Современные радиорелейные станции. Общие принципы построения радиорелейных линий связи прямой видимости

Радиорелейная связь - особый тип беспроводной связи, позволяющий передавать данные на большие расстояния (десятки и сотни километров), с высокой пропускной способностью (от сотен мегабит до нескольких гигабит). Прием и передача данных разнесены по разным частотам и происходят одновременно - все РРЛ работают в режиме полного дуплекса.

В сегодняшней статье мы рассмотрим:

Применение радиорелейной связи

Радиорелейные станции (РРС) обычно используются:

  • для создания высокоскоростных беспроводных магистралей провайдерами, сотовыми операторами,
  • в крупных корпоративных сетях для передачи информации по беспроводным мостам между различными подразделениями,
  • для каналов "последней мили" и других подобных задач.


РРС сравнительно редко применяются в сегменте SOHO и частными лицами, так как их использование чаще всего требует лицензирования и стоят они гораздо дороже оборудования WI-FI, даже провайдерского класса.

Помимо производительности высокая цена оправдывает себя длительным сроком службы оборудования: большинство моделей ведущих вендоров радиорелейных станций рассчитано на несколько десятков лет службы (20-30 лет), в том числе в суровых климатических условиях.

Основные отличия РРЛ от беспроводной связи по Wi-Fi:

  • Собственные диапазоны передачи сигнала и стандарты связи.
  • Использование высокоэффективных модуляций сигнала (256QAM, 1024QAM).
  • Тип передачи данных - направленный (РРЛ комплектуется узконаправленными антеннами). На радиорелейках строят, в основном, беспроводные мосты, раздача трафика в режиме точка-многоточка не используется.
  • Высокая пропускная способность и дальность связи.
  • Полный дуплекс каналов.

Кроме того, в радиорелейной связи, в отличие от обычного WiFi, активно применяется:

  • агрегирование каналов для повышения пропускной способности пролета;
  • резервирование канала передачи для повышения надежности соединения;
  • ретрансляция сигнала от станции к станции для увеличения общей дальности передачи.

Преимущества и недостатки радиорелейного канала связи по сравнению с волоконнооптическими линиями:

Преимущества:

  • Возможность построить РРЛ в местности со сложными географическими условиями (горы, ущелья, болота, леса и т. д.), где прокладка оптоволоконной магистрали невозможна или экономически нецелесообразна.
  • Быстрота возведения - буквально несколько дней. Для запуска РРЛ нужно только установить станции в начальных, конечных и, возможно, промежуточных точках, не нужно прокладывать кабель на всем протяжении трассы.
  • Отсутствие риска падения канала связи из-за повреждения или кражи кабеля.
  • Низкая себестоимость беспроводной трассы.

Основной недостаток радиорелейной линии (РРЛ) по сравнению с оптоволокном - невозможность достижения действительно высокой пропускной способности. Максимум, что вы можете получить по беспроводу - это до 10 Гбит/сек, в то время, как скорость по оптоволоконной магистрали измеряется терабайтами.

Несмотря на узкую нишу, существует довольно много различных типов радиорелейных станций. Ниже мы рассмотрим их основную классификацию и общие характеристики, а также серию радиорелеек Ubiquiti, оптимальных по соотношению цена/производительность для украинского сегмента рынка.

Частота работы радиорелейных станций

Диапазон частот, который может использоваться для развертывания РРЛ, чрезвычайно широк - от 400 Мгц до 94 ГГц. В Украине чаще всего радиорелейные станции работают на 5, 7, 8, 11, 13, 18 ГГц и на высоких частотах (70-80 ГГц).

Так как разбег частот большой, особенности развертывания линков на них и характеристики связи серьезно отличаются. Можно выделить основные закономерности:

Чем выше частота, тем больше затухание сигнала в атмосфере (в децибелах на километр). Правда, зависимость не линейная - на рисунке ниже можно видеть, что в диапазоне 60 ГГц показатель затухания резко зашкаливает, далее снижается и растет постепенно.

Соответственно, чем выше частота - тем меньше дальность связи. Если радиорелейные линии на 5 ГГц, 7 ГГц - это 40-50 и более км, то на 70-80 ГГц - до 10 км, а на 60 ГГц - еще меньше, из-за пикового затухания.

Чем выше частота, тем большее влияние на сигнал оказывают атмосферные осадки. В диапазоне 2-8 ГГц их влияние на мощный радиорелейный канал практически незаметно, а в диапазонах выше 40 ГГц дождь становится серьезной помехой. Смотрим график зависимости:

Чем выше частота, тем большей пропускной способности можно достичь на радиорелейной линии, за счет использования широких частотных каналов внутри диапазона (56 МГц, 112 МГц и более). Сейчас активно осваиваются так называемые диапазоны V-Band и E-Band - 60 ГГц и 70-80 ГГц. Скорость радиорелейной линии здесь может достигать 10 Гбит/сек.

Условия развертывания РРЛ и дальность связи

Сейчас, в основном, используется и производится оборудование для радиорелейной связи прямой видимости - станции должны располагаться в зоне так называемой радиовидимости друг друга. Сигнал от станции к станции не должен встречать на пути препятствий, в том числе в зоне Френеля. Для увеличения расстояния видимости и исключения попадания в зону Френеля препятствий и земной поверхности, станции размещают на высоких мачтах - это помогает увеличить дальность пролета.

Но из-за естественного искривления поверхности Земли максимальная дальность беспроводного линка между двумя радиорелейными станциями составляет обычно не более 100 км (на равнинной местности - до 50 км).

Хотя, при удачном рельефе местности, можно достичь и большего - как в примере компании Ubiquiti, прокинувшей беспроводной мост на AirFiber 5X на 225 км ( ):

Также для дальности связи, как мы уже сказали выше, имеет значение диапазон, в котором работает радиорелейное оборудование:

  • Станции на низкой частоте - "дальнобойные", в среднем до 35 км, в хороших условиях до 80-100 км.
  • Дальность связи на высоких частотах - до 10 км.

Технологии PDH и SDH

Все используемые сейчас РРЛ разделяются на два основных типа:

  • с использованием технологии передачи PDH (плезиохронной цифровой иерархии) ,
  • с использованием технологии передачи SDH (синхронной цифровой иерархии).

Передача данных по радиорелейной связи с использованием технологии PDH на практике происходит по 4 видам потоков:

В теории существует еще поток E5, со скоростью 565 Мбит/сек, но на практике, по рекомендациям стандарта G.702, он не используется. Поэтому 139 Мбит/сек - это фактически, максимум пропускной способности данной технологии радиорелейной связи. Неудивительно, что PDH на данный момент считается устаревшей технологией, хотя еще достаточно работающих РРЛ, произведенных с ее использованием.

Второй ее существенный недостаток - мультиплексирование и демультиплексирование происходят достаточно медленно, что вызывает задержки на канале.


SDH, или синхронная цифровая иерархия - новая технология, обеспечивающая гораздо более актуальные скорости передачи. Когда говорят о скорости радиорелейного оборудования с технологией SDH, используется понятие синхронного транспортного модуля - STM. Скоростные потоки образуются путем умножения базового потока STM-1 на 4, 16, 64, 256 и т. д.

Обозначение потока Пропускная способность
STM-1 155 Мбит/сек
STM-4 622 Мбит/сек
STM-16 2,5 Гбит/сек
STM-64 10 Гбит/сек
STM-256 40 Гбит/сек
STM-1024 160 Гбит/сек

Картина уже поинтересней, согласитесь. И STM-1024 - это еще не ограничение, теоретически скорость может быть больше.

При этом оборудование SDH полностью совместимо с радиорелейными станциями, спроектированными под PDH.

Надежность радиорелейной связи

Радиорелейная связь считается одной из самых надежных среди беспроводных способов передачи данных. Это обеспечивается как различными прогрессивными технологиями беспроводной передачи, так и активным применением резервирования каналов (стволов) связи - так называемые конфигурации N+1 (1+1, 2+1). Это может быть:

  • "холодное" резервирование, с подключением дополнительного комплекта приемо-передающего оборудования в выключенном состоянии;
  • "горячее" резервирование, с одновременной передачей данных по резервному каналу. Для исключения взаимных помех каналы разносятся в пространстве (ПР - пространственное разнесение) или по частотам (ЧР - частотное разнесение).

Конструкция радиорелейных станций

Радиорелейные станции можно разделить на два типа.

Первый - это радиорелейные станции, состоящие из 3 модулей :

  • внутреннего блока (IDU), устанавливаемого в помещении в непосредственной близости от телекоммуникационного оборудования. Внутренний блок отвечает за питание, мультиплексирование, модулирование сигнала, коммутирование, передачу данных в сеть LAN;
  • внешнего блока (ODU), преобразующего частоту сигнала из служебной в частоту, на которой будет вестись передача, и обратно, усиление мощности передатчика при необходимости и т. д.;
  • приемо-передающей антенны.


Здесь нужно уточнить, что производители по-разному распределяют функционал между внутренним и наружным блоками, вплоть до того, что внутреннему модулю могут остаться только функции питания, защиты и подключения к LAN-сети, а большая часть активного функционала передается во внешний блок.

Внешний и внутренний блоки соединяются коаксиальным кабелем, антенна и внешний модуль могут соединяться непосредственно или также с помощью кабеля. Одним из очевидных недостатков такой конструкции является кабельное соединение, приводящее к потерям на пути от передатчика к антенне, а также двойное преобразование сигнала с частоты на частоту.

Второй тип радиорелейных станций - это интегрированные системы , в которых весь функционал сосредоточен в наружном блоке. Антенны в них могут быть встроенными, соединяться с передатчиком непосредственно, или с помощью RF-кабеля - все это существенно снижает потери, по сравнению с обычным, довольно протяженным кабельным соединением. РРЛ второго типа гораздо более компактны.

В качестве примера радиорелейных станций интегрированного типа можно привести серию AirFiber компании Ubiquiti.

Современные радиорелейные станции Ubiquiti - AirFiber


Несколько лет назад американский вендор, специализирующийся на производстве беспроводного оборудования, выпустил на рынок устройства операторского класса - радиорелейные станции Ubiquiti AirFiber. Первые модели работали в диапазоне 24 ГГц, чуть позже были выпущены устройства для 5 ГГц, еще чуть позже - линейка AirFiber X, в которой сейчас есть модели для нескольких диапазонов.

Радиорелейные станции AirFiber стали на тот момент по-настоящему революционным событием: компания предлагала пропускную способность до 1,5 Гбит/сек в полном дуплексе (750 Мбит/сек в одну сторону) на расстоянии до 13 км по очень приятной цене (для оборудования такого класса).

В радиорелейных станциях Ubiquiti:

  • в одном корпусе собраны внешний, внутренний блоки и антенны (для серии AirFiber, в AirFiber X - антенны внешние);
  • используется технология MIMO XPIC (с подавлением кроссполяризационных помех) для повышения пропускной способности канала;
  • используется адаптивная модуляция для повышения надежности связи в любых погодных условиях;
  • отсутствуют потери в антенно-фидерном тракте, благодаря непосредственному соединению модулей, без использования кабеля - в моделях со встроенными антеннами;
  • меньшие потери в антенно-фидерном тракте в моделях со внешним антеннами - благодаря предельно короткой длине соединительного кабеля;
  • сигнал формируется сразу на частоте излучения , без использования промежуточной частоты, благодаря чему также повышается эффективность работы.

Иллюстрация технологии адаптивной модуляции:

Сейчас компания выпускает 4 модели РРЛ со встроенными антеннами и 6 моделей без антенн, к которым можно подключать антенны разного усиления.

Модель Внешний вид Антенна Дальность Скорость Диапазон Особенности
Встроенная, 23 dBi, 6100 км 1,2 Гбит/сек 5,470 - 5,875 ГГц

1024QAM MIMO

HDD (полудуплекс), FDD (полный дуплекс)

Встроенная, 23 dBi, 6 °, двойная наклонная поляризация 100 км 1,2 Гбит/сек 5,725 - 6,200 ГГц

1024QAM

HDD (полудуплекс), FDD (полный дуплекс)

Встроенная, 33 dBi, 3,5 °, двойная наклонная поляризация 13 км 1,4 Гбит/сек 24,05 - 24,25 ГГц

64QAM

HDD (полудуплекс), FDD (полный дуплекс)

Встроенная, 33 dBi, 3,5 °, двойная наклонная поляризация 20 км 2 Гбит/сек 24,05 - 24,25 ГГц

256QAM

HDD (полудуплекс), FDD (полный дуплекс)

Внешняя. Подходят модели:

200 км 500 Мбит/сек 2,300 - 2,700 ГГц

1024QAM

Радиорелейная связь

Башня радиорелейной связи

Радиореле́йная свя́зь (от англ. Relay - передавать, транслировать) - один из видов радиосвязи , образованной цепочкой приёмо-передающих (ретрансляционных) радиостанций . Наземная радиорелейная связь осуществляется обычно на деци - и сантиметровых волнах (от сотен мегагерц до десятков гигагерц).

По назначению радиорелейные системы связи делятся на три категории, каждой из которых на территории России выделены свои диапазоны частот :

  • местные линии связи от 0,39 ГГц до 40,5 ГГц
  • внутризоновые линии от 1,85 ГГц до 15,35 ГГц
  • магистральные линии от 3,4 ГГц до 11,7 ГГц

Данное деление связано с влиянием среды распространения на обеспечение надёжности радиорелейной связи. До частоты 12ГГц атмосферные явления оказывают слабое влияние на качество радиосвязи, на частотах выше 15ГГц это влияние становится заметным, а выше 40ГГц определяющим, кроме того, на частотах выше 40ГГц значительное влияние на качество связи оказывает затухание в атмосфере Земли.

Атмосферные потери, в основном, складываются из потерь в атомах кислорода и в молекулах воды . Практически полная непрозрачность атмосферы для радиоволн наблюдается на частоте 118.74 ГГц (резонансное поглощение в атомах кислорода), а на частотах больше 60 ГГц погонное затухание превышает 15 дБ/км. Ослабление в водяных парах атмосферы зависит от их концентрации и весьма велико во влажном теплом климате и доминирует на частотах ниже 45 ГГц.

Также отрицательно на радиосвязь влияют гидрометеоры, к которым относятся капли дождя, снег, град, туман и пр. Влияние гидрометеоров заметно уже при частотах больше 6 ГГц, а в неблагоприятных экологических условиях (при наличии в атмосферных осадках металлизированной пыли, смога , кислот или щелочей) и на значительно более низких частотах.

Принципы построения аппаратуры РРЛ

Аппаратура РРЛ строится обычно по модульному принципу. Функционально выделяют модуль стандартных интерфейсов, обычно включающих в себя один или несколько интерфейсов PDH (E1, E3), SDH (STM-1), Fast Ethernet или Gigabit Ethernet или сочетание перечисленных интерфейсов, а также интерфейсы управления и мониторинга РРЛ (RS-232 и др.) и интерфейсы синхронизации. Задача модуля стандартных интерфейсов заключается в коммутации интерфейсов между собой и другими модулями РРЛ. Конструктивно модуль стандартных интерфейсов может представлять собой один блок или состоять из нескольких блоков, устанавливаемых в единое шасси. В технической литературе модуль стандартных интерфейсов обычно называют блоком внутреннего монтажа (т.к. обычно подобный блок устанавливается в линейно-аппаратном зале или в телекоммуникационном вагончике). Потоки данных от нескольких стандартных интерфейсов объединяются в блоке внутреннего монтажа в единый кадр. Далее к полученному кадру добавляется служебные каналы, необходимые для управления и мониторинга РРЛ. Суммарно все потоки данных образуют радиокадр. Радиокадр от блока внутреннего монтажа как правило на промежуточной частоте передается к другому функциональному блоку РРЛ - радиомодулю. Радиомодуль выполняет помехоустойчивое кодирование радиокадра, модулирует радиокадр согласно используемому виду модуляции, а также преобразует суммарный поток данных с промежуточной частоты на рабочую частоту РРЛ. Кроме того часто радиомодуль выполняет функцию автоматической регулировки усиления мощности передатчика РРЛ. Конструктивно радиомодуль представляет собой один герметичный блок, имеющий один интерфейс, соединяющий радимодуль с блоком внутреннего монтажа. В технической литературе радиомодуль обычно называют блоком наружного монтажа, т.к. в большинстве случаев радиомодуль устанавливается на радиорелейной башне или мачте в непосредственной близости от антенны РРЛ. Расположение радиомодуля в непосредственной близости от антенны РРЛ обычно обусловлено стремлением уменьшить затухание высокочастотного сигнала в различных переходных волноводах (для частот больше 6 - 7 ГГц) или коаксиальных кабелях (для частот меньших 6 ГГц).

В устаревших на данный момент аналоговых РРЛ, а также магистральных цифровых РРЛ как блоки со стандартными интерфейсами, так и радиомодули обычно устанавливаются в линейно-аппаратном зале. Это связано с реализацией сложных схем резервирования N + 1, когда нет возможности расположить делитель мощности с одной антенны на несколько радиомодулей в непосредственной близости от антенны из-за громоздкости делителя мощности. В этом случае радиомодули и антенну соединяет волновод, проложенный от линейно-аппаратного зала до места крепления антенны на радиорелейной башне.

Так же распространен вид цифровых РРЛ, в котором конструктивно совмещается модуль стандартных интерфейсов и радиомодуль в виде одного герметичного блока, имеющего несколько стандартных интерфейсов, разъем питания и волноводный разъем для непосредственного крепления к антенне.

Конфигурации и методы резервирования

На наиболее важных направлениях с целью уменьшения неготовности интервалов РРЛ применяют различные методы резервирования оборудования РРЛ. Обычно конфигурации с резервированием оборудования РРЛ обозначают в виде суммы "N+M", где N обозначает общее количество стволов РРЛ, а M - количество зарезервированных стволов РРЛ. После суммы добавляют аббревиатуру HSB, SD ил FD, обозначающую метод резервирования стволов РРЛ.

Уменьшение коэффициента неготовности достигается с помощью дублирования функциональных блоков РРЛ или использованием отдельного резервного ствола РРЛ.

Конфигурация 1+0

Конфигурация оборудования РРЛ с одним стволом без резервирования.

Конфигурация N+0

Конфигурация оборудования РРЛ с N стволами без резервирования. Конфигурация N+0 представляет собой несколько частотных стволов РРЛ или стволов с разной поляризацией, работающих через одну антенну. В случае использования нескольких частоных стволов разделение стволов осуществляется с помощью делителя мощности и частотых полосовых фильтров. В случае использования стволов РРЛ с разной поляризацией разделение стволов осуществляется применением специальных антенн, поддерживающими прием и передачу сигналов с разными поляризациями (например, кроссполяризационных антенн, имеющих одинаковый коэффициент усиления для сигнала с горизонтальной и вертикальной поляризацией).

Конфигурация N+0 не обеспечивает резервирования РРЛ, каждый ствол представляет собой отдельный физический канал передачи данных. Данная конфигурация обычно используется для увеличения пропускной способности РРЛ. В оборудовании РРЛ отельные физические каналы передачи данных могут быть объединены в один логический канал.

Конфигурация N+1 HSB (Hot StandBy)

Конфигурация оборудования РРЛ с N стволами и одним резервным стволом, находящимся в "горячем" резерве. Фактически резервирование достигиется путем дублирования всех или части функциональных блоков РРЛ. В случае выхода одного из блоков РРЛ из строя, блоки, находящиеся в "горячем" резерве замещаю неработоспособные блоки.

Конфигурация N+M HSB (Hot StandBy)

Конфигурация оборудования РРЛ с N стволами и M резервным стволом, находящимися в "горячем" резерве.

Конфигурация N+1 SD (Space Diversity)

Конфигурация N+M SD (Space Diversity)

Конфигурация N+1 FD (Frequency Diversity)

Конфигурация N+M FD (Frequency Diversity)

Кольцевая топологоя построения РРЛ

Построенные интервалов РРЛ по кольцевой топологии является одним из самых надежных способов резервирования, даже если все интервалы РРЛ в кольце работают в конфигурации 1+0. Тем не менне существуют несколько правил пострения кольцевой топологии интервалов РРЛ: количество пролетов в кольце должно быть не менее четырех, а также угол между соседними интервалами РРЛ должен быть больше 90° (с целью уменьшения влияния гидрометеоров на соседние интервалы РРЛ).

Как правило в реальных сетях, состоящей из интеравлов РРЛ, комбинируют различные методы резервирования с целью увеличения надежности сети.

Технологии, используемые в РРЛ

Цифровые РРЛ используются не только для организации PDH и SDH линий связи, а также для организации Ethernet линий со скоростью передачи до 2,5 Гбит/с связи без использования таких технилогий, как EoPDH, PoSDH. Передача Ethernet кадров без необходимости инкапсуляции их TDM кадры (потоки E1 или E3, фреймы SDH и т.п) возможна благодаря использованию пакетного радиокадра вместо TDM радиокадра в радиоканале. Согласно технологиям, используемым для организации радиокадров различают следующие виды цифровых РРЛ:

  • пакетные РРЛ
  • гибридные РРЛ
  • TDM РРЛ

К пакетным относят цифровые РРЛ с пакетным радиокадром. Для передачи TDM потоков используются псевдопроводные технологии передачи данных . За счет использования пакетного радиокадра возможно применение механизмов QoS над потоками данных, передаваемых через пакетные РРЛ. Так же, в пакетных РРЛ наиболее часто используется адаптивная модуляци, обычно сочетаемая с QoS .

Энергетические и качественные показатели

Основным документов для расчёта энергетических и качественных показателей РРЛ прямой видимости на территории

Радиорелейные линии (РРЛ) представляют собой цепочку приемо-передающих радиостанций (оконечных, промежуточных, узловых), которые осуществляют последовательную многократную ретрансляцию (прием, преобразование, усиление и передачу) передаваемых сигналов.

В зависимости от используемого вида распространения радиоволн РРЛ можно разделить на две группы: прямой видимости и тропосферные .

РРЛ прямой видимости являются одним из основных назем-ных средств передачи сигналов телефонной связи , программ звукового и ТВ вещания, цифровых данных и других сообщений на большие расстояния. Ширина полосы частот сигналов многоканальной телефонии и ТВ составляет несколько десятков мегагерц, поэтому для их передачи практически могут быть использованы диапазоны только дециметровых и сантиметровых волн, общая ширина спектра которых составляет 30 ГРц.

Кроме того, в этих диапазонах почти полностью отсутствуют атмосферные и промышленные помехи. Расстояние между соседними станциями (протяженность пролета) R зависит от рельефа местности и высоты подъема антенн. Обычно его выбирают близким или равным расстоянию прямой видимости R o . Для сферической поверхности Земли с учетом атмосферной рефракции

где h 1 и h 2 - высоты подвеса соответственно передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности 40 - 70 км при высоте антенных мачт 60-100м.

Рис. 11.1. Условное изображение РРЛ.

Комплекс приемопередающей аппаратуры РРЛ для передачи информации на одной несущей частоте (или на двух несущих частотах при организации дуплексных связей) образует широкополосный канал, называемый стволом (радиостволом). Оборудование, предназначенное для передачи телефонных сообщений и включающее в себя кроме радиоствола модемы и аппаратуру объединения и разъединения каналов, называют телефонным стволом.

Соответствующий комплекс аппаратуры для передачи полных ТВ сигналов (вместе с сигналами звукового сопровождения, а часто и звукового вещания) называют ТВ стволом. Большинство современных РРЛ являются многоствольными. При этом, кроме рабочих стволов, могут быть один или два резервных ствола, а иногда и отдельный ствол служебной связи. С увеличением числа стволов возрастает соответственно и объем оборудования (число передатчиков и приемников) на станциях РРЛ.

Часть РРЛ (один из возможных вариантов) условно изображена на рис. 11.1, где непосредственно отмечены радиорелейные станции трех типов: оконечная (ОРС), промежуточная (ПРС) и узловая (УРС).

На ОРС производится преобразование сообщений, поступающих по соединительным линиям от междугородных телефонных станций (МТС), междугородных ТВ аппаратных (МТА) и междугородных вещательных аппаратных (МВА), в сигналы, передаваемые по РРЛ, а также обратное преобразование. На ОРС начинается и заканчивается линейный тракт передачи сигналов.


С помощью УРС разветвляются и объединяются потоки информации, передаваемые по разным РРЛ, на пересечении которых и располагается УРС. К УРС относят также станции РРЛ, на которых осуществляется ввод и вывод телефонных, ТВ и других сигналов, посредством которых расположенный вблизи от УРС населенный пункт связывается с другими пунктами данной линии.

Рис. 11.2. Структурная схема одноствольного ретранслятора РРЛ.

1 , 10 - антенны; 2,6 - фидерные тракты; 3,7 - приемо-передатчики; 4,9 - приемники;
5,8 - передатчики.

На ОРС или УРС всегда имеется технический персонал, который обслуживает не только эти станции, но и осуществляет контроль и управление с помощью специальной системы телеобслуживания ближайшими ПРС. Участок РРЛ (300-500 км) между соседними обслуживаемыми станциями делится примерно пополам так, что одна часть ПРС входит в зону телеобслуживания одной УРС (ОРС), а другая часть ПРС обслуживается другой УРС (ОРС).

ПРС выполняют функции активных ретрансляторов без выделения передаваемых сигналов электросвязи и введения новых и, как правило, работают без постоянного обслуживающего персонала. Структурная схема ретранслятора ПРС приведена на рис. 11.2. При активной ретрансляции сигналов на ПРС используют две антенны, расположенные на одной и той же мачте. В этих условиях трудно предотвратить попадание части мощности усиленного сигнала, излучаемого передающей антенной, на вход приемной антенны. Если не принять специальных мер, то указанная связь выхода и входа усилителя ретранслятора может привести к его само-возбуждению, при котором он перестает выполнять свои функции.



Рис. 11.3. Схемы распределения частот в РРЛ.

Эффективным способом устранения опасности самовозбуждения является разнесение по частоте сигналов на входе и выходе ретранслятора. При этом на ретрансляторе приходится устанавливать приемники и передатчики, работающие на разных частотах. Если на РРЛ предусматривается одновременная связь в прямом и обратном направлениях, то число приемников и передатчиков удваивается, и такой ствол называется дуплексным (см. рис. 11.2). В этом случае каждая антенна на станциях используется как для передачи, так и для приема высокочастотных сигналов на каждом направлении связи.

Одновременная работа нескольких радиосредств на станциях и на РРЛ в целом возможна лишь при устранении взаимовлияния между ними. С этой целью создаются частотные планы, т.е. планы распределения частот передачи, приема и гетеродинов на РРЛ.

Исследования показали, что в предельном случае для двусторонней связи по РРЛ (дуплексный режим) можно использовать лишь две рабочие частоты ƒ 1 и ƒ 2 . Пример РРЛ с таким двухчастотным планом условно изображен на рис. 11.3, а. Чем меньше на линии используется рабочих частот, тем сложнее устранить взаимовлияние сигналов, совпадающих по частоте, но предназначенных разным приемникам. Во избежание подобных ситуаций на РРЛ стараются использовать антенны с узкой диаграммой направленности, с возможно меньшим уровнем боковых и задних лепестков; применяют для разных направлений связи волны с различным типом поляризации; располагают отдельные станции так, чтобы трасса представляла собой некоторую ломаную линию.

Применение указанных мер не вызывает сложностей, если связь осуществляется в диапазоне сантиметровых волн. Реальные антенные устройства, работающие на менее высоких частотах, обладают меньшим направленным действием. Поэтому на РРЛ дециметрового диапазона приходится разносить частоты приема на каждой станции. В этом случае для прямого и обратного направлений связи выбирают различные пары частот ƒ 1 , ƒ 2 и ƒ 3 , ƒ 4 (четырехчастотный план) (см. рис. 11.3, б), и необходимая для системы связи полоса частот возрастет вдвое. Четырехчастотный план не требует указанных выше мер защиты, однако он неэкономичен с точки зрения использования полосы частот. Число радиостволов, которое может быть образовано в выделенном диапазоне частот, при четырехчастотном плане вдвое меньше, чем при двухчастотном.

Для радиорелейной связи в основном используются сантиметровые волны, поэтому двухчастотный план получил наибольшее распространение.

Основные принципы радиорелейной связи

Структура радиорелейной системы передачи. Основные понятия и определения. Радиорелейный ствол. Многоствольные РРСП. Диапазоны частот, используемые для радиорелейной связи. Планы распределения частот.

Под радиорелейной связью понимают радиосвязь, основанную на ретрансляции радиосигналов дециметровых и более коротких волн станциями, расположенными на поверхности Земли. Совокупность технических средств и среды распространения радиоволн для обеспечения радиорелейной связи образует радиорелейную линию связи.

Земной называют радиоволну, распространяющуюся вблизи земной поверхности. Земные радиоволны короче 100 см хорошо распространяются только в пределах прямой видимости. Поэтому радиорелейную линию связи на большие расстояния строят в виде цепочки приемно-передающих радиорелейных станций (РРС), в которой соседние РРС размещают на расстоянии, обеспечивающем радиосвязь прямой видимости, и называют ее радиорелейной линией прямой видимости (РРЛ).

Рисунок 1.1 – К пояснению принципа построения РРЛ

Обобщенная структурная схема многоканальной РСП показана на рис. 1.3.

Рис. Обобщенная структурная схема многоканальной радиосистемы пере­дачи:

1,7 - каналообразующее и групповое оборудование;

2,6 - соединительная линия;

3, 5 - оконечное оборудование ствола;

4 – радиоствол

Пролет (интервал) РРЛ - это расстояние между двумя ближайшими станциями.

Участок (секция) РРЛ - это расстояние между двумя ближайшими обслуживаемыми станциями (УРС или ОРС).

Каналообразующее и групповое оборудование обеспечивает формирование группового сигнала из множества подлежащих передаче первичных сигналов электросвязи (на передающем конце) и обратное преобразование группового сиг­нала в множество первичных сигналов (на приемном конце). Указанное оборудо­вание располагается обычно на сетевых станциях и узлах коммутации первичной сети ЕАСС.

Станции РСП, в том числе те, на которых производятся выделение, вве­дение и транзит передаваемых сигналов, как правило, территориально уда­лены от сетевых станций и узлов коммутации, поэтому в состав большин­ства РСП входят проводные соединительные линии.

Для формирования радиосигнала и передачи его на расстояние посред­ством радиоволн используются различные радиосистемы связи. Радиосис­тема связи представляет собой комплекс радиотехнического оборудования и других технических средств, предназначенный для организации радиосвязи в заданном диапазоне частот с использованием определенного меха­низма распространения радиоволн. Вместе со средой (трактом) распро­странения радиоволн радиосистема связи образует линейный тракт или ствол. Ствол РСП состоит из оконечного оборудования ствола и радиоствола. Оборудование ствола располагается на оконечных и ре­трансляционных станциях.

В оконечном оборудовании ствола на передающем конце формируется ли­нейный сигнал, состоящий из группового и вспомогательных служебных сигна­лов (сигналов служебной связи, пилот-сигналов и др.), которым модулируются высокочастотные колебания. На приемном конце производятся обратные опера­ции: демодулируется высокочастотный радиосигнал и выделяются групповой, а также вспомогательные служебные сигналы. Оконечное оборудование ствола располагается на оконечных станциях РСП и на специальных ретрансляционных станциях.

Назначением радиоствола является передача модулированных радиосигна­лов на расстояние с помощью радиоволн. Радиоствол называется простым, если в его состав входят лишь две оконечные станции и один тракт распространения радиоволн, и составным, если помимо двух оконечных радиостанций он содер­жит одну или несколько ретрансляционных станций, обеспечивающих прием, преобразование, усиление и повторную передачу радиосигналов. Необходи­мость использования составных радиостволов обусловлена рядом факторов, основными из которых являются протяженность РСЦ, ее пропускная способ­ность и механизм распространения радиоволн.


Структурная схема ствола двусторонней РСП изображена на рисунке

Рис. 1.4. Структурная схема ствола двусторонней радиосистемы передачи:

1 -конечное оборудование;

2 - передающее оборудование;

3 - приемное оборудова­но;

4 -передатчик;

5 - приемник;

6 -фидерный тракт;

7 -антенна;

8 - тракт распро­странения радиоволн;

9 - помехи (внутрисистемные и внешние)


От оконечного передающего оборудования 2 ствола ^ 1 на вход радио­ствола поступает высокочастотный радиосигнал, модулированный линей­ным сигналом. В радиопередатчике 4 мощность радиосигнала увеличивает­ся до номинального значения, а его частота преобразуется для переноса спектра в заданный диапазон частот. По фидерному тракту 6передаваемые радиосигналы направляются в антенну 7, которая обеспечивает излучение радиоволн в открытое пространство в нужном направлении. При этом в большинстве современных двусторонних РСП для передачи и приема ра­диосигналов противоположных направлений используется общий антенно-фидерный тракт. В открытом пространстве (тракте распространения 8) ра­диоволны распространяются со скоростью, близкой к скорости света с=3*10 8 м/с. Часть энергии радиоволн, приходящих от радиостанции 1, улавливается антенной 7, находящейся на оконечной радиостанции 2. Энергия принятого радиосигнала от антенны 7 по фидерному тракту 6 на­правляется в радиоприемник 5, где осуществляются частотная селекция принимаемых радиосигналов, обратное преобразование частоты и необхо­димое усиление. С выхода радиоствола принятый радиосигнал поступает на оконечное оборудование ствола 1. Аналогично радиосигналы передают­ся в противоположном направлении от оконечной радиостанции 2 к радио­станции 1. Как видно из рис. 1.4, радиоствол двусторонней РСП состоит из двух радиоканалов, каждый из которых обеспечивает передачу радиосиг­налов в одном направлении. Таким образом, оборудование радиоствола (включающее радиопередатчики, радиоприемники и антенно-фидерные тракты) является по сути дела оборудованием сопряжения оконечного обо­рудования ствола РСП с трактом распространения радиоволн.

Диапазоны частот

Планы распределения частот

Для работы РРЛ выделены полосы частот шириной 400 МГц в диапазоне 1.2 ГГц (1,7...2,1 ГГц), 500 МГц в диапазонах 4 (3,4... 3,9), 6 (5,67 ...6,17) и 8 (7,9... 8,4) ГГц и шириной 1 ГГц в диапазонах 11 и 13 ГГц и более высокочастотных. Эти полосы распределяют между ВЧ стволами радиорелейной системы по определенному плану, называемому планом распределения частот. Планы частот составляют так, чтобы обеспечить минимальные взаимные помехи между стволами, работающими на общую антенну.

В полосе 400 МГц может быть организовано 6, в полосе 500 МГц - 8 и в полосе 1 ГГц-12 дуплексных ВЧ стволов.

В плане частот (рис. 1.3) обычно указывают среднюю частоту f0. Частоты приема стволов располагают в одной половине выделенной полосы, а частоты передачи - в другой. При таком делении получают достаточно большую частоту сдвига, чем обеспечивают достаточную развязку между сигналами приема и передачи, поскольку РФ приема (или РФ передачи) будут работать только в половине всей полосы частот системы. При этом можно использовать общую антенну для приема и передачи сигналов. В случае необходимости получают дополнительную развязку между волнами приема и передачи в одной антенне за счет применения разной поляризации. На РРЛ используют волны с линейной поляризацией: вертикальной или горизонтальной. Применяют два варианта распределения поляризаций. В первом варианте на каждой ПРС и УРС происходит изменение поляризации так, что принимают и передают волны разной поляризации. Во втором варианте в направлении "туда" используют одну поляризацию волн, а в направлении "обратно"- другую.

Рисунок 1.3. План распределения частот для радиорелейной системы КУРС для станции типа НВ в диапазонах 4 (f0=3,6536), 6(f0=5,92) и 8(f0=8,157)

Станцию, на которой частоты приема расположены в нижней (Н) части выделенной полосы, а частоты передачи в верхней (В) - обозначают индексом "НВ". На следующей станции частота приема окажется выше частоты передачи и такую станцию обозначают индексом "ВН".

Для обратного направления связи данного ствола можно взять или ту же пару частот, что и для прямого, или другую. Соответственно говорят, что план частот позволяет организовать работу по двухчастотной (рис. 1.4) или четырехчастотной (рис. 1.5) системам. На этих рисунках через f1н, f1в,…f5н, f5в обозначены средние частоты стволов. Индексы частот соответствуют обозначениям стволов на рис. 1.3. При двухчастотной системе на ПРС и У PC для приема с противоположных направлений обязательно должна быть взята одинаковая частота. Антенна WA1 (рис. 1.4,а) будет принимать радиоволны на частоте f1н с двух направлений: главного А и обратного В. Радиоволна, приходящая с направления В, создает помеху. Степень ослабления этой помехи антенной зависит от защитных свойств антенны. Если антенна ослабляет волну обратного направления не менее, чем на 65 дБ по сравнению с волной, приходящей с главного направления, то такую антенну можно использовать при двухчастотной системе. Двухчастотная система имеет то преимущество, что позволяет в выделенной полосе частот организовать в 2 раза больше ВЧ стволов, чем четырехчастотная, однако она требует более дорогих антенн.

На магистральных РРЛ, как правило, применяют двухчастотные системы. В плане частот не предусмотрены защитные частотные интервалы между соседними стволами приема (передачи). Поэтому сигналы соседних стволов трудно разделить с помощью РФ. Чтобы избежать взаимных помех между соседними стволами, на одну антенну работают либо четные, либо нечетные стволы. В плане частот указывают минимальный частотный разнос между стволами приема и передачи, подключенными к одной антенне (98 МГц на рис. 1.3). Как правило, четные стволы используются на магистральных РРЛ, а нечетные - на ответвлениях от них. В таком случае частоты приема и передачи между стволами магистральной РРЛ распределяют согласно рис. 1.4,в, а между стволами зоновой РРЛ при четырехчастотной системе - согласно рис. 1.5,в.

На практике план частот, реализованный на РРЛ на основе двухчастотной (четырехчастотной) системы, называют двухчастотным (четырехчастотным) планом.

На РРЛ имеет место повторение частот передачи через пролет (см. рис. 1.1). При этом для того, чтобы снизить взаимные помехи между РРС, работающими на одинаковых частотах, станции располагают зигзагообразно относительно направления между оконечными пунктами (рис. 1.6). При нормальных условиях распространения сигнал от РРС1 на расстоянии в 150 км сильно ослаблен и практически не может быть принят на РРС4. Однако в отдельных случаях возникают благоприятные условия для era распространения. В целях надежного ослабления такой помехи используют направленные свойства антенн. На трассе между направлением максимального излучения передающей антенны РРС1,т. е. направлением на РРС2, и направлением на РРС4 (направление АС на рис. 1.6) предусматривают защитный угол изгиба трассы a1 в несколько градусов, так чтобы в направлении АС коэффициент усиления передающей антенны на РРС1 был достаточно мал.

Классификация РРС, состав оборудования оконечных станций. Состав оборудования и схемы построений промежуточных станций. Оборудование и особенности схемных построений узловых радиорелейных станций.

Радиорелейная связь обеспечивает высококачественные дуплексные каналы связи, практически мало зависящие от времени года и суток, от состояния погоды и атмосферных помех.

При организации радиорелейной связи необходимо учитывать зависимость ее от рельефа местности, что вызывает необходимость тщательного выбора трассы линии связи, невозможность работы или значительное уменьшение дальности действия радиорелейных станций в движении, возможность перехвата передач и создания радиопомех противником.

Радиорелейная связь может быть организована по направлению, по сети и по оси. Применение того или иного способа в каждом отдельном случае зависит от конкретных условий обстановки, особенностей организации управления, рельефа местности, важности данной связи, потребности в обмене, наличия средств и других факторов.

Направление радиорелейной связи - это способ организации связи между двумя пунктами управления (командирами, штабами) (Рис. 19).

Рисунок 19. Организация радиорелейной связи по направлениям

Этот способ обеспечивает наибольшую надежность работы направления связи и большую ее пропускную способность, но по сравнению с другими способами обычно требует повышенного расхода частот и радиорелейных станций при штабе, организующем связь. Кроме того, при организации связи по направлениям возникают трудности в размещении большого количества радиорелейных станций без взаимных помех на узле связи старшего штаба и исключается возможность маневра каналами между направлениями.

Сеть радиорелейной связи - это способ организации связи, при котором связь старшего пункта управления (командира, штаба) с несколькими подчиненными пунктами управления (командирами, штабами) осуществляется с помощью одного радиорелейного полукомплекта (Рис. 20).

Рисунок 20. Организация сети радиорелейной связи

При работе по сети передатчики радиорелейных станций подчиненных корреспондентов постоянно настроены на частоту приемника главной станции. Следует иметь в виду, что при отсутствии обмена все станции сети должны находиться в симплексном режиме, то есть в режиме дежурного приема. Право вызова предоставляется преимущественно главной станции. После вызова главной станцией одного из корреспондентов переговор между ними может продолжаться в дуплексном режиме. По окончании переговора станции вновь переключаются в симплексный режим. Количество радиорелейных станций в сети не должно превышать трех-четырех.

Связь по сети возможна главным образом при условии, когда главная станция работает на ненаправленную (штыревую) антенну. В зависимости от обстановки подчиненные корреспонденты могут использовать как штыревые, так и направленные антенны. Если подчиненные корреспонденты находятся относительно главной станции в каком-либо одном направлении или в пределах сектора направленного излучения антенны главной станции, то связь старшего командира с подчиненными может обеспечиваться по сети и при работе на направленную антенну, имеющую сравнительно большой угол направленности (60 - 70°).

Ось радиорелейной связи - это способ организации радиорелейной связи, при котором связь старшего пункта управления (командира, штаба) с несколькими подчиненными пунктами управления (командирами, штабами) осуществляется по одной радиорелейной линии, развернутой в направлении перемещения своего пункта управления или одного из пунктов управления 1подчиненных штабов (Рис. 23).


Рисунок 21. Организация оси радиорелейной связи

Связь пункта управления старшего штаба с пунктами управления осуществляется через опорные (вспомогательные) узлы связи, на которых производится распределение телефонных и телеграфных каналов между пунктами управления.

По сравнению со связью по направлениям организация радиорелейной связи по оси уменьшает количество радиорелейных станций на узле связи пункта управления старшего штаба и тем самым упрощает назначение частот этим станциям без взаимных помех, дает возможность осуществлять маневр каналами, обеспечивает более эффективное их использование, сокращает время для выбора и расчета трасс, облегчает управление радиорелейной связью и требует меньшего количества личного состава, необходимого для охраны и обороны промежуточных станций. Недостатками этого способа являются зависимость всей радиорелейной связи от работы осевой линии и необходимость в дополнительной коммутации каналов на опорных (вспомогательных) узлах связи. Пропускная способность оси определяется емкостью осевой линии, поэтому организация радиорелейной связи по оси целесообразна лишь в том случае, если на осевой линии используются многоканальные станции, а на линиях привязки - малоканальные. Применение для оси малоканальных станций не дает должного эффекта, так как требует значительного количества этих станций и частот.

Радиорелейная связь осуществляется непосредственно или через промежуточные (ретрансляционные) радиорелейные станции. Эти станции развертываются в тех случаях, когда связь непосредственно между оконечными станциями не обеспечивается вследствие удаленности их друг от друга или по условиям рельефа местности, а также при необходимости выделения каналов в промежуточном пункте.




Top