дискретные .

Таким образом, общее число каналов при ВРК

(4.1)

где Т п - период повторения;
- длительность синфазирующего импульса; - длительность защитного промежутка; - дли­тельность канального импульса.

Полоса частот, необходимая для организации п каналов при ВРК, определяется минимальной длительностью канального им­пульса
, которая зависит от числа организуемых каналов связи и характера сообщения, определяется из выражения

(4.2)

где К п - коэффициент, зависящий от формы импульса (для прямо­угольного импульса К п ~0,7).

Определим полосу частот, необходимую, например, для органи­зации 12 телефонных каналов при ВРК. Длительность импульса при организации по линии связи 12 телефонных каналов опреде­лится из следующих соображений. Период повторения Т п =1/f п, где f п - частота повторения, которая определяется выражением f п = 2f max = 2 3400 = 6800 Гц. Здесь f max = 3400 Гц - максимальная частота при передаче телефонных сообщений. Для передачи прини­мают f п = 8000 Гц. Тогда f п =1/8000=125 мкс.

Из выражения (4.1)

Подставив в последнее выражение значения Т п = 125 мкс и n=12, получим
1 мкс. Зная длительность канального импульса
и принимая K п = 0,7 из выражения (4.2), находим

Таким образом, полоса частот для организации 12 телефонных каналов при ВРК значительно превышает полосу частот, требуе­мую для организации такого же числа каналов при ЧРК, которая равна 48 кГц (12(3400 + 600) =48000 Гц, где 600 Гц -полоса ча­стот, отводимая на расфильтровку соседних каналов).

Следовательно, использование ВРК для передачи аналоговых сообщений (например, телефонных, факсимильных, телевизионных) имеет ряд ограничений. В то же время передача дискретных сообщений (телеграфных, телемеханики, передачи данных) при ВРК дает существенные преимущества. Это объясняется тем, что дискретные сигналы при данных видах сообщений имеют значи­тельную длительность, а спектр частот таких сигналов распола­гается в нижней части частотного диапазона, следовательно, дли­тельность и период повторения канальных импульсов могут быть сравнительно большими, что значительно снижает требуемую по­лосу частот.

При ВРК для согласования сообщения с каналом связи могут использоваться различные виды канальной модуляции.

К недостаткам ВРК следует отнести сравнительно широкую полосу частот, требуемую для передачи сообщений; сложность коммутационного оборудования (распределителей) при организа­ции значительного числа каналов связи и необходимость коррекции фазочастотных характеристик линии связи для устранения взаим­ного влияния каналов связи.

Принципы разделения измерительных каналов

Из большого числа различных принципов разделения каналов в измерительных информационных системах следует выделить наиболее часто применяемые на практике разделение каналов: многоканальное (кабельное оптоволоконное), частотные, временное, кодовое и ортогональное (в связи).

Частотное разделение каналов отличается тем, что каждому сигналу вы­деляется своя отдельная частота так, чтобы полосы частот каждого сигнала размещались в не перекрывающихся по частоте участках диапазона частотам.

Максимальная информационная емкость частотных устройствдля электрических контуров и фильтров ограничивается сравнительно небольшим числом, частотных избирателей размещаемых в рабочем диапазоне частот (например, в телефонном канале), что вызвано трудностями реализации узкополосных избирателей. Поэтому в ча­стотные устройствахс относительно большой ин­формационной емкостью каждому сигналу выделяется не индивидуальная частота, а комбинация нескольких частот при этом, частоты могут передаваться одновременно или поочередно.

При одновременной передаче частот суммарное число сигналов N для n возможных частот и m частот, участвующих в образовании одной кодовой комбинации,

Если в каждой кодовой комбинации участвуют две одновременно передаваемые частоты, то формула упрощается и число сигналов

При последовательной посылке частот в любой момент времени передается не более одной частоты. Это позволяет уменьшить требования к нелинейным искажениям в канале и к аппаратуре до легко достижимого значения. Поэтому более широкое применение получили устройства разделения измерительных каналов с последовательной передачей частот.

В этом случае

Для применяемого кода с избиранием каждого объекта двумя частотами формула упрощается:

Полоса частот, занимаемая в канале связи, ограничивается в основном селективными свойствами и стабиль­ностью частотных избирателей и генераторов. Широкое применение получили частотные избиратели с электриче­скими резонансными контурами и полосовыми фильтрами. Для увеличения добротности применяются катушки ин­дуктивности с ферромагнитными сердечниками. Сужение полосы частотных избирателей позволяет экономнее использовать полосу частот в канале связи и повысить помехоустойчивость ИИС. Поэтому для даль­нейшего развития частотных устройств, представляют интерес узкополосные электромеханические частотные изби­ратели и генераторы, а также – фильтры и генераторы с гибридной технологией производства.

Частотные методы разделения позволили создать простые частотные избиратели объектов не требующими местных источников питания, что очень важно, для массовых объектов управле­ния, рассредоточенных по каналу связи: на трубопроводах, в ирригации, на нефтепромыслах и т. п.

Временное разделение каналов отлича­ется тем, что каждому из N передаваемых сигналов, канал связи предоставляется поочеред­но (последовательно). В интервал времени T 1 передается первый сигнал, а в интервал времени T i I-й сигнал. Следовательно, каждый сигнал имеет присвоенный ему временной интервал, который недопустимо занимать другими сигналами. Разделение сигналов на передающей и приемной сторонах канала связи осуществляется синхронно и синфазно работающими коммутаторами (распределителями). Для всех систем с временным раз­делением сигналов обязательна синхронизация работы распределителей.

Бесконтактные элементы релейного действия с неограниченными или очень большими ресурсами срабатывания релейных элементов оказалось целесообразным воспользоваться циклическим режимом работы устройств со стабильной тактовой частотой и стабильным по частоте циклом работы коммутаторов, составляющим доли секунды. В качестве тактовой частоты во многих случаях использовалось общая на передающей и прямой сторонах силовая сеть 50 Гц. Это облегчало синхронизацию распределителей.

За время цикла распределителей в таких устройствах, еще применяемых в народном хозяйстве, передается только одна подготовительная команда для избирания выходных цепей объекта. В ответных импульсных сериях в каждом цикле многоканальным методом передается информация о всех ТИС. Оператор после подтверждения подготовительной команды передает исполнительную команду. Во всех устройствах с временным разделением используется ряд защит, резко повышающих достоверность передачи команд. Достоверность передачи сигналов ТИ и ТК возрастает при их циклическом повторении.

Кодовое разделение каналов устройства с временным кодовым разделением сигна­лов, называемые также цифровыми устройствами, обладают неоспоримыми преимуществами, такими, как более высокая помехоустойчивость, лучшее использование канала связи, большие возможности унификации массового производства и применения в самых разнообразных условиях, несмотря на несколько большее число компонентов (деталей) в системе на один сигнал.

Учитывая многообразие возможных и используемых принципов построения кодовых (цифровых) устройств, ог­раничимся изложением обобщенных, упрощенных принци­пов разделения и передачи кодовых сигналов в многофунк­циональных устройствах.

К кодовым (цифровым) устройствам относятся устройства с времен­ным разделением элементов сигнала, двухпозиционными кодами, адресными передачами сигналов или с преобладанием адресных передач над многоканальными.

Скорость передачи информации в устройст­вах может изменяться в широких пределах путем переклю­чения тактовой частоты и ограничивается главным образом полосой частот канала связи. Отметим, что возмож­ность изменения скорости передачи путем изменения такто­вой частоты характерна для широкого класса цифровых систем. Цифровые устройства ИИС могут работать по телеграфному и телефон­ному каналу со скоростью от 50 до 2000 – 3000 Бод и более.

В основе временного разделения каналов лежит теорема В.А. Котельникова о том, что непрерывный сигнал, спектр которого ограничен максимальной частотой Fc макс полностью определяется его дискретными отсчетами, взятыми через интервалы времени

При этом в промежутках между отсчетами одного канала можно передать отсчеты сигналов других каналов. Таким образом, сигналы от разных источников подключаются к общей линии поочередно, не перекрываясь друг с другом (рисунок 3.4). Такие сигналы удовлетворяют условиям линейной независимости и ортогональности.

T Д - время дискретизации, Т к - канальное время, СИ - синхроимпульс


Рисунок 3.4 - Иллюстрация принципа временного разделения каналов

На рисунке 3.5 показана структурная схема многоканальной измерительной системы с временным разделением каналов и линией связи в виде радиолинии. Вместо радиолинии в ряде случаев может быть использована проводная линия связи.

Для образования разделяемых измерительных каналов работа устройств управления (УУ) ключевыми элементами (КУ) на передающей и приемной стороне должно быть синхронная и синфазная. Поэтому один из каналов отводится для передачи синхроимпульса, существенно отличающийся по одному из параметров от информационных импульсов (отсчетов сигналов) (СИ на рисунке 3.4 имеет амплитуду, большую, чем максимальное значение отсчета измерительного сигнала). СИ выделяется на приемной стороне селектором синхроимпульса (СС), и устанавливает счетчик каналов на приемной стороне в начальное состояние, с которого начинается счет каналов, т.е. обеспечивает синфазность УУ.

Селектор канальных импульсов (СКИ) формирует из принимаемого группового сигнала синхронный канальный импульс, который поступает на счетный вход УУ и осуществляет переключение счетчика каналов в темпе поступления отсчетов соседних каналов.

Как видно из схемы, первичное преобразование измерительных сигналов в СВРК всегда есть преобразование непрерывных сигналов в дискретные, то есть дискретизация. Соответственно, в первой ступени модуляции осуществляется, как правило, АИМ-1.


D - датчик, КУ - ключевое устройство, УУ - устройство управления,

М - модулятор, Г - генератор, ПР - приемник, ДМ - демодулятор,

УВ - устройство восстановления, РУ - регистрирующее устройство,

СС - селектор синхроимпульсов,

СКИ - селектор канальных имульсов

Рисунок 3.5 - Структурная схема измерительной системы с временным разделением каналов

Групповой сигнал с выхода коммутатора каналов может подвергаться вторичному преобразованию. Если пропорционально модулирующему сигналу (сигналу датчика) изменяется ширина канального импульса ф К, то получаем широтно-импульсную модуляцию (ШИМ).

Если по закону изменения сигнала датчика меняется положение переднего фронта импульса относительно начала отсчета (обычно начало канального интервала), то получим время-импульсную модуляцию (ВИМ).

Сигнал с выхода коммутатора каналов может также преобразовываться в цифровой сигнал, т. е. в код. В телеметрии такой вид преобразования называют кодо-импульсной модуляцией (КИМ).

Во второй ступени модуляции последовательности импульсов, образующих сигналы с АИМ, ШИМ или ВИМ, может модулировать несущую по амплитуде (АМ), частоте (ЧМ) или фазе (ФМ).

Лекция 4. Достоинства и недостатки многоканальных измерительных систем с частотным и временным разделением каналов

Измерительные системы с частотным разделением каналов

Достоинства

  • 1) Одновременная (параллельная) передача сигналов от каждого датчика, независимо друг от друга. Благодаря этому практически отсутствует задержка получения измерительных сигналов на приемной стороне (если не учитывать время распространения сигнала в линии связи, которое увеличивается при увеличении дальности передачи).
  • 2) «Живучесть» системы, которая обеспечивается опять же независимой передачей сигналов по каждому измерительному каналу.

Недостатки

1) Ограниченное число измерительных каналов.

Нелинейностью характеристик общего тракта передачи сигналов в СЧРК вызывает ограничение максимального количества каналов, которое может быть реализовано.

Пусть нелинейность характеристики общего тракта СЧРК описывается нелинейным уравнением:

U ВЫХ - сигнал с выхода группового тракта, U - сигнал на выходе сумматора. (Нелинейным элементом, в частности может являться модулятор несущей).

Сигнал U (t ) образуется суммированием сигналов всех поднесущих в сумматоре:

Пусть для всех поднесущих амплитуды Е к =1.

Подставляя (4.2) в (4.1) получим в выходном сигнале следующие составляющие:

Проведем замену.

Таким образом, сигнал на выходе группового тракта, а соответственно на входах всех разделительных полосовых фильтров на приемной стороне, содержит не только составляющие входного сигнала, но и большой набор комбинационных частот типа. Чем больше число каналов N , тем больше комбинационных частот появляется в спектре сигнала.

При малом числе каналов (N 6) еще можно подобрать поднесущие частоты F 1 , F 2 ,…, F N так, чтобы комбинационные частоты не попадали в полосы пропускания разделительных фильтров. С увеличением числа каналов этого сделать уже не удается.

Если ограничиться тремя слагаемыми в выражении (4.1), то число комбинационных частот вида щ 1 ±щ 2 ±щ 3 равно 480 при числе каналов N =10 и 1820 при N =15. Эти комбинационные частоты попадают в полосу пропускания канальных полосовых фильтров и создают помехи, которые называют перекрестными помехами. При большом числе каналов перекрестные помехи по своему характеру приближаются к флуктуационным шумам. Поэтому и бороться с этими помехами надо теми же способами, как и при борьбе с шумами. Один их путей - применение широкополосных видов модуляции, т. е. в поднесущих надо применять не АМ, а ЧМ. Применение ЧМ позволяет снизить требования к линейности характеристик общего тракта, поэтому в СЧРК наиболее широко применяется ЧМ поднесущих.

Частотное разделение каналов, Мультиплексирование с разделением по частоте (англ. Frequency-Division Multiplexing, FDM)

Разделение каналов осуществляется по частотам. Так как радиоканал обладает определённым спектром, то в сумме всех передающих устройств и получается современная радио связь. Например: спектр сигнала для мобильного телефона 8 МГц. Если мобильный оператор даёт абоненту частоту 880 МГц, то следующий абонент может занимать частоту 880+8=888 МГц. Таким образом, если оператор мобильной связи имеет лицензионную частоту 800-900 МГц, то он способен обеспечить около 12 каналов, с частотным разделением.

Частотное разделение каналов применяется в технологии X-DSL. По телефонным проводам передаются сигналы различной частоты: телефонный разговор-0,3-3,4 кГц а для передачи данных используется полоса от 28 до 1300 кГц.

Очень важно фильтровать сигналы. Иначе будут происходить наложения сигналов, из-за чего связь может сильно ухудшиться.

Практика построения современных систем передачи информации показывает, что наиболее дорогостоящими звеньями каналов связи являются линии связи : кабельные, волноводные и световодные, радиорелейные и спутниковые и др. Поскольку экономически нецелесообразно использовать дорогостоящую линию связи для передачи информации между единственной парой абонентов, то возникает проблема построения многоканальных систем передачи, в которых одна общая линия связи уплотнятся большим числом индивидуальных каналов. Этим обеспечивается повышение эффективности использования пропускной способности линии связи. Сообщения А 1 (t), …, А N (t) от N источников ИС 1 , …, ИС N с помощью индивидуальных модуляторов М 1 , …, М N преобразуются в канальные сигналы U 1 (t), …, U N (t). Сумма этих сигналов образует групповой канальный сигнал U Л (t), который передается по линии связи (ЛС). Групповой приемник П преобразует полученный сигнал Z Л (t) в исходный групповой сигнал Z(t)=U(t). Индивидуальные приемники П 1 , …, П N выделяют из группового сигнала Z(t) соответствующие канальные сигналы Z 1 (t), …, Z N (t) и преобразуют их в сообщения . Блоки М 1 , …, М N и сумматор образуют аппаратуру уплотнения, блоки М, ЛС и П – групповой канал. Аппаратура уплотнения, групповой канал и индивидуальные приемники образуют систему многоканальной связи.

Чтобы разделяющие устройства могли различать сигналы отдельных каналов, должны быть определены соответствующие признаки, присущие только данному сигналу. Такими признаками в случае непрерывной модуляции могут быть частота, амплитуда, фаза, в случае дискретной модуляции еще и форма сигнала. В соответствии с используемыми для разделения признаками различаются и способы разделения: частотные, временные, фазовые и др.

23.Частотное разделение сигналов. Временное разделение сигналов. Разделение сигналов по форме (кодовое).

В системах телемеханики для передачи многих сигналов по одной линии связи применение обычного кодирования показывается недостаточным. Необходимо либо дополнительное разделение сигналов, либо специальное кодирование, которое включает в себя элементы разделения сигналов. Разделение сигналов - обеспечение независимой передачи и приема многих сигналов по одной линии связи или в одной полосе частот, при котором сигналы сохраняют свои свойства и не искажают друг друга.

Сейчас применяются следующие способы:

    Временное разделение, при котором сигналы передаются последовательно во времени, поочередно используя одну и ту же полосу частот;

    Кодово-адресное разделение, осуществляемое на базе временного (реже частотного) разделение сигналов с посылкой кода адреса;

    Частотное разделение, при котором каждому из сигналов присваивается своя частота и сигналы передаются последовательно или параллельно во времени;

    Частотно-временное разделение, позволяющее использовать преимущества как частотного, так и временного разделения сигналов;

    Фазовое разделение, при котором сигналы отличаются друг от друга фазой.

Временное разделение (ВР). Каждому из n - сигналов линия предоставляется поочередно: сначала за промежуток времени t 1 передается сигнал 1, за t 2 - сигнал 2 и т.д. При этом каждый сигнал занимает свой временной интервал. Время, которое отводится для передачи всех сигналов, называется циклом. Полоса частот для передачи сигналов определяется самым коротким импульсом в кодовой комбинации. Между информационными временными интервалами необходимы защитные временные интервалы во избежание взаимного влияния канала на канал т.е. проходных искажений.

Для осуществления временного разделения используют распределители, один из которых устанавливают на пункте управления, а другой - на исполнительном пункте.

Кодово - адресное разделение сигналов (КАР). Используют временное кодово-адресное разделение сигналов (ВКАР), при этом сначала передается синхронизирующий импульс или кодовая комбинация (синхрокомбинация) для обеспечения согласованной работы распределителей на пункте управления и контролируемом пункте. Далее посылается кодовая комбинация, называемая кодом адреса. Первые символы кода адреса предназначены для выбора контролируемого пункта и объекта, последние образуют адрес функции, в котором указывается, какая ТМ - операция (функция) должна выполняться (ТУ, ТИ и т.п.). После этого следует кодовая комбинация самой операции, т.е. передается командная информация или принимается известительная информация.

Частотное разделение сигналов. Для каждого из n - сигналов выдается своя полоса в частотном диапазоне. На приемном пункте (КП) каждый из посланных сигналов выделяется сначала полосовым фильтром, затем подается на демодулятор, затем на исполнительные реле. Можно передавать сигналы последовательно или одновременно, т.е. параллельно.

Фазовое разделение сигналов. На одной частоте передается несколько сигналов в виде радиоимпульсов с различными начальными фазами. Для этого используется относительная или фазорастностная манипуляция.

Частотно-временное разделение сигналов. Заштрихованные квадраты с номерами - это сигналы, передаваемые в определенной полосе частот и в выделенном интервале времени. Между сигналами имеются защитные временные интервалы и полосы частот. Число образуемых сигналов при этом значительно увеличивается.




Top