Разгоняем i7. Процессоры. Мешает ли пластичный термоинтерфейс под крышкой процессора разгону

В последнее время разгон процессора становится всё более актуальной темой. Этой проблеме посвящено немало материалов в Интернете, где даже созданы специализированные сайты и форумы для оверклокеров. Подливают масла в огонь и производители материнских плат и процессоров. Компания Intel (в дальнейшем мы будем говорить исключительно о процессорах Intel, поскольку процессоры AMD, на наш взгляд, просто не заслуживают внимания в сравнении с ними) начала выпускать специализированную К-серию процессоров с разблокированным коэффициентом умножения, которые предназначены специально для разгона.

Производители материнских плат, пытаясь завоевать признание пользователей, не только допускают возможность разгона на своих материнских платах, но и прилагают к ним различные утилиты, упрощающие процесс разгона. Есть даже решения (хотя и весьма неэффективные), когда разгон производится поворотом ручки на самой материнской плате.

Кроме того, сейчас ежегодно проводятся официальные соревнования оверклокеров, и если так пойдет и дальше, то разгон процессоров скоро станет спортивной дисциплиной.

Отметим, что с появлением несколько лет назад процессоров, поддерживающих технологию динамического разгона, называемую Intel Turbo Boost, разгон стал для них естественным процессом. Все современные процессоры Intel поддерживают эту технологию, а следовательно, при определенных условиях, о которых мы расскажем далее, способны увеличивать свою тактовую частоту. К разгону процессора можно относиться по-разному. Одних пользователей эта проблема вообще не волнует (зачастую они даже не подозревают, что их процессор динамически разгоняется самостоятельно). Другие являются противниками разгона системы, по-старинке полагая, что достигаемый рост производительности отражается на стабильности работы системы, ну а третья категория пользователей - это убежденные приверженцы разгона, то есть оверклокеры.

Наша статья ориентирована в первую очередь на начинающих пользователей, которые, возможно, приобрели свой первый компьютер, но слышали об оверклокинге и хотят попробовать самостоятельно разогнать процессор.

Сразу же оговоримся, что существует два типа разгона. Первый - это экстремальный разгон с применением жидкого азота. Это разгон ради разгона - в результате могут быть достигнуты рекордные показатели, но работать на таких компьютерах невозможно. Подобные эксперименты проводятся только для фиксации рекордных результатов, а для обычного пользователя такой разгон интереса не представляет.

Вторым типом разгона является разгон с целью повышения производительности процессора без ущерба для стабильности работы. Он реализуется с использованием воздушного (реже водяного) охлаждения. Именно о таком типе разгона и пойдет речь.

Теория разгона

Традиционно под разгоном процессора понимают увеличение его тактовой частоты выше номинальной. Собственно, отсюда и термин Overclock, который дословно означает «превышение тактовой частоты».

Если, к примеру, вы приобрели компьютер с процессором Intel Core i5-2500K, имеющим номинальную тактовую частоту 3,3 ГГц, то путем несложных манипуляций его можно заставить стабильно работать на частоте 5 ГГц, а если повезет, то и на более высокой.

О том, как это сделать, и пойдет речь в данной статье, однако прежде чем приступить к практике разгона, давайте рассмотрим в общих чертах теорию.

Современный процессор имеет множество различных характеристик, которые в совокупности определяют его производительность. Это и архитектура, и количество ядер, и тактовая частота, и размер кэшей, а также поддержка технологии Hyper-Threading, технологии динамического разгона, технологий энергосбережения и пр. Но из всех перечисленных характеристик, влияющих на производительность процессора, пользователь может изменить только одну - тактовую частоту процессора. Конечно, можно заблокировать некоторые функции либо использование всех ядер процессора, однако это приведет не к росту, а, наоборот, к падению производительности. То есть для повышения производительности процессора у пользователя есть только одна возможность - увеличить его тактовую частоту.

Зависимость производительности процессора от тактовой частоты

Прежде всего необходимо разобраться, почему и как производительность процессора зависит от его тактовой частоты.

Понятно, что под производительностью процессора принято понимать скорость выполнения им программ. Чем быстрее процессор выполняет программу, тем он производительнее. В качестве примера можно рассмотреть процесс конвертирования аудиофайла в формат MP3. Из двух процессоров более производительным мы считаем тот, который быстрее выполняет конвертирование. Другой пример - финальный рендеринг сцены, созданной в какой­либо программе по трехмерному моделированию. Чем быстрее процессор справится с задачей рендеринга, тем выше его производительность. То есть производительность процессора напрямую связана со скоростью выполнения им программного кода. Собственно, именно таким образом и трактуется производительность процессора (Performance), под которой понимают скорость выполнения им инструкций программного кода (Instruction Per Second, IPS) или количество инструкций, выполняемых в единицу времени (за одну секунду). Если попытаться записать данное определение в виде математической формулы, то получится следующее:

За каждый такт, то есть промежуток времени, обратный тактовой частоте, процессор выполняет определенное количество инструкций. Поэтому вместо количества инструкций программного кода, выполняемых за единицу времени, удобнее рассматривать количество инструкций программного кода, выполняемых за один такт процессора (Instruction Per Clock, IPC).

Переписав выражение для производительности процессора в виде произведения количества инструкций, выполняемых за один такт процессора, на количество тактов процессора за единицу времени (тактовая частота процессора, F), получим:

Как видите, производительность процессора прямо пропорциональна как тактовой частоте, так и количеству инструкций, выполняемых за один такт. Из этой формулы также следует, что существует два принципиально разных подхода к увеличению производительности процессора. Первый из них заключается в увеличении тактовой частоты, а второй - в увеличении IPC. Однако, как мы уже отмечали, пользователю доступен лишь первый подход, то есть увеличение тактовой частоты, поскольку IPC определяется микроархитектурой процессора, количеством ядер, размером кэшей и другими, не поддающимися изменению со стороны пользователя характеристиками процессора. Кстати, немного отклоняясь от главной темы нашей статьи, отметим (уж коль скоро об этом зашла речь), что IPC и тактовая частота друг с другом связаны.

Действительно, все современные процессоры работают по принципу конвейера. Понятно, что чем длиннее конвейер процессора (чем больше ступеней он насчитывает), тем меньший объем работы выполняется на каждой ступени, а следовательно, тем меньше времени требуется для прохождения командой данной ступени. А поскольку каждая ступень выполняется за один такт, длинные конвейеры позволяют повышать тактовую частоту процессора, что невозможно в случае коротких конвейеров. Из этого следует, что длина конвейера тесно связана с максимальной тактовой частотой, на которой может работать процессор. В то же время длина конвейера является одним из параметров, определяющих IPC, - чем больше ступеней в конвейере (при прочих равных условиях), тем меньше инструкций выполняется процессором на каждом такте. Таким образом, мы приходим к еще одному важному выводу: длина конвейера связана и с тактовой частотой процессора, и с IPC, следовательно, максимальная тактовая частота связана с IPC, причем чем выше IPC, тем ниже максимально возможная тактовая частота и наоборот.

Впрочем, мы немного отклонились от главной темы нашей статьи. Итак, как мы уже отмечали, единственно возможный способ для пользователя увеличить производительность процессора заключается в увеличении его тактовой частоты. Казалось бы, если всё так просто, то что мешает просто взять и повысить тактовую частоту?

Но в том­то и дело, что всё далеко не просто. Вот простой пример для размышления. В семействах процессоров Intel Core i3, i5 и i7 существуют модели, которые отличаются друг от друга только номинальной тактовой частотой (смысл термина «номинальная» мы поясним позже). Эти процессоры производятся на одном и том же заводе и на одной и той же линии, причем совершенно одинаково. То есть на стадии производства никто не делит процессоры на модели - изначально все они одинаковые. Деление по частотам происходит уже на этапе тестирования. Как правило, процессоры, которые нарезают с центра пластины (процессоры производят на 300-мм пластинах, и на каждой такой пластине находится несколько десятков процессоров), способны работать на более высоких тактовых частотах. Здесь минимальный процент брака, и именно эти процессоры формируют топовое семейство Core-i7. А вот кристаллы, которые нарезают с краев пластины, уже формируют семейства Core-i5/i3 - эти процессоры, как правило, работают на более низких тактовых частотах, что связано с особенностями производства. То есть кристаллы в центре пластины близки к идеалу, а вот крайние кристаллы могут иметь технологические отклонения и скорость переключения транзисторов в них может быть ниже.

Таким образом, каждый процессор имеет некоторую предельную тактовую частоту, при которой он может работать, а превышение этой частоты сделает процессор неработоспособным.

Естественно, тестирование кристаллов будущих процессоров на фабрике и сортировка их по частотам имеет некоторый технологический разброс и у каждого процессора есть частотный запас. Дело в том, что все процессоры рассчитываются на определенное энергопотребление, максимальный ток и температуру, которые определяют максимально допустимую тактовую частоту процессора.

Зависимость энергопотребления процессора от тактовой частоты и напряжения питания

Предполагается, что при максимальной нагрузке на процессор предельное энергопотребление, ток и температура не будут превышены, при том что в нем еще заложен некий «запас прочности». Однако ничто не мешает пользователю воспользоваться этим самым запасом прочности (у каждой конкретной модели процессора этот запас индивидуален, и тут уж как повезет). Кроме того, при определенных условиях (при соответствующей системе охлаждения) вполне можно выйти за рамки рекомендуемого энергопотребления и увеличить тактовую частоту процессора.

Дело в том, что увеличение тактовой частоты процессора приводит к росту его энергопотребления и, как следствие, к повышению тепловыделения. Зависимость потребляемой процессором мощности от его тактовой частоты можно представить следующей формулой:

Power = CU 2 F.

То есть мощность, потребляемая процессором, прямо пропорциональна тактовой частоте (F), квадрату напряжения питания процессора (U) и его так называемой динамической емкости (C).

Проблема осложняется тем, что увеличение тактовой частоты процессора выше некоторого значения и требует увеличения напряжения питания. В результате получается, что после некого значения частоты потребляемая процессором мощность приобретает нелинейную зависимость от частоты процессора (практически пропорционально третьей степени частоты). Естественно, что потребляемая процессором мощность выделяется в виде тепла, которое нужно отводить от процессора, дабы он не перегрелся, а следовательно, разгон процессора требует эффективной системы охлаждения.

Какой процессор лучше разгонять

Впрочем, не всё так печально, как может показаться. Дело в том, что процессоры одной серии могут иметь разные номинальные частоты, но при этом у них всегда один и тот же TDP. Собственно, TDP - это не максимальное энергопотребление процессора (часто термином TDP обозначают максимальное энергопотребление процессора, что не совсем корректно), а требования к системе охлаждения процессора. То есть TDP процессора определяет ту тепловую мощность, которую процессорный кулер должен рассеивать для обеспечения стабильной работы процессора с гарантией, что он не перегреется даже при максимальной нагрузке.

Понятно, что при одном и том же значении TDP энергопотребление больше у того процессора, у которого выше номинальная тактовая частота. И получается, что процессоры с меньшей тактовой частотой имеют больший запас по энергопотреблению, а следовательно, как правило, лучше разгоняются. А вот топовые процессоры в этом плане более ущербны, поскольку их энергопотребление близко к максимально возможному.

Кроме того, следует понимать, что при сегодняшней технологии производства процессоров диапазон технологического разброса по их характеристикам минимален и, как правило, частота процессора искусственно занижается. То есть из кристаллов, которые могли бы работать на более высоких тактовых частотах, штампуют процессоры с меньшей тактовой частотой, руководствуясь исключительно тем, что чем больше модельный ряд процессоров, тем выше объем продаж, а следовательно, и прибыль.

В частности, по нашему опыту, лучший в плане разгона процессор сегодня - это Intel Core i5-2500K, который отнюдь не является топовым.

Нужно четко понимать, что разгон процессора с не очень высокой номинальной тактовой частотой позволит лишь приблизить его к топовой версии с высокой тактовой частотой, однако если разгонять процессоры с низкой и высокой номинальными тактовыми частотами, то в большинстве случаев процессор с высокой номинальной тактовой частотой удастся разогнать до более высокой частоты (хотя из этого правила бывают и исключения). Возвращаясь к уже упомянутому процессору Intel Core i5-2500K, отметим, что нам удалось разогнать его до частоты 5,2 ГГц с воздушным охлаждением - ни один другой топовый процессор до такой частоты не разгонялся.

Есть и еще одна причина, по которой процессоры среднего уровня разгоняются лучше топовых моделей. Дело в том, что топовые модели имеют больший размер кэша и даже могут отличаться количеством ядер. Но чем больше размер кэша процессора и чем больше у него ядер, тем он хуже разгоняется. Однако в этом случае даже незначительный разгон топового процессора даст вам бо льшую производительность, нежели разгон процессора с меньшим количеством ядер и меньшим размером кэша.

Теперь рассмотрим основные способы разгона процессоров. В дальнейшем мы будем ориентироваться на разгон 32-нм процессоров Intel Core второго поколения, известных также под кодовым наименованием Sandy Bridge, и новых 22-нм процессоров Intel Core третьего поколения, известных как Ivy Bridge.

Особенности разгона процессоров семейств Ivy Bridge и Sandy Bridge

Процессоры этих семейств (за исключением младших моделей) поддерживают замечательную технологию динамического разгона Intel Turbo Boost, а кроме того, и в семействе процессоров Sandy Bridge, и в семействе процессоров Ivy Bridge имеется «элитная» K-серия полностью разблокированных процессоров, специально ориентированная на разгон.

Чтобы понять, что такое полностью разблокированный процессор, поясним, что разгон любого процессора по тактовой частоте возможен двумя способами: за счет изменения либо опорной частоты тактового генератора (BCLK), либо так называемого коэффициента умножения.

В процессорах Sandy Bridge и Ivy Bridge опорная частота тактового генератора по умолчанию составляет 100 МГц.

Собственно, это базовая частота, от которой всё и «пляшет». Частота работы различных модулей процессора (интегрированного графического ядра, контроллера памяти, контроллера шины PCI Express и др.) тактируется этой базовой частотой, однако с помощью множителей, позволяющих изменить эту частоту. К примеру, для вычислительных ядер процессора может использоваться множитель (коэффициент умножения) 35, в результате чего тактовая частота ядер процессора составит 3,5 ГГц.

Для процессоров Sandy Bridge и Ivy Bridge минимальное значение коэффициента умножения составляет 16, а следовательно, минимальное значение тактовой частоты равно 1,6 ГГц.

Понятно, что при увеличении опорной частоты возрастает и тактовая частота процессора. К примеру, при коэффициенте умножения 35 увеличение опорной частоты на 10 МГц приведет к повышению тактовой частоты ядер процессора на 350 МГц. Тем не менее нужно понимать, что увеличение опорной частоты вызывает увеличение тактовых частот всех модулей процессора, а не только его ядер, но не все модули процессора способны работать на повышенных частотах. Поэтому разгон процессоров Sandy Bridge и Ivy Bridge путем увеличения опорной частоты тактового генератора возможен в очень ограниченных пределах (как правило, удается повысить опорную частоту не более чем на 10 МГц), а значит, основной способ разгона этих процессоров заключается в изменении коэффициента умножения.

Процессоры K-серии имеют полностью разблокированный коэффициент умножения. Это, правда, не означает, что коэффициент умножения можно выбрать любой. Максимальное значение коэффициента умножения для процессоров Sandy Bridge составляет 57, то есть максимальная тактовая частота этих процессоров может достигать 5,7 ГГц (при неизменной опорной частоте). В процессорах Ivy Bridge максимальный коэффициент умножения повышен до значения 63, то есть путем изменения коэффициента умножения процессор теоретически можно разогнать до частоты 6,3 ГГц.

Попутно отметим, что в процессорах семейства Ivy Bridge можно изменять коэффициент умножения без необходимости перезагрузки системы, что реализуется в различных фирменных утилитах разгона, которые поставляются в комплекте с материнскими платами.

Процессоры, которые не относятся к К-серии полностью разблокированных процессоров (Fully Unlocked), имеют так называемый частично разблокированный коэффициент умножения (Limited Unlocked). То есть все процессоры Sandy Bridge и Ivy Bridge в той или иной степени являются разблокированными. Но прежде чем рассказать, в каких пределах можно менять коэффициент умножения для частично разблокированных процессоров, нам придется пояснить, что такое режим Turbo Boost и как он реализуется.

Напомним, что смысл технологии Turbo Boost заключается в динамическом разгоне при определенных условиях тактовых частот ядер процессора.

Для реализации технологии Turbo Boost в процессоре предусмотрен специальный функциональный блок PCU (Power Control Unit), который отслеживает уровень загрузки ядер процессора, температуру процессора, а также отвечает за энергопитание каждого ядра и регулирование его тактовой частоты.

В том случае, если какие­то ядра процессора оказываются незагруженными, они попросту отключаются от линии питания (их энергопотребление в таком случае равно нулю). При этом тактовую частоту и напряжение питания оставшихся загруженных ядер можно динамически увеличить на несколько ступеней, но так, чтобы энергопотребление процессора не превысило его TDP, максимальный ток не превысил установленного для него значения и температура ядра процессора не достигла бы критического значения. То есть фактически сэкономленное за счет отключения нескольких ядер энергопотребление используется для разгона оставшихся ядер, но так, чтобы увеличение энергопотребления в результате разгона не превышало сэкономленного энергопотребления. Более того, режим Turbo Boost реализуется и в том случае, когда изначально загружаются все ядра процессора, но при этом выполняются условия по TDP, току и температуре.

Кроме того, предусмотрена возможность превышения TDP процессора при разгоне ядер на короткое время. Дело в том, что при превышении TDP процессор перегревается не сразу, а по истечении определенного промежутка времени. Ну а учитывая, что во многих приложениях загрузка процессора происходит на 100% скачкообразно и лишь в течение очень малых периодов, в эти промежутки времени вполне можно разгонять тактовую частоту процессора так, чтобы был превышен предел по TDP.

В режиме Turbo Boost предусмотрена возможность превышения TDP на период вплоть до 25 секунд.

При разгоне процессора режим Turbo Boost очень важен, поскольку разгон путем изменения коэффициента умножения фактически подразумевает перенастройку режима Turbo Boost. Рассмотрим конкретный пример. Номинальная (без режима Turbo Boost) тактовая частота четырех ядер процессора Intel Core i7-3770K составляет 3,5 ГГц (коэффициент умножения равен 35), а в режиме Turbo Boost она повышается до значения 3,9 ГГц. Режим Turbo Boost в этом процессоре реализован следующим образом. Если загружены все четыре ядра процессора, то коэффициент умножения может быть увеличен до 36 (максимальная частота процессора может повышаться до 3,6 ГГц). При загрузке только трех ядер коэффициент умножения может быть увеличен до 37, а при загрузке двух ядер - до 38. Если же загружено всего одно ядро, то коэффициент умножения может быть увеличен до 39 (тактовая частота 3,9 ГГц). Естественно, что во всех указанных случаях увеличение коэффициента умножения возможно, если не превышено максимальное значение TDP и тока, либо превышение является кратковременным и критическая температура не достигнута.

Способы разгона процессора K-серии путем изменения коэффициента умножения

Разгон рассмотренного процессора путем изменения коэффициента умножения возможен двумя способами. Во­первых, можно отменить возможность использования режима Turbo Boost и менять коэффициент умножения для режима Non Turbo Boost. В этом случае максимальный коэффициент умножения будет одинаков для всех ядер процессора. Правда, такой способ разгона проходит далеко не всегда, поскольку не все системные платы в настройках UEFI BIOS позволяют отключать режим Turbo Boost. Попутно отметим, что разгон процессора следует производить исключительно через настройки UEFI BIOS, а не с помощью фирменных утилит разгона из операционной системы. Ни один уважающий себя оверклокер не станет пользоваться этими утилитами, даже просто отдавая дань традициям. То есть если не хотите потерять уважение своих друзей, разгоняйте процессор только через настройки UEFI BIOS.

Второй способ является более универсальным и заключается в следующем. В настройках UEFI BIOS режим Turbo Boost не отключается, а перенастраивается. К примеру, для случая, когда загружены все четыре ядра процессора (впрочем, как и для всех остальных случаев: загрузка только трех ядер, только двух ядер и только одного ядра), устанавливается коэффициент умножения, равный 48. В этом случае при загрузке процессора он будет работать на частоте 4,8 ГГц, но только если не достигнута критическая температура, не превышено значение максимального энергопотребления и тока или их превышение кратковременно.

Естественно, что кроме выставления коэффициента умножения для случаев одного, двух, трех и четырех активных ядер, при разгоне целесообразно также выставить в настройках UEFI BIOS предельное значение энергопотребления, предельное значение тока и время, в течение которого допускается превышение установленных пределов.

Разгон частично разблокированных процессоров

Теперь вернемся к частично разблокированным процессорам. Как мы уже отмечали, в этих процессорах также можно менять коэффициент умножения, однако в меньшем диапазоне. Правило здесь работает такое: максимальный коэффициент умножения для частично разблокированных процессоров может быть на четыре единицы выше, чем коэффициент умножения для максимальной частоты процессора в режиме Turbo Boost в штатном режиме.

Рассмотрим, к примеру, частично разблокированный процессор Core i5-2400. Его штатная тактовая частота составляет 3,1 ГГц, а в режиме Turbo Boost максимальная тактовая частота может быть равна 3,4 ГГц (при одном активном ядре). Соответственно для этого процессора коэффициент умножения для максимальной частоты в режиме Turbo Boost составляет 34. Значит, максимальный коэффициент умножения, который можно задать, равен 38.

Типы напряжений питания процессора

Итак, мы рассказали о двух способах разгона процессора: путем изменения опорной частоты тактового генератора и путем изменения коэффициента умножения. Часто оба эти способа используются одновременно, то есть сначала подбирается максимальный коэффициент умножения, а затем на несколько мегагерц увеличивается опорная частота.

Процедура самого разгона довольно проста. Нужно постепенно увеличивать коэффициент умножения до тех пор, пока система грузится и стабильно работает при загрузке процессора. После того как определен предельный коэффициент умножения, при котором система стабильна, наступает следующий, более сложный этап разгона, заключающийся в дальнейшем увеличении коэффициента умножения при одновременном увеличении напряжения питания. Задача осложняется тем, что в настройках UEFI BIOS обычно предусмотрена возможность задавать различные типы напряжения процессора (V core , V offset , V droop , VTT, Processor I/O, PLL, LLC), что в совокупности с напряжением других компонентов (памяти, чипсета) нередко приводит пользователя в замешательство. Кроме того, в UEFI BIOS различных материнских плат одно и то же напряжение может обозначаться по-разному.

Начнем с напряжения, которое, скорее всего, вам никогда не придется изменять при увеличении коэффициента умножения или опорной частоты. Это VTT (встречаются также следующие обозначения: IMC, System Agent Voltage и др.), то есть напряжение питания контроллера памяти (не путать с напряжением самих модулей памяти!), интегрированного в процессор (Integrated Memory Controller, IMC). Данное напряжение имеет смысл повышать только при разгоне памяти. Кроме того, следует иметь в виду, что при увеличении опорной частоты BCLK возрастает и частота работы IMС, что может потребовать небольшого увеличения VTT. Но, как правило, это напряжение не меняется.

Попутно отметим, что напряжение питания модулей DRAM памяти не должно превышать напряжение VTT более чем на 0,5 В.

Пожалуй, самое важное напряжение при разгоне процессора - это напряжение V core (встречаются также обозначения CPU Voltage, Core Voltage, Processor Voltage Override и др.), то есть напряжение ядер процессора. При увеличении тактовой частоты процессора приходится манипулировать именно этим значением напряжения.

Как правило, UEFI BIOS позволяет менять значение V core вручную с шагом 0,005 В в диапазоне от 1 до 2 В.

Кроме фиксированного значения V core можно выбрать значение Dynamic (Automatic или Default), то есть режимы по умолчанию. В этом случае напряжение на процессоре будет соответствовать номинальному для данной модели. Однако напряжение питания ядер процессора не является статической характеристикой - оно динамически изменяется в зависимости от загрузки процессора и от состояния энергопотребления процессора. В этом плане номинальное значение напряжения - это максимальное значение, которое никогда не будет превышено. А вот при задании напряжения вручную оно будет статичным независимо от загрузки процессора (если не принимать в расчет падение напряжения V droop , о котором мы расскажем далее).

Следующее значение напряжение, которое можно менять в UEFI BIOS большинства материнских плат, - это напряжение PLL (Phase Locked Loop). PLL - это модуль фазовой автоподстройки опорной частоты. Менять напряжение PLL имеет смысл только при значительном увеличении опорной частоты BLCK, и, как правило, при разгоне процессора его не изменяют. По умолчанию значение напряжения PLL составляет 1,8 В, а его максимальное значение равно 1,98. Тем не менее поднимать это напряжение выше 1,9 В не рекомендуется.

Наряду со столь важным для разгона процессора напряжением, как V core , часто приходится манипулировать таким параметром, как Load Line Calibration (LLC). Однако прежде чем разобраться, что такое LLC, а также как и зачем настраивать этот параметр, нам нужно рассмотреть напряжения V droop и V offset .

Тот факт, что вы выбрали конкретное значение напряжения V core в настройкаx UEFI BIOS, вовсе не означает, что на процессорные ядра будет подано именно это напряжение. Это лишь выходное напряжение, формируемое регулятором напряжения питания процессора. Дело в том, что часть напряжения падает (проседает) на самих проводниках, которые соединяют регулятор напряжения питания процессора с самим процессором. Если нагрузка процессора невелика (то есть он простаивает или его загрузка не очень высокая), то и потребляемый им ток небольшой. В этом случае падение напряжения на проводниках ничтожно мало и его можно не учитывать. Однако при увеличении загрузки процессора потребляемый им ток может составлять более 100 А и, несмотря на тот факт, что сопротивление проводников мало, часть напряжения падает на них, поэтому процессору «достается» меньше, чем положено. Одним словом, закон Ома никто не отменял, и при больших загрузках процессора происходит явление «проседания» напряжения. Величина этого проседания называется V droop , причем

V droop = V Idle – V Load .

То есть V droop определяется как разница между напряжением процессора без нагрузки (VIdle ) и напряжением процессора под нагрузкой (V core ).

Более того, напряжение процессора без нагрузки V core это еще не напряжение ядра VIdle . Точнее, напряжение процессора без нагрузки может быть меньше VLoad , а может быть и равно напряжению ядра. Причем разница между значением V core и VIdle (если она имеется) называется V offset (напряжение сдвига), которое может задаваться в настройках UEFI BIOS, то есть:

V offset = V core – V Idle .

Казалось бы, зачем нужно напряжение сдвига? Дело в том, что при резком переходе процессора из состояния простоя (Idle) или слабой загрузки в состояние высокой загрузки (High Load) либо при обратном переходе напряжение процессора меняется не мгновенно, а в течение некоторого времени (время стабилизации напряжения). Процесс изменения напряжения сопровождается затухающими колебаниями, и всплески напряжения могут достигать существенных значений, опасных для процессора, то есть значений, при которых процессор может выйти из строя. Напряжение сдвига V offset используется для того, чтобы нивелировать всплески напряжений и тем самым обеспечить условия, при которых текущее значение ядра процессора V core не будет превосходить установленное в UEFI BIOS значение. Смысл напряжений V offset и V droop поясняется на рис. 1.

Понятно, что падение напряжения V droop при разгоне процессора может повлиять на стабильность его работы при высокой нагрузке, и в этом плане V droop - не очень хорошо. Казалось бы, можно просто повысить значение V core , однако это приведет к излишнему энергопотреблению в состоянии, когда процессор не загружен, а кроме того, повысит всплески напряжения, что не очень хорошо. Именно поэтому на большинстве материнских плат предусмотрена возможность компенсации падения напряжения при загрузке процессора. Данная технология называется Load Line Compensation (LLC), то есть компенсация нагрузочной кривой. Иногда встречаются и другие названия, например на плате Intel DZ77GA-70K эта функция называется Processor VR Droop Control. На разных платах предусмотрены различные опции для функции LLC. Это могут быть уровни компенсации (к примеру, бывает пять уровней), LLC может выражаться в процентах, а могут быть и такие малопонятные значения, как High V-droop (Power Saving), Mid V-droop и Low V-droop (Performance). К примеру, в нашем случае на плате Intel DZ77GA-70K предусмотрен именно последний вариант. Как несложно догадаться, опция High V-droop (Power Saving) означает слабую компенсацию падения напряжения, что приводит к экономии его энергопотребления, но ограничивает разгонные возможности. Опция Low V-droop (Performance) означает высокий (возможно 100%) уровень компенсации падения напряжения, что позволяет разгонять процессор и стабилизировать его работу при высоких нагрузках в разогнанном состоянии.

Казалось бы, зачем нужны всякие уровни компенсации падения напряжения? Не лучше ли всегда компенсировать его полностью?

Однако всё не так просто. Дело в том, что технология компенсации падения напряжения - это дополнительная нагрузка на регулятор напряжения питания процессора. При использовании технологии LLC, во-первых, увеличивается время стабилизации напряжения питания процессора при переходах между состояниями низкой и высокой загрузки, а во-вторых, увеличивается амплитуда всплесков напряжений, что может быть небезопасно. Одним словом, LCC - это не всегда хорошо и ежели можно обойтись без данной технологии (то есть если всё гонится и стабильно работает), то лучше не использовать компенсацию напряжения питания процессора.

От теории к практике

Итак, вооружившись увесистым багажом знаний по теории разгона, приступим к практическим занятиям, которые мы будем проводить на стенде следующей конфигурации:

  • процессор - Intel Сore i7-3770K (Ivy Bridge);
  • кулер - Cooler Master V6 GT (с двумя 120-мм вентиляторами);
  • материнская плата - Intel Extreme Board DZ77GA-70K;
  • чипсет материнской платы - Intel Z77 Express;
  • память - DDR3-1333 4 Гбайт (два DIMM-модуля Kingston);
  • накопитель с операционной системой - Intel SSD 520 (240 Гбайт).

Отметим, что процессорный кулер Cooler Master V6 GT, используемый нами на стенде, является одним из самых мощных сегодня воздушных кулеров, особенно с учетом того, что мы оснастили его дополнительным 120-мм вентилятором (в базовой комплектации кулер оснащен только одним 120-мм вентилятором).

На стенде устанавливалась операционная система Windows 7 Ultimate (64-bit). В качестве видеокарты использовалось интегрированное в процессор графическое ядро.

Для наших практических занятий мы применяли всего одну утилиту - AIDA64 Extreme Edition (версия 2.30). Ее особенность заключается в том, что она позволяет строить графики загрузки ядер процессора, температуры ядер процессора, напряжения питания процессора и потребляемой им мощности (для некоторых версий процессоров можно построить также график силы тока). Кроме того, утилита AIDA64 Extreme Edition может загружать процессор на 100% в стрессовом режиме. Одним словом, эта утилита умеет всё, что нам требуется для того, чтобы отследить, как изменения настроек в UEFI BIOS влияют на работу процессора.

Конечно, это программное средство анализа имеет определенные ограничения. В частности, показания снимаются с минимальным интервалом в секунду, а потому невозможно зафиксировать процесс стабилизации напряжения, который длится гораздо меньше. В идеале для фиксации процесса стабилизации нужны осциллограф и возможность подключиться к контрольной точке на плате для считывания V core . Такие платы с колодкой контрольных точек, позволяющие считывать напряжение V core и другие, существуют, но, во-первых, провести подобные измерения в домашних условиях довольно сложно, а во-вторых, не на любой плате возможно. Именно поэтому, дабы у читателей была возможность повторить наши эксперименты самостоятельно, мы решили остановиться на программном средстве анализа с помощью утилиты AIDA64 Extreme Edition.

Тем не менее нам не очень понятно, с каких именно датчиков данная утилита считывает значения напряжения, мощности и силы тока. Кроме того, у нас нет уверенности, что энергопотребление процессора Ivy Bridge эта утилита определяет правильно. Дело в том, что, по нашим сведениям, процессор Ivy Bridge определяет свое текущее энергопотребление несколько по иному алгоритму, нежели процессор Sandy Bridge. Если в процессоре Sandy Bridge для этого применялся датчик силы тока, то в процессоре Ivy Bridge алгоритм расчета сводится к следующему: процессор знает энергопотребление каждого своего активного узла и просто суммирует их энергопотребление. Поэтому мы решили дополнительно измерять энергопотребление с использованием аппаратного ваттметра по методу «от розетки». То есть мы определяли энергопотребление не отдельно процессора, а всей системы (всего стенда) и фиксировали его в режиме простоя (Idle) и в режиме загрузки процессора. Понятно, что разница этих значений определяется именно загрузкой процессора.

Итак, мы будем исследовать работу процессора Intel Core i7-3770K. Прежде всего напомним его краткие характеристики. Он относится к семейству с кодовым наименованием Ivy Bridge и изготавливается по 22-нм техпроцессу. Данный процессор является четырехъядерным и поддерживает технологию Hyper-Threading. Размер его кэша L3 составляет 8 Мбайт; он имеет интегрированное графическое ядро HD 4000 с базовой тактовой частотой 650 МГц и частотой 1150 МГц в режиме Turbo Boost.

У процессора Intel Core i7-3770K разблокированный коэффициент умножения (как и у всех процессоров K-серии). При этом его TDP составляет 77 Вт. Базовая тактовая частота ядер процессора Intel Core i7-3770K равна 3,5 ГГц (коэффициент умножения - 35), а в режиме Turbo Boost она повышается до значения 3,9 ГГц. По умолчанию режим Turbo Boost реализован следующим образом. Если загружены все четыре ядра процессора, то коэффициент умножения может быть увеличен до 37 (частота процессора - 3,7 ГГц). При загрузке только трех ядер коэффициент умножения может быть увеличен до 38, а при загрузке двух или только одного ядра - до 39 (тактовая частота 3,9 ГГц). Естественно, что во всех указанных случаях увеличение коэффициента умножения возможно, если не превышено максимальное значение TDP и максимальный ток, либо превышение максимального значения TDP и тока является кратковременным.

Настройки UEFI BIOS

Прежде всего рассмотрим настройки UEFI BIOS по умолчанию, касающиеся разгона процессора. К ним относятся:

  • Processor Voltage Override (V) - Default;
  • CPU Voltage Offset (mV) - 0;
  • 1-Core Ratio Limit - 39;
  • 2-Core Ratio Limit - 39;
  • 3-Core Ratio Limit - 38;
  • 4-Core Ratio Limit - 37;
  • Host Clock Frequency (MHz) - 100;
  • Enhanced Intel Speed Step Tech - Enable;
  • Processor C States - Enable;
  • Intel Turbo Boost Technology - Enable;
  • Burst Mode Power Limit (Watts) - 120;
  • Sustained Mode Power Limit (Watts) - 95;
  • Sustained Mode Time (Seconds) - 1;
  • Processor TDC Current Limit Override (Amps) - 112;
  • Active Processor Cores - All;
  • Intel Hyper Threading Technology - Enable;
  • Processor PLL (V) - 1,8500;
  • Internal PLL Voltage Override - Disable;
  • Processor VR Droop Control - High V-droop (Power Saving);
  • Processor I/O (V) - 1,0500.

Поясним некоторые из приведенных настроек.

Processor Voltage Override задает напряжение питания процессора (V core ). CPU Voltage Offset - это напряжение смещения в вольтах, которое мы обозначали как V offset .

Параметры x-Core Ratio Limit задают предельное значение коэффициента умножения для случаев одного, двух, трех и четырех активных ядер.

Host Clock Frequency (MHz) - это значение опорной частоты BLCK в мегагерцах.

Значения таких параметров, как Enhanced Intel Speed Step Tech и Processor C States, запрещают или разрешают применение состояний энергосбережения процессора.

Параметр Intel Turbo Boost Technology запрещает или разрешает использование технологии Intel Turbo Boost.

Параметр Burst Mode Power Limit (Watts) задает предельно допустимое пиковое значение энергопотребления процессора в ваттах. Заметим, что это кратковременное энергопотребление, то есть его допустимый всплеск.

Параметр Sustained Mode Power Limit (Watts) определяет допустимое энергопотребление процессора в ваттах на протяжении интервала времени, задаваемого параметром Sustained Mode Time (Seconds).

Параметр Processor TDC Current Limit Override (Amps) определяет предельно допустимую силу тока в амперах.

Параметр Active Processor Cores задает количество ядер, применяемых процессором, а параметр Intel Hyper Threading Technology определяет возможность использования технологии Hyper-Threading.

Далее, параметр Processor PLL (V) задает напряжение питания модуля фазовой автоподстройки опорной частоты, а вот параметр Internal PLL Voltage Override, по всей видимости, определяет возможность автоматического изменения напряжения PLL.

Параметр Processor VR Droop Control, как мы уже отмечали, задает уровень компенсации падения напряжения питания процессора, а параметр Processor I/O (V) определяет напряжение питания блока ввода­вывода.

Зависимость энергопотребления процессора от тактовой частоты при неизменном напряжении

Итак, на первом этапе мы исследуем зависимость энергопотребления процессора от тактовой частоты при неизменном напряжении. Для этого мы зафиксируем напряжение на процессоре 1,2 В (в противном случае напряжение будет меняться) и выставим значение CPU Voltage Offset (mV) равным нулю. Далее будем менять тактовую частоту процессора с шагом в 100 МГц в диапазоне от 3,7 ГГц до максимального значения, при котором система еще загружается. Естественно, что значение энергопотребления процессора необходимо снимать только при его 100-процентной загрузке (в противном случае частота не будет равна выставленной из-за особенности работы технологии Intel SpeedStep). Показания снимаются с помощью как аппаратного ваттметра (энергопотребление всей системы), так и утилиты AIDA64 Extreme Ed.

Прежде всего отметим, что максимальная тактовая частота составила 4,5 ГГц. Естественно, возникает вопрос, почему мы применяли минимальное значение тактовой частоты 3,7 ГГц, а не меньше? Собственно, можно выставить и значение 3,5 ГГц (меньше данная плата выставить не позволяет), однако реально при загрузке процессор всё равно будет работать на минимальной частоте 3,7 ГГц.

Как показывают результаты тестирования (рис. 2), энергопотребление процессора прямо пропорционально его тактовой частоте, что согласуется с теорией. Максимальная частота в данном случае ограничивается недостаточным напряжением питания процессора. Что же касается энергопотребления и температуры при частоте 4,5 ГГц, то они далеки от предельных значений.

Рис. 2. Зависимость энергопотребления от тактовой частоты процессора
при неизменном напряжении V core , равном 1,2 В

Зависимость энергопотребления процессора от напряжения V core при неизменной тактовой частоте

На следующем этапе мы зафиксируем значение тактовой частоты процессора на отметке 3,9 ГГц и будем исследовать зависимость энергопотребления от напряжения питания. Напряжение питания V core будем менять от минимального значения 1,000 В с шагом 0,5 В до предельного значения, при котором возможна работа процессора. Результаты измерения представлены на рис. 3. Как видно по результатам тестирования, предельное значение напряжения составляет 1,5 В. При дальнейшем повышении напряжения температура процессора достигает критической отметки и срабатывает тепловая защита, приводящая к снижению тактовой частоты. Отметим, что само энергопотребление процессора при этом составляет всего 63 Вт, то есть далеко от критического значения. Однако в показаниях утилиты AIDA64 Extreme Edition можно усомниться. Действительно, довольно странно, что при повышении напряжения V core с 1,00 до 1,55 В напряжение процессора возрастает всего на 8,58 Вт, а энергопотребление всей системы - на 80 Вт. Ведь при увеличении V core должно возрастать лишь энергопотребление процессора, а энергопотребление всех остальных компонентов системы меняться не должно. То есть увеличение энергопотребления системы на 80 Вт должно совпадать с ростом энергопотребления процессора. А поскольку это не так, то, вероятно, утилита AIDA64 Extreme Edition неверно рассчитывает энергопотребление процессора. Кроме того, если бы энергопотребление процессора реально возрастало всего на 8,58 В, то процессор явно не достиг бы критической температуры.

Рис. 3. Зависимость энергопотребления от напряжения V core
при неизменной тактовой частоте 3,9 Гц

Впрочем, в данном случае не слишком важно, что утилита AIDA64 Extreme Edition неверно рассчитывает энергопотребление процессора Intel Core i7-3770K. Важно, что в реальной ситуации при использовании воздушного охлаждения нет смысла повышать напряжение питания более 1,5 В. Дальнейшее увеличение напряжения требует использования уже экстремального охлаждения процессора с применением жидкого азота.

Зависимость напряжения питания V core от настроек LLC

Следующим пунктом нашего исследования станет технология Load Line Compensation (LLC). Напомним, что на плате Intel DZ77GA-70K для функции LLС имеется возможность установить следующие значения: High V-droop (Power Saving), Mid V-droop и Low V-droop (Performance).

Для данного теста мы зафиксировали напряжение V core равным 1,2 В, а тактовую частоту - 4,0 ГГц. Напряжение V core фиксировалось по данным утилиты AIDA64 Extreme Edition в режиме простоя процессора (Idle) и в режиме его 100-процентной загрузки (рис. 4).

Рис. 4. Влияние режима LLC на напряжение V core при частоте 4,0 ГГц

Прежде всего, во всех трех режимах LLC (High V-droop, Mid V-droop и Low V-droop) в режиме простоя процессора напряжение V core даже немного превышает установленное значение и составляет 1,208 В. При загрузке процессора в режиме High V-droop наблюдается просадка напряжения на 0,056 В, в режиме Mid V-droop - на 0,034 В, а в режиме Low V-droop, наоборот, при нагрузке процессора напряжение V core увеличивается на 0,008 В.

Аналогичным образом мы планировали исследовать влияние такого параметра, как V offset , на значение V core , однако на плате Intel DZ77GA-70K это оказалось невозможным с помощью утилиты AIDA64 Extreme Edition. То есть какое бы значение V offset мы ни устанавливали, на значении V core оно никак не отражалось. То ли возможность установки V offset не работает на плате Intel DZ77GA-70K, то ли утилита AIDA64 Extreme Edit не учитывает V offset .

Разгон процессора Intel Core i7-3770K

Вооружившись необходимыми знаниями, можно перейти к разгону процессора Intel Core i7-3770K.

Напомним, что нет смысла устанавливать напряжение более 1,5 В, поскольку в этом случае процессор будет перегреваться. Причем это справедливо для неизменной тактовой частоты 3,9 Гц, а при более высоких частотах, дабы не допустить перегрева процессора, нужно еще больше понизить напряжение питания.

Мы начали наш разгон с установки напряжения питания 1,4 В, установки LLC-режима Mid V-droop и тактовой частоты 4,7 ГГц. Компьютер при этом нормально грузится и работает без сбоев при загрузке процессора утилитой AIDA64 Extreme Edition. При этом в режиме загрузки процессора напряжение V core составляло 1,359 В, а температура процессора достигала 98 °С, то есть практически критического значения. Понятно, что дальнейшее повышение тактовой частоты может привести к перегреву процессора (если система вообще загрузится). Поэтому на следующем шаге мы понизили напряжение V core до 1,35 В и одновременно повысили тактовую частоту до 4,8 ГГц. При указанных параметрах система загружалась, однако при стрессовой загрузке процессора работала нестабильно. Поскольку проблема нестабильной работы заключалась в недостаточном напряжении V core , мы сначала установили значение LLC-режима в Low V-droop, чтобы повысить напряжение V core в режиме загрузки процессора. В этих условиях напряжение V core в режиме загрузки процессора составляло 1,368 В, а процессор стабильно работал на частоте 4,8 ГГц. Далее мы попытались поднять тактовую частоту до 4,9 ГГц. При этом компьютер загружался, однако при стрессовой загрузке процессора его работа была нестабильной (тест заканчивался «голубой смертью»). Поэтому мы решили увеличить значение V core . Стабильности работы нам удалось добиться при установке напряжения питания равным 1,4 В. Правда, в этих условиях процессор не мог работать в экстремальном режиме длительное время, поскольку перегревался и начинал снижать тактовую частоту (СPU Throttling). Так что максимальное значение тактовой частоты, до которой нам удалось разогнать процессор Intel Core i7-3770К на плате Intel DZ77GA-70K, составляет 4,9 ГГц. Но еще раз подчеркнем, что на такой частоте и при напряжении питания 1,4 В в режиме полной загрузки процессор может работать лишь кратковременно. В противном случае он включает функцию тепловой защиты и понижает свою частоту. Попутно отметим, что в данных условиях работы энергопотребление процессора составляет 88 Вт (по данным утилиты AIDA64 Extreme Edition), а энергопотребление всей системы - 200 Вт (по показаниям ваттметра).

Заключение

Итак, мы рассмотрели способы разгона процессоров семейств Sandy Bridge и Ivy Bridge. На конкретном примере мы показали, как разогнать процессор Intel Core i7-3770K, и выяснили, что основная проблема при разгоне этого процессора заключается в недостаточном охлаждении. Кроме того, мы показали, как можно эффективно использовать диагностическую утилиту AIDA64 Extreme Edition при разгоне процессора, которая позволяет, во-первых, контролировать производимые изменения в настройках UEFI BIOS, а во-вторых, понять, чем ограничивается разгон.

Инструкция для начинающих по разгону Core i7-3770K до 4.7 ГГц на плате ASUS Maximus V Formula.

Предисловие
Для разгона процессора Core i7-3770K до указанных частот (4.7 ГГц) требуется очень хорошее воздушное охлаждение, а в идеале — система водяного охлаждения. Несмотря на сниженное энергопотребление, процессоры Ivy Bridge в разгоне нагреваются сильнее, чем Sandy Bridge, поэтому и требуют первоклассное воздушное охлаждение.

Администрация ресурса GreenTech Reviews не несёт отвественности за ваши действия.

Сборка системы
Аккуратно устанавливаем процессор в сокет материнской платы. Главное — совместите ключи материнской платы с выемками на процессоре. Не применяйте усилий — сокет чрезвычайно легко повредить. Зафиксируйте процессор прижимным устройством.
Нанесите термопасту тонким равномерным слоем (для выравнивания удобно использовать, например, пластиковые карты).
Если вы используете двухканальный набор оперативной памяти, то установите модули в красные слоты.

Как уже говорилось выше, для покорения частоты 4.7 ГГц необходим очень эффективный кулер или СВО. В нашем случае мы будем использовать необслуживаемую СВО Corsair H100i. Лучше установить охлаждение до установки материнской платы в корпус — так удобнее.

Перед началом процедуры разгона, обновите BIOS материнской платы. Для этого последнюю версию надо скачать с официального сайта производителя, перезагрузиться в BIOS и запустить в нём утилиту ASUS EZ Flash 2. В ней выбрать скачанный файл BIOS и согласиться с обновлением. Существует ещё вариант обновления BIOS без установлненного процессора, оперативной памяти и видеокарты — требуется только сама материнская плата, блок питания и флешка с файлом BIOS. Такая технология называется ASUS USB BIOS Flashback .

Теперь необходимо убедиться, что система работает стабильно даже в номинальном режиме. Сначала зайдите в BIOS и примените стандартные настройки нажатием клавиши F5 с подтверждением.

Жмём F10, Enter и ждём загрузки Windows.
Открываем утилиту CPU-Z, в ней должна отображаться частота 1600 МГц — без нагрузки.
Теперь запускаем тест Prime95 в режиме Small FFT test и частота процессора должна подняться до 3.9 ГГц — максимальное значение технологии Turbo Boost для этой модели. На этом этапе можно и нужно установить ПО мониторинга температуры — CoreTemp, RealTemp или Asus AISuite II.

Ну что ж, если всё в порядке, то перезагружаемся и заходим в BIOS.
Помните, что экземпляр экземпляру рознь и один может работать на определённом напряжении с частотой 5 ГГц, в то время как второй не сможет на этом же напряжении взять и 4.7 ГГц. Разгон словно лотерея. Но учитывая используемую материнскую плату и хорошее охлаждение, большинству процессоров должна покориться частота 4.7 ГГц.

Переключаем BIOS в режим Advanced Mode.
Устанавливаем AI overclock tuner в режим Manual.
Устанавливаем Turbo Ratio на Manual.
Оставляем Ratio Sync Control — Enabled.
Устанавливаем 1-Core Ratio limit на 47. Остальные значения тоже должны стать 47.

Включаем (Enabled) параметр Internal PLL Overvoltage. Это значение должно увеличить разгонный потенциал.

Включаем (Enabled) параметр Xtreme Tweaking, который может увеличить производительность в некоторых приложениях.

Теперь перейдём к напряжению.
Так как это руководство должно охватывать как можно больше экземпляров процессоров, то мы приведём немного увеличенные значения. Как только ваш экземпляр процессора заработает на частоте 4.7 ГГц, пробуйте уменьшать напряжение до минимально возможного. Не допускайте долговременной работы процессора на завышенном напряжении.

Оставьте параметр Extreme OV в режиме выключено (Disabled). Этот параметр необходим при экстремальном разгоне процессора (свыше 6 ГГц), а, как вы помните, в нашем случае завышенное напряжение может вывести процессор из строя.
Установите CPU Voltage в режим Manual Mode.
Установите CPU Manual Voltage — 1.35 В. Этого должно вполне хватать для 4.7 ГГц.

Зайдите в подраздел DIGI+ Power Control.
Установите параметр Load-line Calibration на Extreme.

Установите параметр CPU Voltage Frequency в режим Manual и установите значение 500. Это должно увеличить стабильность при разгоне.

Установите параметр CPU Current Capability на 140%. Этот параметр необходим для возможности выхода за рамки стандартного TDP при разгоне.
Нажмите F10 для сохранения настроек, подтвердите и дождитесь загрузки системы.
Откройте утилиты Core Temp, CPU-Z и Prime 95. При тестировании температура процессора может достигать 90 градусов. Это нормально. На данном этапе мы выяснили, что наш процессор способен покорять частоту 4.7 ГГц без зависаний и синих экранов (BSOD). Во время тестирования следите за напряжением — оно превышает 1.35 В?
Если система нестабильна, то зайдите в BIOS в меню CPU power management и отключите технологии C-state. При этом стабильность должна увеличиться.



Теперь, если система стабильна во время тестирования, то вам необходимо заходить в BIOS и снижать напряжение по 0.1 В и продолжать тестирование. Вы также можете снижать уровень LLC (load line calibration), если напряжение превышает желаемое значение в нагрузке.
После каждого снижения напряжения проверяйте стабильность системы и показания утилит, которые мониторят температуру ядер. Повторимся, что каждый процессор обладает индивидуальными возможностями. Наш экземпляр способен брать 4.7 ГГц при напряжении 1.27 В и Ultra High уровне Load Line Calibration.

Данный обучащий материал был переведён (в свободном стиле с сохранением всех необходимых деталей разгона) из статьи с сайта

Старшего представителя нового семейства Coffee Lake. С его выпуском компания Intel решительно ввела в массовый сегмент чипы с шестью вычислительными ядрами, чем сделала старшую новинку обновлённого модельного ряда крайне желанным решением для энтузиастов. Действительно, шестиядерный Core i7-8700K не только оказался намного (в среднем на 35 %) быстрее флагманского четырёхъядерного Kaby Lake, но и смог предложить лучшую производительность по сравнению с конкурирующими восьмиядерниками серии AMD Ryzen 7. Поэтому совершенно неудивительно, что прогрессивная часть компьютерного сообщества с нетерпением встречает все новости, связанные с Coffee Lake. Тем более что реальных владельцев таких процессоров совсем немного: официальные продажи Coffee Lake только начались, и их поставки в магазины пока носят эпизодический характер.

Поэтому мы решили продолжить исследование имеющегося в нашей редакции образца процессора Core i7-8700K и уделить дополнительное внимание его разгону. Причин «второго подхода к снаряду» две. Во-первых, компания Intel снабдила нас новым образцом процессора. Это значит, что, сопоставив результаты разгона двух экземпляров CPU, мы сможем получить более полную статистику частотного потенциала. Во-вторых, в рамках первоначального обзора проверка оверклокерских возможностей Coffee Lake делалась с немодифицированным процессором. Но давно известно, что значительно улучшить результаты разгона интеловских чипов можно при помощи скальпирования. Поэтому расширить старый опыт за счёт более основательного подхода к процессу оверклокинга - вполне логичный следующий шаг.

Разгон Core i7-3770K | Что это влечёт за собой?

Пониженное энергопотребление, предположительно пониженное выделение тепла, уменьшенный размер кристалла, уменьшенные затраты на производство, всё это характерно для нового 22-нанометровго дизайна . Но не привело ли уменьшение техпроцесса к сокращению потенциала для разгона? В нашем первом обзоре новой архитектуры (Обзор ) мы выяснили, что разгон новых процессоров оказался не лучше чем у флагманского процессора Core i7-2700K на архитектуре Sandy Bridge с техпроцессом 32 нм. Хотя температура на базовых частотах была низкой, она быстро поднялась, когда мы начали увеличивать напряжение чтобы получить 5 ГГц на воздушном охлаждении.


Разгон: что для этого нужно?

Время переключения транзистора в цифровой схеме зависит от его размера, производственного процесса, компоновки, температуры и рабочего напряжения. Максимальная частота работы чипа зависит от этой задержки и количества логических уровней, которые сигналу приходится преодолевать за один такт. Последний показатель фиксирован и зависит от архитектуры процессора. Поэтому для разгона мы концентрируем наше внимание на том, как уровень напряжения влияет на задержку транзистора. Более высокое напряжение может сократить задержку, но при этом увеличить энергопотребление. Увеличение тактовой частоты также повышает динамическое энергопотребление за единицу времени, а это, в свою очередь, повышает энергопотребление цепи, что приводит к увеличению температуры чипа.

Оба эффекта вместе объясняют, почему разгон с увеличенным напряжением CPU повышает потребление электроэнергии и тепловыделение, и почему охлаждение разогнанного процессора может стать затруднительным. Как и в спорте, вытянуть последние несколько очков – самая трудная задача.

Производители CPU стараются предохраняться от необдуманного разгона, который могут сделать неопытные пользователи (и безответственные сборщики систем). Несколько лет назад AMD и Intel начали поставки процессоров с заблокированным множителем, а для разгона выпускают более продвинутые модели.

В случае процессоров Intel серии K на архитектуре , самый высокий множитель CPU был увеличен до 63x (с 57x на Sandy Bridge ), что в теории может обеспечить частоту 6,3 ГГц, если не затрагивать BCLK 100 МГц. Чтобы получить больше, необходимо изменить базовую частоту, что довольно тяжело. Выше показателя 110 МГц большинство систем теряют стабильность. Как бы там ни было, для охлаждения вам понадобится более продвинутый кулер. В реальности, предельные частоты для архитектуры вы, скорее всего, увидите только в соревнованиях по разгону и в видеороликах на YouTube.

Разгон: ожидания

В прошлом уменьшение производственного техпроцессора увеличивало разгонный потенциал. Маленькие транзисторы требовали более низкого напряжения и потребляли меньше энергии, что обычно проявлялось в увеличенных показателях разгона. Процессоры Intel серии К на базе архитектуры Sandy Bridge с лёгкостью достигали 4,3-4,6 ГГц с помощью воздушных кулеров, а иногда и больше. Исходя их этого, от мы ожидали цифру ближе к 5 ГГц (как и многие другие энтузиасты).

Однако этого не случилось, несмотря на множество экспериментов в различных странах и на различных образцах процессоров. Но мы также получали сообщения, что чипы Intel с техпроцессом 22 нм можно разогнать до рекордных показателей с помощью более экстремальных систем охлаждения при использовании жидкого азота.

Понимая, что жидкий азот применяется в единичных случаях для установки рекордов, мы намерены получить максимальный разгон с помощью традиционного воздушного охлаждения, при этом мы будем обсуждать причины ограничений архитектуры .

Разгон Core i7-3770K | Справляемся с температурой

Даже шестиядерный процессор Core i7-3960X (Sandy Bridge-E , у которого более 2,2 миллиарда транзисторов) демонстрирует более низкие показатели температуры. Ни одно из шести ядер не перешагивает за 81°C притом, что частота чипа 4,7 ГГц.



СОДЕРЖАНИЕ
сайт ,

Core i7 2600K. 6.9. Core i7 2600. 6.0. Core i7 3770. 7.4. CPUBoss recommends the Intel Core i7 2600K. Intel Core i7 2600: Report a correction: Supports trusted computing: Yes: vs: No: Somewhat common; Allows for safer, more reliable computing: Benchmarks Real world tests of Core i7 2600K vs 2600. Intel Core i7-2600K i7 2600K 3.4 GHz Quad-Core CPU Processor 8M 95W LGA 1155. Unbranded · LGA 1155/Socket H2 · 4. $149.99. From China. Was: Previous Price $157.99. or Best Offer. Free Shipping. Intel Core i7-2600k CPU Processor 8M Cache 3.40 GHz Quad-Core CPU LGA 1155 95 W. Brand New. $147.50. From China. or Best Offer. Free Shipping. I decided to make a vidos with instructions for the overclocking of this wonderful stone i7 2600k by a factor. Of all the profiles, as for me, the optimal profile is the most stable, I constantly. Comment: Lightly used CPU Only Intel Core i7-2600K Sandy Bridge Intel HD Graphics 3000 Quad-Core Processor 3.4 GHz LGA 1155. Clean pulls from desktop computers for upgrade. Clean pulls from desktop computers for upgrade. Разгон процессора Core i7-2600k и настройка БИОСа для стабильной работы 24 часа/7 дней в неделю))))) Прошу обратить. Intel Core i7 Heatsink Cooling Fan for i7-2600 i7-2600K i7-2600S Skt LGA1155 New. Intel · CPU Fan with Heatsink · LGA 1155/Socket H2. 5.0 out of 5 stars. 3 product ratings - Intel Core i7 Heatsink Cooling Fan for i7-2600 i7-2600K i7-2600S Skt LGA1155 New. $25.99. Save up to 15% when you buy more. The i7-2600K Sandy Bridge processor is two generations old and nearly three years out of date. The numerous owners of this superb processor should feel in no hurry to upgrade as it"s still one of the fastest consumer processors, even by today"s standards. Intel Core i7-2600K Quad-Core Processor 3.4 Ghz 8 MB Cache LGA 1155 - BX80623I72600K. by Intel. $460.00 $ 460 00. FREE Shipping on eligible orders. More Buying Choices. $110.00 (25 used & new offers) 4.6 out of 5 stars 226. AMD Ryzen 5 2600X Processor with Wraith Spire Cooler - YD260XBCAFBOX. Intel® Core™ i7-2600K Processor (8M Cache, up to 3.80 GHz) quick reference guide including specifications, features, pricing, compatibility, design documentation, ordering codes, spec codes and more.

I7 2600k разгон

Редакция портала:

Добро пожаловать на сайт, посвященный документации к ОС Linux, ее переводу и распространению. Мы надеемся, что Вы найдете тут всю необходимую информацию. Здесь представлены три основных вида документации на русском языке: руководства (man-pages), HOWTO и mini-HOWTO. В скором будущем возможно появление и других видов документации.
Авторские права на представленные документы принадлежат авторам перевода и распространяются в соответствии со Стандартной Общественной Лицензией , если в документе не указано обратное.
Если Вы обнаружите в опубликованных документах ошибки, опечатки, несоответствия и неточности - сообщите о них .


Живая лента

Apple Smart Battery Case - обзор чехла с аккумулятором для iPhone Xs STFW.Ru: Всевозможные кейсы со встроенными аккумуляторами уже давно не являются чем-то новым, но когда за дело берется Apple, ценник такой штуковины может оказаться довольно высокой. Так, чехол с аккумулятором...

Статистика продаж Xiaomi: 1 млн Mi 9 за месяц (1,5 млн с учётом Mi 9 SE) и 1 млн Mi Band 3 за полгода STFW.Ru: Мобильные устройства Xiaomi пользуются высоким спросом среди потребителей. Очередная порция статистики позволяет оценить, насколько покупателям интересны отдельные модели этого бренда.Так, стало известно, ...

Официально: Vodafone Украина открыла дочернюю компанию «IT Смартфлекс», которая будет заниматься R&D и системной интеграцией STFW.Ru: На прошлой неделе мы рассказали вам о том, что оператор Vodafone Украина основал дочернюю компанию «IT Смартфлекс», которая будет заниматься разработкой программного обеспечения и готовых IT-решений для...

Лента новостей Facebook теперь может объяснить, почему она выглядит именно так STFW.Ru: Социальная сеть Facebook анонсировала запуск новой функции под названием «Why am I seeing this post?» («Почему я вижу эту запись?»). Она позволит пользователям лучше понимать наполнение контентом ленты...

За год с момента запуска 4G более 26 млн украинцев в 6 тыс. населенных пунктах получили доступ к скоростной сети lifecell [инфографика] STFW.Ru: В честь годовщины запуска 4G в Украине оператор мобильной связи lifecell поделился статистикой развития своей скоростной сети.Так, с момента запуска связи четвертого поколения в диапазоне 2600 МГц 31 ...

Видео акта вандализма в отношении Tesla Model 3, снятое в режиме Sentry Mode, позволило арестовать вредителя STFW.Ru: Новый режим Sentry Mode в электромобилях Tesla достаточно оперативно продемонстрировал свою полезность. Полиция арестовала женщину, уличённую режимом Sentry Mode в вандализме в отношении автомобиля.В...

В Apple Music для Android появится поддержка Chromecast STFW.Ru: Независимо от того, появится ли поддержка Apple Music в умных колонках Google Home, есть признаки того, что этот сервис всё же можно будет использовать на некоторых устройствах Google.Команда 9to5Google ...

Анонс видеокарты NVIDIA GeForce GTX 1650 с GPU TU117 ожидается 22 апреля STFW.Ru: Как сообщают осведомлённые источники, уже в скором времени должен состояться официальный анонс новой видеокарты серии GTX Turing – NVIDIA GeForce GTX 1650.Согласно имеющейся информации, видеокарта NVIDIA ...

Xiaomi представила сразу 20 продуктов STFW.Ru: Не дожидаясь 6 апреля, компания Xiaomi решила устроить фестиваль Anniversary Mi Fan Festival по случаю своего 9-летия сегодня, в День дураков. Китайский промышленный гигант сдержал данное несколько дней...

Uklon запустился в Полтаве, которая стала десятым украинским городом присутствия сервиса STFW.Ru: Сегодня, 1 апреля 2019 года, украинский сервис заказа поездок Uklon заработал в Полтаве. Этот город стал юбилейным десятым населенным пунктом Украины, в котором заработал данный сервис.Стоимость поездок...

Google прекратила продажи смартфонов Pixel 2 и Pixel 2 XL (перед выпуском Pixel 3a и Pixel 3a XL?) STFW.Ru: Google без особого шума прекратила продажи смартфонов Pixel 2 и Pixel 2 XL, убрав модели 2017 года из ассортимента своего онлайн-магазина. В числе первых пропажу заметил ресурс Android Police.Второе поколение...

Назначена дата релиза ретро-консоли Sega Mega Drive Mini STFW.Ru: Стала известна дата выхода игровой приставки Sega Mega Drive Mini, уменьшенной копии любимой многими «Сеги» из 90-х. Новинка поступит в продажу немного позже, чем планировалось, но все же в этом году, и игр внутри нее будет больше, чем у конкурентов. По официальным данным, старт продаж Sega Mega Drive Mini состоится в сентябре 2019 года. В ее память будет вшито 40 игр, в том числе и те, которые были популярны в России. Первое время купить новинку можно будет только в Японии и США, но к концу года она появится и в других странах. В комплект поставки войдут два почти оригинальных джойстика с подключением по USB, и стоить приставка будет 80 долларов США. Sega Mega Drive Mini компактнее оригинальной «Сеги» на 55%, так что подключить к ней обычный картридж от полноценной приставки не получится – придется играть только в предустановленные игры и ждать, пока хакеры не взломают ее и не добавят поддержку сторонних ROM. Отметим, что в коробке с консолью будут только два джойстика, кабель HDMI и кабель USB для питания – отдельный блок питания будет продаваться только в американской версии.

Getac K120-Ex – планшет в неубиваемом корпусе STFW.Ru: Компания Getac разработала новый планшетный компьютер K120-Ex для промышленного использования в корпусе, которого так не хватает новому iPad Pro, который гнется уже даже в коробке. Данный планшет рассчитан на крайне небрежное отношение, и потому оболочка его имеет повышенную прочность. Getac K120-Ex имеет защиту от воды, пыли, грязи, ударов, падений с высоты до 2 метров и перепады температур от -29 до +65 градусов Цельсия. Его экран с диагональю 12,5 дюйма скрыт под защитным стеклом, имеет повышенную яркость для работы под солнцем и реагирует на касания в перчатках. К сожалению, производитель Getac K120-Ex не раскрывает его характеристики, но уже известно, что планшет стоит намного дороже даже самого топового Apple iPad – в базовой комплектации за него попросят 2000 фунтов стерлингов, а в самой мощной – уже 3000 фунтов. Работает Getac K120-Ex на полноценной ОС Windows 10 Pro с поддержкой сенсорного ввода.

Чавушоглу: Турция продолжит оказывать поддержку президенту Венесуэлы STFW.Ru: Министр иностранных дел Турции Мевлют Чавушоглу заявил, что страна продолжит оказывать поддержку президенту Венесуэлы Николасу Мадуро, а также намерена и дальше углублять сотрудничество между государствами, ...

Помпео в понедельник обратился к российским военным, находящимся в Венесуэле, и венесуэльскому президенту Николасу Мадуро с призывом покинуть страну STFW.Ru: Вашингтон. 1 апреля. ИНТЕРФАКС - Госсекретарь США Майк Помпео в понедельник обратился к российским военным, находящимся в Венесуэле, и венесуэльскому президенту Николасу Мадуро с призывом покинуть страну.

Неполживый журналист "Дождя" на Руине во время выборов STFW.Ru: Встреча журналистов телеканала "Дождь" с ответственными украинскими избирателями.Пытались обсудить кремлёвскую политику. Увы, разговор не задался с самого начала. http://stfw.ru

В России заселили первый дом, построенный по системе эскроу STFW.Ru: В Воронеже завершился первый в стране эксперимент по строительству квартир с использованием системы эскроу, когда деньги жильцов замораживают в банке до введения дома в эксплуатацию. С июля практика станет...

Бывшего вице-президента США Байдена обвинили в домогательствах. STFW.Ru: Бывший член ассамблеи штата Невада Люси Флорес обвинила вице-президента времен Барака Обамы Джо Байдена в домогательствах. В 2014 году политик якобы поцеловал ее без согласия, когда она баллотировалась...

Белоруссия прекратила реэкспорт "санкционных" плодов и овощей в Россию STFW.Ru: Белоруссия прекратила сертификацию плодоовощной "санкционной" продукции, которая поступала в эту страну из других государств для дальнейшего реэкспорта в Россию, сообщила журналистам пресс-секретарь Россельхознадзора...

Арбитраж Стокгольма рассмотрит дело "Газпрома" и "Нафтогаза" весной 2021 года STFW.Ru: Слушания по требованиям "Газпрома" изменить или расторгнуть контракт на транзит с "Нафтогазом Украины" и встречным требованиям "Нафтогаза" о взыскании с российского холдинга $11,58 млрд назначены на апрель...

"Дырка в избирательном законодательстве" - эксперт о лидерстве Зеленского STFW.Ru: "Владимир Зеленский задал задачу парламентариям всего мира. Его фильм „Слуга народа" - это дырка в избирательном законодательстве", - заявил агентству EADailyзаместитель директора Института стран...

Флагман Redmi на Snapdragon 855 замечен на «живом» фото STFW.Ru: Уже давно компания Redmi намекает на анонс смартфона с чипом Snapdragon 855. И вот сразу три прототипа будущей новинки показались на одной реальной фотографии в черном, синем и красном цветах.

Xiaomi Redmi Go прошел тест на погружение под воду STFW.Ru: Блогер из Индонезии решил испытать смартфон Xiaomi Redmi Go, погрузив его в таз с водой. Недавняя новинка китайской компании успешно прошла тест, даже несмотря на отсутствие защиты от воды и простых...

Meizu 16s протестирован в AnTuTu и Geekbench STFW.Ru: В следующем месяце ожидается премьера флагмана Meizu 16s. Смартфон прошел тесты в Geekbench и AnTuTu, где показал типичные результаты для устройства со Snapdragon 855. Результат Meizu ...

Троллейбусы «Богдан» теперь оснащаются только украинскими электродвигателями от харьковского «Электротяжмаша», а также могут передвигаться автономно за счет встроенных батарей STFW.Ru: Украинская корпорация «Богдан» сообщила, что благодаря сотрудничеству с харьковским предприятия «Электротяжмаш», компания оснащает все троллейбусы «Богдан» электродвигателями украинского производства. ...





Top