Сведение системы неравенств к каноническому виду. Различные формы записи ЗЛП (общая, каноническая, симметрическая). Симплексный метод решения злп

При обсуждении постановки задачи о назначениях было отмечено, что эта задача является частным случаем классической транспортной задачи и, как следствие, является задачей транспортного типа. Применительно к задаче о назначениях симплексный метод не эффективен, так как любое ее допустимое базисное решение является вырожденным. Специфические особенности задачи о назначениях позволили разработать эффективный метод ее решения, известный как венгерский метод.

Частным случаем транспортной задачи является задача о назначениях, в которой число пунктов производства равно числу пунктов назначения, т.е. транспортная таблица имеет форму квадрата. Кроме того, в каждом пункте назначения объем потребности равен 1, и величина предложения каждого пункта производства равна 1. Любая задача о назначениях 2может быть решена с использованием методов линейного программирования или алгоритма решения транспортной задачи. Однако ввиду особой структуры данной задачи был разработан специальный алгоритм, получивший название Венгерского метода.

Венгерский метод является одним из интереснейших и наиболее распространенных методов решения транспортных задач.

Рассмотрим основные идеи венгерского метода на примере решения задачи выбора (задачи о назначениях), которая является частным случаем Т-задачи, а затем обобщим этот метод для произвольной Т-задачи.

Постановка задачи. Предположим, что имеется различных работ и механизмов, каждый из которых может выполнять любую работу, но с неодинаковой эффективностью. Производительность механизма при выполнении работы обозначим, и = 1,...,n; j = 1,...,n. Требуется так распределить механизмы по работам, чтобы суммарный эффект от их использования был максимален. Такая задача называется задачей выбора или задачей о назначениях.

Формально она записывается так. Необходимо выбрать такую последовательность элементов из матрицы

чтобы сумма была максимальна и при этом из каждой строки и столбца С был выбран только один элемент.

Введем следующие понятия.

Нулевые элементы матрицы С называются независимыми нулями, если для любого строка и столбец, на пересечении которых расположен элемент, не содержат другие такие элементы.

Две прямоугольные матрицы С и D называются эквивалентными (C ~ D), если для всех i,j . Задачи о назначениях, определяемые эквивалентными матрицами, являются эквивалентными (т.е. оптимальные решения одной из них будут оптимальными и для второй, и наоборот).

Содержательная постановка задачи. В объединении находится n автомобилей, способных каждый перевозить в месяц Q i тонн груза (i = 1,2,…, n). С их помощью необходимо обеспечить перевозку грузов (пиломатериал, шурупы и т.д.) от поставщиков к потребителям по n маршрутам в количестве R j тонн в месяц (j = 1,2,…, n).
Задача заключается в том, чтобы перевезти все грузы с минимальными издержками, для этого надо каждый автомобиль пустить по одному и только его маршруту. Если возможность автомобиля в перевозке груза ниже потребности потребителя этого груза, то на данный маршрут автомобиль не может быть назначен. Поэтому составляется матрицу С, характеризующую издержки i-го автомобиля, в случае, если он будет назначен на j-й маршрут.

Венгерский метод решения задач о назначениях

Алгоритм венгерского метода .

Задача о назначениях является частным случаем транспортной задачи , поэтому для ее решения можно воспользоваться любым алгоритмом линейного программирования, однако более эффективным является венгерский метод .

Специфические особенности задач о назначениях послужили поводом к появлению эффективного венгерского метода их решения. Основная идея венгерского метода заключается в переходе от исходной квадратной матрицы стоимости С к эквивалентной ей матрице Сэ с неотрицательными элементами и системой n независимых нулей, из которых никакие два не принадлежат одной и той же строке или одному и тому же столбцу. Для заданного n существует n! допустимых решений. Если в матрице назначения X расположить n единиц так, что в каждой строке и столбце находится только по одной единице, расставленных в соответствии с расположенными n независимыми нулями эквивалентной матрицы стоимости Сэ, то получим допустимые решения задачи о назначениях.

Следует иметь в виду, что для любого недопустимого назначения соответствующая ему стоимость условно полагается равной достаточно большому числу М в задачах на минимум. Если исходная матрица не является квадратной, то следует ввести дополнительно необходимое количество строк или столбцов, а их элементам присвоить значения, определяемые условиями задачи, возможно после редукции, а доминирующие альтернативы дорогие или дешевые исключить.

В настоящее время разработано множество различных алгоритмов решения Т.з. распределительный метод , метод потенциалов, дельта-метод, венгерский метод, метод дифференциальных рент , способ двойного предпочтения , различные сетевые методы. Они относительно просты, по ним составлены десятки программ для различных вычислительных машин . Во многих снабженческих, транспортных и других организациях во всем мире с их помощью рассчитываются маршруты доставки материалов на строительные площадки, планы длительного прикрепления поставщиков металлопроката к потребителям, планы перевозок топлива. Задачи эти часто усложняются разного рода дополнительными условиями напр., в них включается расчет не только себестоимости перевозок, но и себестоимости производства продукции (производственно-транспортная задача), оптимизируется совместно доставка взаимозаменяемых видов продукции (скажем, различных кровельных материалов), оптимизируется доставка грузов с промежуточными базами (складами). Кроме того, следует учитывать, что экономико-математическая модель Т.з. позволяет описывать множество ситуаций, весьма далеких от проблемы перевозок, в частности, находить оптимальное размещение заказов на производство изделий с разной себестоимостью.  


Полученные с помощью этого алгоритма сбалансированные планы поставок ресурсов и услуг могут быть в дальнейшем оптимизированы стандартными методами (потенциалов, венгерским и др.)  

Венгерский метод в классическом варианте применим только для замкнутой модели транспортной задачи. Поэтому при разработке алгоритмов решения транспортной задачи с открытой или полуоткрытой системой ограничений исследовались и были определены эффективные методы предварительного построения замыкания исходной модели с последующим применением венгерского метода. В общем случае схема решения такой задачи представляет собой двухэтапную процедуру, где на первом этапе определяется замыкание модели, а на втором по замыканию модели отыскивается оптимум задачи.  

Описание алгоритма венгерского метода  

После конечного числа построений очередной первый этап обязательно закончится переходом на второй этап и количество независимых нулей увеличится на единицу, т. е. (к + 1)-я итерация будет завершена. Обоснование отдельных этапов алгоритма венгерского метода для задачи выбора приведено в .  

Количество возможных вариантов назначений равно факториалу числа работ и ресурсов и огромно даже в небольшой задаче. Поэтому для нахождения оптимального варианта применяют специальные алгоритмы. Среди них особенно эффективен при решении 3. о н. вручную т.н. венгерский метод.  

Оптимизация цены, объема выпуска и постоянных затрат предприятия при освоении нового продукта чисто математически может быть осуществлена на основе постановки следующий оптимизационной задачи , которая, будучи выражена линейными уравнениями выручки, переменных и совокупных издержек предприятия, а также зависимости между располагаемыми инвестициями и максимально возможным объемом выпуска продукта, обусловленным созданием на средства этих инвестиций соответствующих новых производственных и торговых мощностей. Эта задача поддается решению методами линейного целочисленного программирования (например, симплекс-методом или так называемым венгерским методом)  

Известны различные способы решения этой задачи - распределительный, венгерский, метод потенциалов и др. Как правило, для расчетов применяется ЭВМ.  

В то же время в книге изложено немало организационных решений , с успехом применяемых на венгерских промышленных предприятиях , представляющих интерес и для наших условий. К таким решениям можно отнести обоснование механизма выявления новых назревших организационных проблем, подлежащих решению процедуру разработки вариантов организационной концепции при подготовке проектов рационализации организационных систем обоснование многофакторного подхода при выборе форм и методов организации производства применение гибких методов организации и диверсификации производства и др.  

Венгерские специалисты разработали методики комплексного исследования рынка для новых товаров как производственного назначения, так и народного потребления. Различие методов обусловлено назначением товаров, в силу чего, например, точнее можно определить круг потребителей изделий производственного назначения, так как покупателями являются определенные предприятия. А это, в свою очередь, говорит производителю о довольно ограниченном объеме выпуска. Маркетинг изделий производственного назначения характерен и тем, что практически возможен опрос всех будущих потребителей, т. v процедура выяснения запросов покупателей проще, чем в случае потребительских товаров.  

Рассматриваемый метод получения ацетилена успешно изучался венгерскими и румынскими химиками в Венгрии и Румынии были построены не только лабораторные, но и опытно-промышленные установки, на которых проводились интенсивные работы по промышленному освоению метода. Промышленные установки, работающие по этому методу, имеются также в ФРГ и в Канаде.  

Существует много частных способов (например, способ Фогеля, методы потенциалов, дифференциальных рент , способ Лебедева - Тихомирова, венгерский метод и др.), а также универсальных методов (например, алгоритм симплекс-метода) решения задач линейного программирования с такого рода условиями. Представляет интерес, как сам результат вычисления, так и его интерпретация.  

Корнай (Kornai) Янош (р. 1928), венгерский экономист-математик, академик АН Венгерской республики. Окончил Будапештский университет (1955), работал в АН, Институте текстильной промышленности , вычислительном центре Академии наук с 1967 г. - профессор и руководитель отдела АН Венгрии, с 1986 г. - профессор экономики в Гарвардском университете. В конце 50-х гг. вместе с Т. Липтаком разработал метод решения задач блочного программирования - метод планирования на двух уровнях (см. Корнай-Липтака метод). Исследовал проблемы функционирования экономики в условиях неравновесия, взаимоотношения между дефицитом и инфляцией. Был одним из идеологов венгерской экономической реформы конца 60-х гг. Иностранный член Британской, Шведской, Финляндской академий наук , почетный член Американской академии искусств и наук, Американской экономической ассоциации почетный доктор университетов многих стран мира . Государственная премия ВНР - 1983 г.  

Большинство конфликтов является ситуациями для торга, сделки, но существуют и такие, в которых возможность выигрыша одной строны в значительной степени зависит от поведения и принимаемых решений другой стороны. Это возможно продемонстрировать на примере, приведенном венгерским социологом Э. Ханкишем. Последний назвал этот метод дилеммой арестанта. Суть его в том, что, добиваясь признания от двух подозреваемых, следователь ставит следующие условия  

Особое место в программе уделяется методам, чувствительным к разладке технологического процесса , в частности, методу регулирования с предупреждающими границами и методу кумулятивных сумм . В программу включены документы по контрольным картам кумулятивных сумм для средних арифметических значений, дисперсий и размахов, числа дефектов и дефектных единиц продукции. По предложению Венгерской Народной Республики в программу внесено общее методическое руководство по применению контрольных карт . Разработка методов регулирования предусмотрена на основе использования критерия проверки гипотез Кеймана-Пирсона или, когда критерий Неймана-Пирсона оказывается неприемлемым, принципа




Top