Модулированные сигналы виды модуляции. Виды модуляции цифровых сигналов (манипуляции). Непрерывные методы модуляции

Сталкиваясь в повседневной жизни с новыми понятиями, многие стараются найти ответы на свои вопросы. Именно для этого необходимо описывать любые явления. Одним из них является такое понятие, как модуляция. О нем и пойдет речь далее.

Общее описание

Модуляция - это процесс изменения одного или целого набора параметров высокочастотного колебания в соответствии с законом информационного низкочастотного сообщения. Результатом этого является перенос спектра управляющего сигнала в область высоких частот, так как эффективное вещание в пространство требует, чтобы все приемо-передающие устройства функционировали на разных частотах, не перебивая друг друга. Благодаря этому процессу информационные колебания помещаются на несущую, априорно известную. В управляющем сигнале содержится передаваемая информация. Высокочастотное колебание берет на себя роль переносчика информации, за счет чего приобретает статус несущего. В управляющем сигнале заложены передаваемые данные. Существуют разные типы модуляции, которые зависят от того, какой формы колебания используют: прямоугольные, треугольные или какие-то иные. При дискретном сигнале принято говорить о манипуляции. Итак, модуляция - это процесс, предполагающий колебания, поэтому она может быть частотной, амплитудной, фазовой и др.

Разновидности

Теперь можно рассмотреть, какие виды этого явления существуют. По сути, модуляция - это процесс, при котором низкочастотная волна переносится высокочастотной. Чаще всего используются следующие виды: частотная, амплитудная и фазовая. При происходит изменение частоты, при амплитудной - амплитуды, а при фазовой - фазы. Существуют и смешанные виды. Импульсная модуляция и модификация относятся к отдельным видам. В этом случае параметры высокочастотного колебания изменяются дискретно.

Амплитудная модуляция

В системах с таким видом изменения происходит изменение амплитуды несущей волны с высокой частотой при помощи модулирующей волны. При на выходе выявляются не только входные частоты, но и их сумма и разность. В этом случае, если модуляция - это комплексная волна, как, к примеру, речевые сигналы, состоящие из множества частот, то для суммы и разности частот потребуется две полосы, одна ниже несущей, а вторая выше. Их называют боковыми: верхней и нижней. Первая - это копия первоначального сдвинутого на определенную частоту. Нижняя полоса - это копия изначального сигнала, прошедшая инвертирование, то есть оригинальные верхние частоты - это нижние частоты в нижней боковой.

Нижняя боковая представляет собой зеркальное отображение верхней боковой относительно частоты несущей. Система, использующая амплитудную модуляцию, передающая несущую и обе боковые, называется двухполосной. Несущая не содержит полезной информации, поэтому ее можно убрать, но в любом случае полоса сигнала будет в два раза больше изначальной. Сужение полосы достигается за счет вытеснения не только несущей, но и одной из боковых, так как в них содержится одна информация. Этот вид известен в качестве однополосной модуляции с подавленной несущей.

Демодуляция

Для этого процесса требуется смешать модулированный сигнал с несущей той же частоты, что испускается модулятором. После этого получается изначальный сигнал в виде отдельной частоты или полосы частот, а потом отфильтровывают от других сигналов. Иногда генерирование несущей для демодуляции происходит на месте, при этом она не всегда совпадает с частотой несущей на самом модуляторе. Из-за небольшой разницы между частотами появляются несовпадения, что характерно для телефонных цепей.

В данном случае используется цифровой модулирующий сигнал, то есть это позволяет кодировать более одного бита на бод посредством кодирования бинарного сигнала данных в сигнал с несколькими уровнями. Биты бинарных сигналов иногда разбивают на пары. Для пары бит можно использовать четыре варианта комбинации, при этом каждая пара бывает представлена одним из четырех уровней амплитуды. Такой закодированный сигнал характеризуется тем, что скорость модуляции в бодах наполовину меньше изначального сигнала данных, поэтому его можно использовать для амплитудной модуляции обычным образом. Свое применение она нашла в радиосвязи.

Частотная модуляция

Системы с такой модуляцией предполагают, что частота несущей будет меняться соответственно с формой модулирующего сигнала. Этот вид превосходит амплитудную в плане устойчивости к определенным воздействиям, имеющимся на телефонной сети, поэтому его стоит использовать на низких скоростях, где нет необходимости в привлечении большой полосы частот.

Фазо-амплитудная модуляция

Чтобы увеличить число бит на бод, можно скомбинировать фазовую и амплитудную модуляции.

В качестве одного из современных методов амплитудно-фазовой модуляции можно назвать тот, который базируется на передаче нескольких несущих. К примеру, в каком-то приложении используется 48 несущих, разделенных полосой в 45 Гц. Посредством комбинирования амплитудной и фазовой модуляции для каждой несущей выделяется до 32 дискретных состояний на каждый отдельный период бода, благодаря чему можно переносить по 5 бит на бод. Получается, что вся эта совокупность позволяет переносить 240 бит на бод. При работе со скоростью 9600 бит/с скорость модуляции требует лишь 40 бод. Такой низкий показатель довольно терпим к амплитудным и фазовым скачкам, присущим телефонной сети.

Импульсно-кодовая модуляция

Этот вид обычно рассматривается в качестве системы для трансляции к примеру, голос в цифровом виде. Эта техника модуляции не используется в модемах. Тут происходит стробирование аналогового сигнала со скоростью, вдвое превышающей наивысшую частоту компонента сигнала в аналоговой форме. При использовании таких систем на телефонных сетях стробирование происходит 8000 раз в секунду. Каждый отсчет - это уровень напряжения, закодированный семибитным кодом. Чтобы наилучшим образом представить используется кодирование по логарифмическому закону. Семь бит совместно с восьмым, говорящим о наличии сигнала, формируют октет.

Для восстановления сигнала сообщения требуется модуляция и детектирование, то есть обратный процесс. При этом сигнал преобразуется нелинейным способом. Нелинейные элементы обогащают спектр выходного сигнала новыми компонентами спектра, а для выделения низкочастотных компонентов используются фильтры. Модуляция и детектирование могут осуществляться с применением вакуумных диодов, транзисторов, полупроводниковых диодов в качестве нелинейных элементов. Традиционно используются точечные полупроводниковые диоды, так как у плоскостных входная емкость заметно больше.

Современные виды

Цифровая модуляция обеспечивает намного большую информационную емкость и обеспечивает совместимость с разнообразными службами цифровых данных. Помимо этого с ее помощью повышается защищенность информации, улучшается качество систем связи, и ускоряется доступ к ним.

Существует ряд ограничений, с которыми сталкиваются разработчики любых систем: допустимая мощность и ширина частотной полосы, заданный шумовой уровень систем связи. С каждым днем увеличивается численность пользователей систем связи, а также растет спрос на них, что требует увеличения радиоресурса. Цифровая модуляция заметно отличается от аналоговой тем, что несущая в ней передает большие объемы информации.

Сложности использования

Перед разработчиками систем цифровой радиосвязи стоит такая основная задача - найти компромисс между шириной полосы трансляции данных и сложностью системы в техническом плане. Для этого уместно использовать разные методы модуляции, чтобы получить необходимый результат. Радиосвязь можно организовать и при использовании простейших схем передатчика и приемника, но для такой связи будет использоваться спектр частот, пропорциональный численности пользователей. Для более сложных приемников и передатчиков требуется меньшая полоса частот для трансляции информации в том же объеме. Для перехода к спектрально-эффективным методам передачи необходимо усложнить оборудование соответствующим образом. Эта проблема не зависит от вида связи.

Альтернативные варианты

Широтно-импульсная модуляция характеризуется тем, что ее несущий сигнал представляет собой последовательность импульсов, при этом частота импульсов постоянная. Изменения касаются только длительности каждого импульса соответственно модулирующему сигналу.

Широтно-импульсная модуляция отличается от частотно-фазовой. Последняя предполагает модуляцию сигнала в виде синусоиды. Он характеризуется постоянной амплитудой и изменяемой частотой или фазой. Импульсные сигналы тоже можно промодулировать по частоте. Может быть длительность импульсов фиксированная, а их частота находится в каком-то а вот их мгновенное значение будет меняться в зависимости от модулирующих сигналов.

Выводы

Можно использовать простые виды модуляции, при этом только один параметр будет изменяться соответственно с модулирующей информацией. Комбинированная схема модуляции, которая применяется в современном оборудовании для работы связи, - это когда происходит одновременное изменение и амплитуды, и фазы несущей. В современных системах может использоваться несколько поднесущих, для каждой из которых используется модуляция определенного вида. В этом случае речь идет о схемах модуляции сигналов. Используется этот термин и для сложных многоуровневых видов, когда для исчерпывающей информации требуется дополнительное

В современных системах связи используются наиболее эффективные типы модуляции, благодаря чему обеспечивается минимизация ширины полосы с целью освобождения частотного пространства для других видов сигналов. Качество связи от этого только выигрывает, однако сложность оборудования в данном случае оказывается очень высока. В конечном итоге частота модуляции дает результат, видимый конечному пользователю только в плане удобства использования технических средств.

Модуляцией называют процесс преобразования одной либо нескольких характеристик модулирующего высокочастотного колебания при воздействии управляющего низкочастотного сигнала. В итоге спектр управляющего сигнала перемещается в высокочастотную область, где передача высоких частот является более эффективной.

Модуляция выполняется с целью передачи информации посредством . Передаваемые данные содержатся в управляющем сигнале. А функцию переносчика осуществляет высокочастотное колебание, именуемое несущим. В роли несущего колебания могут быть использованы колебания разнообразной формы: пилообразные, прямоугольные и др., но обычно используют гармонические синусоидальные. Исходя из того, какая именно характеристика синусоидального колебания изменяется, различают несколько типов модуляции:

Амплитудная модуляция

На вход модулирующего устройства передают модулирующий и опорный сигналы, в результате на выходе имеем смодулированный сигнал. Условием корректного преобразования считается удвоенное значение несущей частоты в сравнении с максимальным значением полосы модулирующего сигнала. Данный тип модуляции достаточно прост в исполнении, но отличается невысокой помехоустойчивостью.

Помехонеустойчивость возникает вследствие узкой полосы модулируемого сигнала. Ее используют в основном в средне- и низкочастотных интервалах электромагнитного спектра.

Частотная модуляция

В результате данного типа модуляции сигнал модулирует частоту опорного сигнала, а не мощность. Поэтому если величина сигнала увеличивается, то, соответственно, растет частота. Ввиду того, что полоса получаемого сигнала намного шире исходной величины сигнала.

Такая модуляция характеризуется высокой помехоустойчивостью, однако для ее применения следует использовать высокочастотный диапазон.

Фазовая модуляция

В процессе данного типа модуляции модулирующий сигнал использует фазу опорного сигнала. При данном типе модулирования получаемый сигнал имеет достаточно широкий спектр, потому что фаза оборачивается на 180 градусов.

Фазовая модуляция активно используется для формирования помехозащищенной связи в микроволновом диапазоне.

В качестве несущего сигнала могут использоваться незатухающие функции, шумы, последовательность импульсов и пр. Так, при импульсной модуляции в роли несущего сигнала используется последовательность узких импульсов, а в роли модулирующего сигнала выступает дискретный либо аналоговый сигнал. Так как последовательность импульсов характеризуется 4 характеристиками, то различают 4 типа модуляции:

— частотно-импульсная;

— широтно-импульсная;

— амплитудно-импульсная;

— фазово-импульсная.

Модуляция и её разновидности

Виды модуляции

Существует два вида переносчиков: гармонический и импульсный.

Для гармонического переносчика возможны три вида модуляции: амплитудная модуляция (АМ), фазовая (ФМ) и частотная (ЧМ).

Для импульсного переносчика возможны четыре вида модуляции: амплитудно-импульсная, или высотно-импульсная модуляция (АИМ),когда по закону передаваемого сигнала изменяется амплитуда импульсов, фазо-импульсная, или время-импульсная (ФИМ)-изменяется фаза импульсов, широтно-импульсная или модуляция по длительности (ШИМ), когда изменяется ширина импульсов и, наконец, либо частотно-импульсная (ЧИМ)-изменяется частота следования импульсов, либо интервально-импульсная (ИИМ).

Модуляцию ФИМ и ЧИМ объединяют во временно-импульсную (ВИМ). Между ними существует связь, аналогичная связи между фазовой и частотной модуляцией синусоидального колебания.

Спектры ШИМ, ЧИМ, и ФИМ имеют более сложный вид чем спектр сигнала АИМ.

Импульсные последовательности АИМ, ШИМ, ЧИМ, и ФИМ называются последовательностями видеоимпульсов. Если позволяет среда распространения, то видеоимпульсы передаются без дополнительных преобразований (например, по кабелю). Однако по радиолиниям передать видеоимпульсы невозможно. Тогда сигнал подвергают второй ступени преобразования (модуляции).

Модулируя с помощью видеоимпульсов гармоничное несущее колебание достаточно высокой частоты, получают радиоимпульсы, которые способны распространяться в эфире. Полученные в результате сочетания первой и второй ступеней модуляции сигналы могут иметь названия АИМ-АМ, ФИМ-АМ, ФИМ-ЧМ и др.

Сравнение импульсных видов модуляции показывает, что АИМ имеет меньшую ширину спектра по сравнению с ШИМ и ФИМ. Однако последние более устойчивы к воздействию помех. Для обоснования выбора метода модуляции в системе передачи необходимо сравнить эти методы по различным критериям: энергетическим затратам на передачу сигнала, помехоустойчивости (способности модулированных сигналов противостоять вредному воздействию помех), сложности оборудования и др.

Модулированные по ширине (ШИМ) и по фазе (ФИМ) видеоимпульсы.

Воздействие сообщения на модулируемый параметр может повлечь за собой изменение других параметров. Например, частотная модуляция гармонического переносчика сопровождается изменением начальной фазы, и наоборот. Однако одновременное воздействие на несколько параметров может осуществляться преднамеренно. В этом случае модуляция называется смешанной. Возможны, например, амплитудно-частотная и амплитудно-фазовая модуляции гармонического переносчика.

При многоканальной передаче на разные параметры могут воздействовать различные сообщения.

Иногда модуляция осуществляется в несколько этапов: сперва исходное сообщение модулирует некоторое поднесущее колебание, затем модулированный сигнал воздействует на основной переносчик. Примерами могут служить система ЧМ-АМ, в которой сообщение а(t) модулирует поднесущее колебание по частоте, а затем ЧМ колебание модулирует основной переносчик по амплитуде, АМ-ЧМ, ШИМ-ФМ и т.д. Некоторые системы многоступенной модуляции (например, АМ-АМ, АИМ-АМ) эквивалентны одноступенчатой модуляции сообщением a(t) некоторого условного переносчика, который можно сформулировать, модулируя переносчиком первой ступени переносчик следующей ступени.

Изучить: · аппаратуру радиорелейных линий прямой видимости; · приемопередающую аппаратуру радиосвязи; · тропосферные радиорелейные линии; Привести методы расчета: · профиля канала связи; · вычисления затухания в радиочастотном канале; ·...

Анализ систем радиорелейной связи и расчет трасс между узлами

В многоканальных РРЛ модуляция сигнала представляет собой двухступенчатый процесс. С помощью первой ступени формируется многоканальный сигнал...

Локальные вычислительные сети

Информация в кабельных локальных сетях передается в закодированном виде, то есть каждому биту передаваемой информации соответствует свой набор уровней электрических сигналов в сетевом кабеле...

Модуляция и демодуляция оптических колебаний

Процесс модуляции состоит в изменении амплитуды, интенсивности, частоты, фазы или поляризации колебания несущей частоты (fн) в соответствии с информационным сигналом Ui (t)...

Модуляция и её разновидности

Процесс преобразования первичного сигнала заключается в изменении одного или нескольких параметров несущего колебания по закону изменения первичного сигнала (то есть в наделении несущего колебания признаками первичного сигнала) и...

Модуляция и её разновидности

Рассмотрение смешанной модуляции представляет интерес с различных точек зрения. В некоторых приборах (например, магнетронах) при изменениях амплитуды колебания наблюдается изменение частоты генерации...

Радиотелеметрическая система с частотным разделением товаров

Радиотелеметрические системы с временным разделением каналов

Разработка системы эксплуатационного управления спутниковых каналов связи для ООО "ДИАЛОГ" на базе платформы LabVIEW

Технико-экономические показатели радиорелейных (РРСП) и спутниковых (ССП) систем передачи и особенности построения оконечного оборудования ствола...

Расчет необходимой частоты дискретизации амплитудно-модулированных КВ сигналов

При передаче информации в радиотехнике используются полосовые радиосигналы. Введем несколько понятий, для строгости рассуждений. Модулирующим сигналом будем называть низкочастотный информационный сигнал (речь, цифровая информация и т...

Современные методы сбора видеоинформации

беспроводной видеоинформация камера Для осуществления мобильного видеорепортажа или построения мобильных пунктов видеонаблюдения ЗАО «РОКС» предлагает свою новую разработку - специальную РРЛ COFDM модуляции...

Технологии цифровой связи

Сигналы формируются путём изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией...

Технология ZigBee

Оборудование стандарта EEE 802.15.4b может работать в трех частотных диапазонах: 868 МГц в Европе, 915 МГц в США и 2,4 ГГц во всем мире. В диапазонах 868 МГц и 915 МГц полосы используются три дополнительных схемы модуляции: двоичная фазовая манипуляция BPSK...

Эффективный способ формирования SSB сигнала

В радиосвязи на коротких (KB) и ультракоротких (УКВ) волнах в настоящее время используются в основном три вида сигналов: телеграфные (CW), однополосные (SSB) и частотно-модулированные сигналы (FM)...

Непрерывные методы модуляции.

Методы преобразования сигналов.

Электрические сигналы, подлежащие передаче в системах те­лемеханики, в большинстве случаев лежат в низкочастотной части спектра (в диапазоне от нуля до нескольких десятков герц). Непосредственная передача этих сигналов между ПУ и КП иногда используется в так называемых системах интенсивности ,но дальность действия подобных систем ограничена и редко превышает несколько десятков метров, так как низкочастотные сигналы наиболее сильно подвержены воздействию помех при передаче их на большие расстояния. Так как полоса пропускания воздушных линий связи обычно начинается от 0,5 кГц, для согласования низкочастотного сигнала с высокочастотной линией связи производят перенос спектра передаваемого сигнала в высокочастотную область.

Для этого низкочастотный сигнал приводят в однозначное соответствие с одним из параметров высокочастотного колебания, называемого несущим. Такое преобразование спектра называют модуляцией ,а устройство, осуществляющее модуляцию, - модулятором .Существуют непрерывные, импульсные и цифровые методы модуляции.

Непрерывные методы модуляции.

В непрерывных методах модуляции в качестве несущего используют непрерывное гармоническое колебание, вырабатываемое высокочастотным генератором. В зависимости от того, какой именно параметр несущего колебания изменяется в соответствии с изменением низкочастотного сигнала, различают модуляции амплитудную (АМ), частотную (ЧМ) и фазовую (ФМ).

Рассмотрим амплитудную модуляцию (рис. 14.1). Пусть имеются модулирующий входной сигнал (см. рис. 14.1, а)и несущее гармоническое колебание (см. рис. 14.1, а),причем несущая частота значительно больше частоты входного сигнала , а начальные фазы и примем равными нулю. В результате модуляции амплитуда несущего колебания становится связанной с модулирующим сигналом следующим образом:

где - амплитуда несущего сигнала; Х - амплитуда входного сигнала; - коэффициент модуляции.

Тогда выражение для модулированного сигнала будет иметь вид

Раскрыв скобки, по теореме произведения косинусов получим

т.е. модулированный сигнал состоит из трех составляющих с час­тотами , и и соответственно с амплитудами и . Следовательно, полоса пропускания линии связи должна быть для такого сигнала не менее 2 .

Рис. 14.1. Амплитудная модуляция: а – входной сигнал; б – модулированный сигнал; в – детекти-

рованный сигнал; г структурная схема преобразования сигнала.

Если входной сигнал является периодическим с частотой , но имеет сложную форму, то его согласно преобразованию Фурье можно представить в виде суммы составляющих гармоник с частотами и т.д. Соответственно в спектре модулирован­ного сигнала появятся составляющие с частотами и т.д. При импульсных и непериодических входных сигналах этот ряд оказывается бесконечным, но мощность высших гармоничес­ких составляющих очень мала, и практически спектр модулиро­ванного сигнала можно считать ограниченным.

Таким образом, независимо от формы сигнала в результа­те модуляции происходит перенос его спектра из низкочастотной области в высокочастотную: с частоты на частоту . Частота высокочастотного колебания выбирается в зависимости от вида и полосы пропускания линии связи. Само по себе модулирован­ное колебание информации не несет, поэтому при приеме произ­водят его обратное преобразование, выделяя исходный низкочас­тотный сигнал. Такое преобразование называется демодуляцией ,а соответствующее устройство демодулятором .

Для демодуляции АМ-колебаний сигнал пропускают через амплитудный детектор, в качестве которого используют одно- или двухполупериодный выпрямитель. В результате получают демодули­рованный сигнал ,форма которого (для двухполупериодного выпрямителя) показана на рис. 14,1, в. В этом сигнале присутствует исходная составляющая с частотой , для выделения которой ис­пользуют фильтр низких частот (ФНЧ) с соответствующей АЧХ.

Существенным недостатком метода амплитудной модуляции яв­ляется его низкая помехоустойчивость. Это происходит потому, что сигнал помехи с частотой , всегда присутствующий в линии связи, складываясь с полезным сигналом ,изменяет прежде всего его амплитуду. А так как амплитуда АМ-колебания является информативным параметром, то после демодуляции вы­деленный сигнал (см. рис. 14.1, г) заметно отличается от переданного сигнала .

Обладает большим числом преимуществ, отмеченных в статье "Виды сигналов, применяемых в телекоммуникации". Однако при передаче на дальние расстояния (более 100 метров) он начинает терять одно из своих самых важных свойств: помехозащищенность. Это связано с тем, что в качестве среды, как правило, используется воздушное пространство в случае радиопередачи и проводные каналы связи, а в этих средах очень быстро затухает. Использовать ретрансляторы через каждые несколько сотен метров при передаче на дальние расстояния экономически неэффективно. Кроме того, это не всегда технически реализуемо, в частности в сотовых системах связи максимальная удаленность мобильной станции () от базовой станции () может достигать 35 км. Также есть еще одно важное свойство, требуемое для цифрового канала связи – широкополосность. Цифровой с резкими переходами между уровнями требует широкой полосы для его передачи. В противном случае переходы между уровнями будут "заламываться" и будет "смазанным", что может привести к высокому проценту ошибок. Для решения вышеуказанных проблем используют различные методы модуляции сигналов, о которых и пойдет речь в данной статье.

Модуляция – это процесс изменения каких-либо параметров несущего сигнала под действием информационного потока. Данный термин обычно применяют для сигналов. Применительно к цифровым сигналам существует другой термин "манипуляция", однако его часто заменяют все тем же словом "модуляция" подразумевая, что речь идет о сигналах.

Существует 3 основных вида манипуляции сигналов: (Amplitude-shift keying (ASK)), (Frequency-shift keying (FSK)) и (Phase-shift keying (PSK)). Этот набор манипуляций определяется основными характеристиками, которыми обладает любой (см. статью "Сигнал и его основные характеристики").

И являются базисом и достаточно редко применяются на практике поодиночке. Чаще применяются их модификации или в сочетании друг с другом. В частности в стандарте (Global System for Mobile Communications) на радио интерфейсе применяется модуляция GMSK (Gaussian modulation with Minimum Shift Keying) – гауссовская манипуляция с минимальным фазовым сдвигом. Главное ее преимущество заключается в том, что манипулированный этим методом занимает гораздо меньшую частотную полосу, чем при обычной фазовой манипуляции. Однако в основу GMSK положена, рассмотренная выше обычная манипуляция, и это видно даже из названия.

Таким образом, выбор того или иного метода манипуляции обусловлен требованиями по помехозащищенности, пропускной способности канала связи, стоимостью реализации оборудования и т.п.




Top