Выходное напряжение светодиодной лампочки. Замечания по безопасности. По конструкции и световому потоку лампы на светодиодах делятся

Можно ли своими руками от начала до конца сделать светодиодную лампу (LED), работающую от напряжения 220 вольт? Оказывается, можно. В этом увлекательном занятии вам помогут наши советы и инструкции.

Преимущества светодиодных ламп

Светодиодное освещение в доме - это не просто современно, но и стильно, и ярко. Консервативным любителям ламп накаливания остаются слабенькие «лампочки Ильича» – Федеральный закон «Об энергосбережении», принятый в 2009 году, с 1 января 2011 года запрещает производство, импорт и продажу ламп накаливания мощностью более 100 Вт. Продвинутые пользователи давно перешли на компактные люминесцентные лампы (КЛЛ). Но светодиоды обходят всех своих предшественников:

  • энергопотребление светодиодной лампы меньше в 10 раз, чем у соответствующей лампы накаливания, и почти на 35% меньше, чем у КЛЛ;
  • сила света LED лампы больше соответственно на 8 и на 36%;
  • достижение полной мощности светового потока происходит мгновенно, в отличие от КЛЛ, которым для этого требуется около 2 минут;
  • себестоимость - при условии изготовления лампы самостоятельно - стремится к нулю;
  • светодиодные лампы экологичны, потому что не содержат ртути;
  • срок службы светодиодов измеряется десятками тысяч часов. Поэтому LED лампы практически вечны.

Сухие цифры подтверждают: за LED - будущее.

Конструкция современной заводской LED лампы

Светодиод здесь изначально собран из множества кристаллов. Поэтому для того, чтобы собрать такую лампу, не нужно припаивать многочисленные контакты, надо присоединить лишь одну пару.

Типы светодиодов

Светодиод - полупроводниковый многослойный кристалл с электронно-дырочным переходом. Пропуская через него постоянный ток, мы получаем световое излучение. От обычного диода светодиод отличается и тем, что при неправильном подключении он немедленно сгорает, так как имеет малое значение пробивного напряжения (несколько вольт). Если светодиод перегорает, его надо полностью менять, ремонт невозможен.

Есть четыре основных типа светодиодов:


Самодельная и правильно собранная LED лампа будет служить многие годы, при этом её можно будет ремонтировать.

Перед тем как приступить к самостоятельной сборке, нужно выбрать способ электропитания для нашей будущей лампы. Вариантов много: от батарейки до сети переменного тока на 220 вольт - через трансформатор или напрямую.

Проще всего собрать LED на 12 вольт из перегоревшей «галогенки». Но она потребует довольно массивного внешнего блока питания. Лампа же с обычным цоколем, рассчитанная на напряжение 220 вольт, подходит к любому патрону в доме.

Поэтому в нашем руководстве мы не будем рассматривать создание 12-вольтового LED источника света, а покажем пару вариантов конструирования лампы на 220 вольт.

Поскольку мы не знаем уровня вашей электротехнической подготовки, то не можем дать гарантии, что у вас на выходе получится правильно работающий прибор. Кроме того, вы будете работать с опасным для жизни напряжением, и если что-то будет сделано неточно и неправильно, возможны повреждения и ущерб, за что мы не будем нести ответственность. Поэтому будьте осторожны и внимательны. И у вас всё получится.

Драйверы для светодиодных ламп

Яркость свечения светодиодов прямо зависит от силы тока, проходящего через них. Для устойчивой работы они нуждаются в источнике постоянного напряжения и стабилизированном токе, не превышающем предельно допустимую для них величину.

Резисторами - ограничителями тока - можно обойтись лишь для маломощных светодиодов. Можно упростить несложный расчёт количества и характеристик резисторов, найдя в сети калькулятор светодиодов, в котором не только выдаются данные, но и создаётся готовая электрическая схема конструкции.

Для питания лампы от сети необходимо использовать специальный драйвер, преобразующий входное переменное напряжение в рабочее для светодиодов. Простейшие драйверы состоят из минимального количества деталей: входного конденсатора, нескольких резисторов и диодного моста.

В схеме простейшего драйвера через ограничительный конденсатор напряжение питания подаётся на выпрямительный мост, а затем на лампу

Подключение мощных светодиодов осуществляется через электронные драйверы, контролирующие и стабилизирующие ток и имеющие высокий КПД (90-95%). Они обеспечивают стабильный ток даже при резких изменениях напряжения питания в сети. Резисторы этого делать не умеют.

Рассмотрим самые простые и чаще всего используемые драйверы для светодиодных ламп:

  • линейный драйвер совсем прост и применяется для малых (до 100 мА) рабочих токов или в случаях, когда напряжение источника равно падению напряжения на светодиоде;
  • импульсный понижающий драйвер более сложен. Он разрешает запитывать мощные светодиоды источником намного более высокого напряжения, чем необходимо для их работы. Недостатки: большой размер и электромагнитные помехи, генерируемые дросселем;
  • импульсный повышающий драйвер используется, когда рабочее напряжение светодиода больше, чем напряжение, получаемое от источника питания. Недостатки те же, что и у предыдущего драйвера.

В любую LED лампу на 220 вольт для обеспечения оптимального режима работы всегда встроен электронный драйвер.

Чаще всего несколько неисправных светодиодных ламп разбирают, удаляют перегоревшие светодиоды и радиодетали драйвера, а из целых монтируют одну новую конструкцию.

Но можно сделать светодиодную лампу и из обычной КЛЛ. Это вполне себе привлекательная идея. Мы уверены, что у многих рачительных хозяев в ящиках с деталями и запчастями сохраняются неисправные «энергосберегайки». Выкинуть жалко, применить некуда. Сейчас мы расскажем, как из энергосберегающей лампы (цоколь E27, 220 В) создать светодиодную лампу буквально за пару часов.

Неисправная КЛЛ всегда даёт нам качественный цоколь и корпус под светодиоды. Кроме того, из строя обычно выходит именно газоразрядная трубка, но не электронное устройство для её «поджига». Действующую электронику мы опять откладываем в загашник: её можно разобрать, а в умелых руках эти детали ещё послужат чему-нибудь хорошему.

Виды цоколей современных ламп

Цоколь - это резьбовая система для быстрого соединения и фиксации источника света и патрона, подачи питания источнику от электросети и обеспечения герметичности вакуумной колбы. Маркировка цоколей расшифровывается следующим образом:

  1. Первая буква маркировки обозначает тип цоколя:
    • B - со штифтом;
    • Е - с резьбой (разработан ещё в 1909 году Эдисоном);
    • F - с одним штырём;
    • G - с двумя штырями;
    • H - для ксенона;
    • K и R - соответственно с кабельным и утопленным контактом;
    • P - фокусирующий цоколь (для прожекторов и фонарей);
    • S - софитный;
    • T - телефонный;
    • W - с контактными вводами в стекле колбы.
  2. Вторая буква U, A или V показывает, в каких лампах применяется цоколь: в энергосберегающих, автомобильных или с коническим концом.
  3. Следующие за буквами цифры обозначают диаметр цоколя в миллиметрах.

Самым распространённым цоколем с советских времён считается E27 - резьбовой цоколь диаметром 27 мм на напряжение 220 В.

Создание светодиодной лампы E27 из энергосберегающей с применением готового драйвера

Для самостоятельного изготовления светодиодной лампы нам понадобятся:

  1. Вышедшая из строя лампа КЛЛ.
  2. Пассатижи.
  3. Паяльник.
  4. Припой.
  5. Картон.
  6. Голова на плечах.
  7. Умелые руки.

Мы будем переделывать под светодиодную неисправную КЛЛ марки «Космос».

Пошаговая инструкция изготовления светодиодной лампы

  1. Находим неисправную энергосберегающую лампу, которая давно лежит у нас «на всякий случай». Наша лампа имеет мощность 20 Вт. Пока главный интересующий нас компонент - цоколь.
  2. Аккуратно разбираем старую лампу и удаляем из неё все, кроме цоколя и идущих от него проводов, с которыми мы потом соединим пайкой готовый драйвер. Лампа собрана с помощью выступающих над корпусом защёлок. Нужно разглядеть их и чем-нибудь поддеть. Иногда цоколь крепится к корпусу сложнее - кернением точечных углублений по окружности. Тут придётся высверлить точки кернения или аккуратно пропилить их ножовкой. Один питающий провод припаян к центральному контакту цоколя, второй - к резьбе. Оба они очень короткие. Трубки при этих манипуляциях могут лопнуть, поэтому надо действовать осторожно.
  3. Очищаем цоколь и обезжириваем его ацетоном или спиртом. Повышенное внимание стоит уделить отверстию, которое тоже тщательно очищаем от лишнего припоя. Это нужно для дальнейшей пайки в цоколе.
  4. Крышечка цоколя имеет шесть отверстий - в них крепились газоразрядные трубки. Используем эти дырки для наших светодиодов. Подложим под верхнюю часть вырезанный маникюрными ножницами круг такого же диаметра из подходящего кусочка пластика. Сгодится и плотный картон. Он и зафиксирует контакты светодиодов.
  5. У нас имеются многокристальные светодиоды HK6 (напряжение 3,3 В, мощность 0,33 Вт, ток 100-120 мА). Каждый диод собран из шести кристаллов (соединённых параллельно), поэтому светит ярко, хотя мощным и не называется. Учитывая мощность этих светодиодов, соединяем их по три штуки параллельно.

    Каждый светодиод светит довольно ярко сам по себе, поэтому шесть штук в составе лампы обеспечат хорошую силу света

  6. Обе цепочки соединяем последовательно.

    Две цепочки из трёх параллельно включённых светодиодов каждая соединяются последовательно

  7. В результате получаем довольно красивую конструкцию.

  8. Простой готовый драйвер можно взять из сломанной светодиодной лампы. Сейчас, чтобы подключить шесть белых одноваттных светодиодов, мы используем такой драйвер на 220 вольт, например, RLD2–1.

    Драйвер подключается к светодиодам по параллельной схеме

  9. Вставляем драйвер в цоколь. Ещё один вырезанный круг пластика или картона помещаем между платой и драйвером, чтобы избежать замыкания между контактами светодиодов и деталями драйвера. Лампа не нагревается, поэтому прокладка годится любая.
  10. Собираем нашу лампу и проверяем, работает ли она.

Мы создали источник с силой света примерно 150-200 лм и мощностью около 3 Вт, аналогичный 30-ваттной лампе накаливания. Но из-за того, что наша лампа имеет белый цвет свечения, она визуально выглядит ярче. Освещаемый ею участок комнаты можно увеличить, подогнув светодиодные выводы. К тому же мы получили замечательный бонус: трехваттную лампу можно даже не выключать - счётчик её практически не «видит».

Создание светодиодной лампы с применением самодельного драйвера

Гораздо интереснее не применять готовый драйвер, а сделать его самостоятельно. Конечно, если вы хорошо владеете паяльником и имеете базовые навыки чтения электрических схем.

Мы рассмотрим травление платы после рисования на ней схемы вручную. И, конечно, всем будет интересно возиться с химическими реакциями, применяя доступные химикалии. Как в детстве.

Нам понадобятся:

  1. Кусок фольгированного медью с двух сторон стеклотекстолита.
  2. Элементы нашей будущей лампы согласно сгенерированной схеме: резисторы, конденсатор, светодиоды.
  3. Дрель или мини-дрель для сверления стеклотекстолита.
  4. Пассатижи.
  5. Паяльник.
  6. Припой и канифоль.
  7. Лак для ногтей или канцелярский корректирующий карандаш.
  8. Поваренная соль, медный купорос или раствор хлорида железа.
  9. Голова на плечах.
  10. Умелые руки.
  11. Аккуратность и внимательность.

Текстолит используется в случаях, когда нужны электроизоляционные свойства. Это многослойный пластик, слои которого состоят из ткани (в зависимости от вида волокон тканевого слоя бывают базальттекстолиты, углеродотекстолиты и прочие) и связующего вещества (полиэфирная смола, бакелит и прочее):

  • стеклотекстолит - это стеклоткань, пропитанная эпоксидной смолой. Он отличается высоким удельным сопротивлением и термостойкостью - от 140 до 1800 o C;
  • фольгированный стеклотекстолит - это материал, покрытый слоем гальванической медной фольги толщиной 35-50 мкм. Он используется для изготовления печатных плат. Толщина композита - от 0,5 до 3 мм, площадь листа - до 1 м 2 .

Схема драйвера для светодиодной лампы

Драйвер для LED лампы вполне можно сделать самостоятельно, например, опираясь на простейшую схему, которую мы рассмотрели в начале статьи. Туда необходимо лишь добавить несколько деталей:

  1. Резистор R3, чтобы разряжать конденсатор при отключении питания.
  2. Пару стабилитронов VD2 и VD3 для шунтирования конденсатора, если сгорит или оборвётся светодиодная цепь.

Если мы правильно подберём напряжение стабилизации, то сможем ограничиться и одним стабилитроном. Если же мы заложим напряжение больше 220 В, а под него выберем конденсатор, то обойдёмся вообще без дополнительных деталей. Но драйвер получится по размеру больше, и плата может не уместиться в цоколе.

Эту схему мы создали, чтобы сделать лампу из 20 светодиодов. Если их больше или меньше, нужно подобрать другую ёмкость конденсатора С1, чтобы через светодиоды по-прежнему проходил ток 20 мА.

Драйвер будет понижать напряжение сети и пытаться сгладить скачки напряжения. Через резистор и токоограничивающий конденсатор напряжение сети подаётся на мостовой выпрямитель на диодах. Через другой резистор подаётся постоянное напряжение на блок светодиодов, и они начинают светить. Пульсации этого выпрямленного напряжения сглаживаются конденсатором, а когда лампа от сети отключается, то первый конденсатор разряжается ещё одним резистором.

Будет удобнее, если конструкция драйвера смонтирована с помощью печатной платы, а не представляет собой некий ком в воздухе из проводов и деталей. Плату вполне можно сделать самому.

Пошаговая инструкция по изготовлению светодиодной лампы с самодельным драйвером

  1. Генерируем с помощью компьютерной программы собственный рисунок для травления платы согласно задуманной конструкции драйвера. Очень удобна и популярна среди радиолюбителей бесплатная компьютерная программа Sprint Layout, позволяющая самостоятельно проектировать печатные платы невысокой сложности и получать изображение их разводки. Есть ещё одна прекрасная отечественная программа - DipTrace, рисующая не только платы, но и принципиальные схемы.

    Бесплатная компьютерная программа Sprint Layout генерирует подробную схему травления платы для драйвера

  2. Вырезаем из стеклотекстолита круг диаметром 3 см. Это и будет наша плата.
  3. Выбираем способ переноса схемы на плату. Все способы - страшно интересные. Можно:
    • нарисовать схему прямо на куске стеклотекстолита канцелярским корректирующим карандашом или специальным маркером для печатных плат, который продаётся в магазине радиодеталей. Тут есть тонкость: лишь этот маркер позволяет рисовать дорожки меньше или равные 1 мм. В остальных случаях ширина дорожки, как ни старайся, не будет меньше 2 мм. Да и медные пятачки для пайки выйдут неаккуратными. Поэтому нужно после нанесения рисунка подкорректировать его бритвой или скальпелем;
    • распечатать схему на струйном принтере на фотобумаге и припарить распечатку утюгом к стеклотекстолиту. Элементы схемы покроются краской;
    • нарисовать схему лаком для ногтей, который точно есть в любом доме, где живёт женщина. Это самый простой способ, им и воспользуемся. Старательно и аккуратно кисточкой от флакона рисуем дорожки на плате. Ждём, пока лак хорошо высохнет.
  4. Разводим раствор: 1 столовую ложку медного купороса и 2 столовые ложки поваренной соли размешиваем в кипятке. Медный купорос используется в сельском хозяйстве, поэтому его можно купить в садоводческих и строительных магазинах.
  5. Опускаем плату в раствор на полчаса. В результате останутся только медные дорожки, которые мы защитили лаком, остальная медь исчезнет во время реакции.
  6. Ацетоном удаляем оставшийся лак со стеклотекстолита. Сразу же нужно залудить (покрыть припоем с помощью паяльника) края платы и места контактов, чтобы медь стремительно не окислилась.

    Места контактов пропаиваются слоем припоя, смешанного с канифолью, чтобы защитить медные дорожки от окисления

  7. Согласно схеме делаем отверстия дрелью.
  8. Пропаиваем на плате светодиоды и все детали самодельного драйвера со стороны печатных дорожек.
  9. Устанавливаем плату в корпус лампы.

    После всех проведённых операций должна получиться светодиодная лампа, эквивалентная 100-ваттной лампе накаливания

Замечания по безопасности

  1. Хотя самостоятельная сборка светодиодной лампы - не очень сложный процесс, к нему не стоит даже приступать, если вы не обладаете хотя бы начальными электротехническими знаниями. Иначе собранная вами лампа при внутреннем коротком замыкании может навредить всей электрической сети вашего дома, включая дорогие электроприборы. Специфика светодиодной техники в том, что если некоторые элементы её схемы подключить неправильно, то возможен даже взрыв. Так что надо быть предельно аккуратным.
  2. Обычно светильники используются при напряжении 220 В переменного тока. Но конструкции, рассчитанные на напряжение в 12 В, подключать к обычной сети ни в коем случае нельзя, и вы должны об этом всегда помнить.
  3. В процессе изготовления самодельной светодиодной лампы компоненты светильника часто не могут быть сразу полностью изолированы от питающей сети 220 В. Поэтому вас может серьёзно ударить током. Даже если конструкция подключена к сети через блок питания, то вполне возможно, что она имеет простую схему без трансформатора и гальванической развязки. Поэтому к конструкции нельзя прикасаться руками, пока конденсаторы не разрядятся.
  4. Если лампа не заработала, то в большинстве случаев виновата некачественная спайка деталей. Вы были невнимательны или поспешно действовали паяльником. Но не отчаивайтесь. Пробуйте дальше!

Видео: учимся паять

Странное дело: в наш век, когда в магазинах есть абсолютно всё, как правило, недорогое и весьма разнообразное, после двадцатилетней эйфории люди всё чаще возвращаются к тому, чтобы делать домашние вещи своими руками. Немыслимо расцвело рукоделие, занятия столярным и слесарным мастерством. И в этот ряд уверенно возвращается простая прикладная электротехника.

Проекты реализации все чаще предусматривают включение LED-компонентов. Светодиодные приборы получили широкую популярность благодаря существенной экономии энергии и долговечности, хотя стоимость их все еще превышает ценники более привычных энергосберегающих и галогенных ламп. Зато у LED-техники есть немало и других преимуществ, обусловленных необычной конструкцией. Типовое устройство на 220, фото которой представлено ниже, избавлено от массивных источников излучения, что позволяет оптимизировать корпус по размерам и эксплуатационным характеристикам. В итоге достигаются и такие качества, как широкая функциональность, повышенная эргономика управления и удобство монтажа.

Диодный кристалл как основа лампы

Основу любого LED-устройства формирует один или несколько полупроводниковых элементов, которые преобразуют электричество в световое излучение. Это и есть диодные кристаллы, чаще всего выполняемые в виде миниатюрного чипа. На небольшой площадке платы размещается также оснастка для подключения питающих проводов. Впрочем, устройство на 220 В может предполагать использование разных кристаллов, отличающихся по конструкции и набору функциональных компонентов:

  • DIP. Наиболее распространенный на поверхности которого размещается линза и два проводника.
  • SMD. Универсальный в применении кристалл, отличающийся скромными размерами и эффективным теплоотводом.
  • «Пиранья». Диодный кристалл с четырьмя выходами для поводов. Такая конфигурация делает излучатель более эффективным и надежным в работе.
  • СОВ-кристалл. В данном случае предусматривается интеграция диода в плату, благодаря чему контакты лучше защищаются от перегрева и окисления. Вместе с этим повышается интенсивность свечения.

Принципиальное устройство LED-лампы на 220 В

Кроме диодных кристаллов в основу конструкции входит цоколь, рассеиватель, радиатор и корпус. Собственно плата с LED-элементами является функциональной сердцевиной, которую обслуживают перечисленные компоненты. Что касается цоколя, то он выполняет роль несущего звена, позволяющего интегрировать лампу в патрон подходящего размера. Рассеиватель делает излучение фотонов (преобразованное из тока) более насыщенным и направленным. В более современных версиях допускается возможность изменения физических параметров подачи света, что достигается как раз благодаря коррекции параметров рассеивателя. Существенное значение в устройстве светодиодной лампы на 220 В имеет и блок радиатора. Одним из главных плюсов LED-приборов является отсутствие нагрева корпуса, что делает источник пожаробезопасным. Это свойство обеспечивается именно радиатором, который выполняет задачу теплоотвода.

Особенности устройства маломощных ламп

Начальный уровень в сегменте представлен компактными устройствами с 2-4 кристаллами. Мощность каждого излучателя варьируется от 2 до 5 Вт. В отличие от полноформатных моделей такие лампы характеризуются наличием пластикового корпуса (в обычных конструкциях применяются стеклянные крышки), скромной длиной порядка 15 см в среднем и массой в 50-70 гр. При этом устройство маломощных светодиодных ламп на 220 В тоже предусматривает наличие радиаторных блоков. Это могут быть массивные металлические модули, задача которых сводится к предохранению пластикового корпуса от перегрева и плавления. В данном случае требования к теплоотводу гораздо жестче, поэтому размер радиатора зачастую больше, чем в мощных LED-лампах. Что касается качества излучения, то пользователи отмечают приглушенность света, больше тяготеющего к ярко-белому и холодному спектрам.

Формы ламп и цоколи

Особенно в выборе нестандартных конструкций важно заранее просчитывать возможность совмещения лампы со светильником в виде люстры, бра, торшера и т. д. К самым популярным форм-факторам можно отнести следующие:

  • LED-груша. Стандартное исполнение, которое напоминает классические лампы накаливания. Для таких моделей подбираются цоколи типа Е27.
  • Свечная форма. Как раз на этом корпусе базируется устройство маломощных светодиодных ламп на 220 вольт, включающее цоколи E14 и E27. Подобные конструкции часто используются в настенных светильниках и небольших люстрах.
  • Трубчатая форма. Это уже нестандартный вариант лампы, маркируемый обозначениями Т3, Т4, Т20 и др. Однако внешнее сходство с люминесцентными лампами никак не переходит на внутреннюю начинку и тем более на рабочие качества.
  • Шарообразные модели. Для таких устройств применяются цоколи G45, G60 и G80, которые можно интегрировать в разные виды светильников как открытой, так и закрытой формы.

Устройство управляющего драйвера

Данный компонент применяется не всегда, но именно 220-вольтные модели являются целевыми приборами. Для них обычно используют устройства с микросхемой HV9910, которые могут питаться от сети с напряжением от 8 до 450 В. Сама по себе микросхема выступает в качестве импульсного источника, выравнивающего ток. Если же планируется использовать переменный ток для энергообеспечения, то устройство драйвера светодиодной лампы на 220 В должно будет предусматривать и наличие выпрямителя - например, типа моста. В распространенных конфигурациях такого типа драйвер HV9910 работает также в комбинации с внешними транзисторами.

Особенности конструкций типа «Армстронг»

Коммерческое использование приборов освещения предъявляет высокие требования к несущим конструкциям, в которые интегрируются лампы. Связано это и с необходимостью повышения защитных качеств, и с технической оптимизацией процесса установки. На данный момент такие задачи решаются платформами типа «Армстронг», представляющими собой потолочную конструкцию, рассчитанную на несколько мощных источников излучения. В отличие от стандартных моделей, устройство светодиодной лампы на 220 В для конструкции «Армстронг» имеет следующие характеристики:

  • Закупоривание лампы в пластиковый монолитный корпус.
  • Использование технологически примитивных драйверов (в целях удешевления конструкции) или же их полное отсутствие.
  • Применение одного радиатора на несколько ламп.
  • Типовой дизайн несущей платформы, предполагающий обеспечение стандартными цоколями.

Система управления лампой

Современные LED-приборы оснащаются диммерами, посредством которых можно регулировать рабочие параметры лампы. В частности, пользователь может устанавливать параметры яркости. Некоторые версии предусматривают и элементы программирования. С помощью встроенного таймера устанавливается время, режимы свечения и рабочие сеансы с конкретными характеристиками свечения. Типовое устройство светодиодной лампы на 220 В с диммером включает и стабилизатор. Дело в том, что яркость регулируется посредством обрезки напряжения и для надежности выполнения этой процедуры требуется стабилизирующий компонент. Также для обеспечения безопасности в условиях максимальной мощности часто используют предохранительный блок, в спектр функций которого входит автоматическое отключение прибора или его перевод на сбалансированный режим работы.

Как самостоятельно сделать LED-лампу?

Простейшая техника изготовления данного прибора - на базе сгоревшей или ненужной люминесцентной лампы. Необходимо разобрать ее конструкцию, изъяв цоколь с отражателем. В этих частях располагаются наиболее важные элементы с точки зрения устройства разбирается вся электрическая схема, в процессе чего следует уже из отражателя извлечь предохранитель, а также диодный кристалл. Собственно, на готовой светотехнической оснастке и будет базироваться новая лампа, начинку которой можно скомпоновать посредством электролита. Но перед этим следует добавить в конфигурацию конденсаторный блок, способный выдерживать минимум 450 В, а лучше - 630 В. А если не хватит светодиодов, их можно взять из LED-ленты. Главное - выбирать компоненты соответствующей мощности. Сборка конструкции осуществляется посредством суперклея или компаунда с подходящими характеристиками.

Монтаж лампы

Подход к установке будет зависеть от конструкции светильника. Самыми сложными в плане монтажа считаются потолочные конструкции, в ниши которых интегрируется лампа. Это точечные высокомощные приборы, которые в дальнейшем работают без плафонов. То есть на поверхности натяжной или подвесной установки остается едва заметная часть оптического излучателя. Для удобства монтажа устройство светодиодной лампы на 220 вольт такого типа предусматривает фиксирующие кольца и зажимы. С помощью данной фурнитуры осуществляется крепеж корпуса в подпотолочную нишу. Но перед этим к точке размещения со стороны каркаса должна быть подведена электрическая линия с патроном, в который будет прикручен Далее в проделанное отверстие подвесного или натяжного полотна погружается и замыкается крепежная оснастка с лампой.

Техническое обслуживание минимизирует риски капитального с заменой диодов. Отодвинуть по времени этот момент можно в случае регулярной чистки прибора и обновления расходных элементов. Если же в процессе работы устройства наблюдается недостаточная яркость, это признак выхода из строя отдельного кристалла или целой группы. Характер неисправности как раз и определяется устройством светодиодной лампы на 220 В. Как ремонтировать приборы, в которых наблюдаются подобные неполадки? В первую очередь нужно провести диагностику и выявить конкретные участки неисправности. Безвозвратно испорченные диоды, как правило, имеют на поверхности черные точки. Их следует демонтировать, зачистить место и установить новые кристаллы. Проблема будет заключаться в том, что спектр излучения у диодов может отличаться даже при номинально сходных параметрах, поэтому возникают сложности с подбором оптимально соответствующего излучателя.

Заключение

Использование LED-ламп себя оправдывает и в промышленной сфере, и в быту. Если на заре появления данной технологии на первый план выходили ее преимущества в виде экономии энергии и высокого эксплуатационного ресурса, то сегодня все больше ценятся возможности управления. Впрочем, возникают и новые проблемы, также обусловленные многокомпонентным устройством светодиодной лампы на 220 В. Ремонт в случае серьезных поломок предполагает необходимость полного разбора изделия и последующего выполнения перепайки проводников. По крайней мере, это касается операций по замене диодов. Также в систему входят драйверы, контроллеры и предохранители. Данная электротехническая фурнитура тоже нередко выходит из строя. Но и эти недостатки можно минимизировать, используя не дешевые китайские LED-компоненты, а продукцию от компаний уровня Osram или Philips.

Задача снижения количества потребляемой энергии перестала быть только технической проблемой и перешла в область стратегического направления политики государств. Для рядового потребителя эта титаническая борьба выливается в то, что его просто насильно заставляют переходить от привычной и простой как яйцо лампы накаливания к другим источникам света. Например, к светодиодным лампам. Для большинства людей вопрос о том, как устроена светодиодная лампа сводится только к возможности ее практического применения – можно ли ее вкрутить в стандартный патрон и подключить к бытовой сети 220 вольт. Небольшой экскурс по принципам ее действия и устройству поможет сделать вам осознанный выбор.

Принцип работы светодиодной лампы основан на гораздо более сложных физических процессах, чем той, которая испускает свет посредством раскаленной металлической нити. Он настолько интересен, что есть смысл познакомиться с ним поближе. В его основе феномен испускания света, возникающем в точке соприкосновения двух разнородных веществ при прохождении через них электрического тока.

Самое парадоксальное в этом то, что материалы, используемые для провокации эффекта излучения света, вообще не проводят электрического тока. Один из них, например, кремний – вещество вездесущее и перманентно попираемое нашими ногами. Эти материалы пропустят ток, да и то в одну сторону (потому они и названы полупроводниками), только если их соединить вместе. Для этого в одном из них должны преобладать положительно заряженные ионы (дырки), а в другом – отрицательные (электроны). Их наличие или отсутствие зависит от внутренней (атомной) структуры вещества и неспециалисту не стоит заморачиваться вопросом разгадывания их природы.
Возникновение электрического тока в соединении веществ с преобладанием дырок или электронов – только половина дела. Процесс перехода одного в другое сопровождается выделением энергии в виде тепла. Но в середине прошлого века были найдены такие механические соединения веществ, у которых выделение энергии сопровождалось еще и свечением. В электронике устройство, которое пропускает ток в одном направлении, принято называть диодом. Полупроводниковые приборы, созданные на основе материалов, которые умеют испускать свет, названы светодиодами.

Первоначально эффект испускания фотонов из соединения полупроводников был возможен лишь в узкой части спектра. Они светились красным, зеленым или желтым. Сила этого свечения была чрезвычайно мала. Светодиод использовался лишь как индикаторная лампа очень долго. Но сейчас найдены материалы, соединение которых излучает свет гораздо большей силы и в широком диапазоне, почти полном видимом спектре. Почти, потому что какая-то длина волны в их свечении преобладает. Поэтому есть лампы с преобладанием синего (холодного) и желтого или красного (теплого) свечения.

Теперь, когда вам в общих чертах понятен принцип работы светодиодной лампы, можно перейти к ответу на вопрос про устройство светодиодных ламп на 220 В.

Конструкция ламп на светодиодах

Внешне источники света, использующие эффект испускания фотонов при прохождении электрического тока через полупроводник, почти не отличаются от ламп накаливания. Главное то, что у них есть привычный металлический цоколь с резьбой, который в точности повторяет все типоразмеры ламп накаливания. Это позволяет ничего не менять в электрооборудовании помещения для их подключения.
Однако внутреннее устройство светодиодной лампы 220 вольт очень сложное. Она состоит из следующих элементов:

1) контактного цоколя;

2) корпуса, одновременно играющего роль радиатора;

3) платы питания и управления;

4) платы со светодиодами;

5) прозрачного колпака.

Плата питания и управления

Разбираясь как устроены светодиодные лампы 220 вольт, в первую очередь стоит понять, что полупроводниковые элементы не могут быть запитаны от переменного тока и напряжения такой величины. Иначе они попросту сгорят. Поэтому в корпусе этого источника света обязательно находится плата, которая снижает напряжение и выпрямляет ток.

От устройства этой платы во многом зависит долговечность лампы. Точнее, какие элементы стоят на ее входе. В дешевых, кроме резистора перед выпрямляющим диодным мостом, ничего нет. Нередко случаются чудеса (обычно в лампах из Поднебесной), когда нет даже этого резистора и диодный мост напрямую подключен к цоколю. Такие лампы светят очень ярко, но срок их службы чрезвычайно низок, если они не подключены через стабилизирующие устройства. Для этого можно использовать, например, балластные трансформаторы.

Наиболее распространены схемы, в которых в цепи питания управляющей схемы лампы создан сглаживающий фильтр из резистора и конденсатора. В самых дорогих светодиодных лампах блок питания и управления построен на микросхемах. Они хорошо сглаживают броски напряжений, но их рабочий ресурс не слишком высок. В основном, из-за невозможности наладить эффективное охлаждение.

Плата светодиодов

Как бы ученые ни старались, изобретая все новые вещества с высокой эффективностью излучения в видимой части спектра, принцип работы светодиодной лампы остается прежним, и каждый её отдельный светящийся элемент очень слаб. Чтобы достичь требуемого эффекта, их группируют по несколько десятков, а иногда и сотен штук. Для этого используется плата из диэлектрика, на которую нанесены металлические токопроводящие дорожки. Она очень похожа на те, что используются в телевизорах, материнских платах компьютеров и других радиотехнических устройствах.
Плата светодиодов выполняет еще одну важную функцию. Как вы уже заметили, в блоке управления нет понижающего трансформатора. Поставить его, конечно, можно, но это приведет к увеличению габаритов лампы и ее стоимости. Проблема понижения питающего напряжения до номинала, являющегося безопасным для светодиода, решается просто, но экстенсивно. Все светящиеся элементы включены последовательно, как в елочной гирлянде. Например, если в цепь 220 вольт включить последовательно 10 светодиодов, то каждому достанется 22 V (правда, величина тока при этом останется прежней).
Недостатком этой схемы является то, что перегоревший элемент обрывает всю цепь и лампа перестает светить. У нерабочей лампы из десятка светодиодов могут быть неисправными лишь один или два. Есть умельцы, которые перепаивают их и живут спокойно дальше, но большинство неискушенных пользователей выбрасывают всё устройство на помойку.

Кстати, утилизация светодиодных ламп – отдельная головная боль, поскольку смешивать их с обычным бытовым мусором нельзя.

Прозрачный колпак

В основном этот элемент играет роль защиты от пыли, влаги и шаловливых ручек. Однако есть у него и утилитарная функция. Большинство колпаков светодиодных ламп выглядят матовыми. Это решение могло бы показаться странным, ведь сила излучения светодиода ослабляется. Но его полезность для специалистов очевидна.

Колпак матовый потому, что на его внутреннюю стороны нанесен слой люминофора – вещества, начинающего светиться под воздействием квантов энергии. Казалось бы, тут, что называется, масло масляное. Но люминофор имеет спектр излучения в несколько раз более широкий, чем у светодиода. Он приближен к естественному солнечному. Если оставить светодиоды без такой «прокладки», то от их свечения глаза начинают уставать и болеть.

В чем выгода таких ламп

Теперь, когда вы уже многое знаете о том, как работает светодиодная лампа, стоит остановиться и на ее преимуществах. Главное и бесспорное – низкое энергопотребление. Десяток светодиодов дает излучение той же силы, что и традиционная лампа накаливания, но при этом полупроводниковые приборы потребляют в несколько раз меньше электричества. Есть и еще одно преимущество, но оно не столь очевидно. Лампы с таким принципом работы более долговечны. Правда, при условии, что питающее напряжение будет максимально стабильно.

Нельзя не упомянуть и о недостатках таких ламп. В первую очередь это касается спектра их излучения. Он значительно отличается от солнечного – того, что человеческий глаз привык воспринимать тысячелетиями. Поэтому для дома выбирайте те лампы, которые светят желтым или красноватым (теплым) и имеют матовые колпаки.

В лампах применяются светодиоды в качестве источника света. Лампы на светодиодах используются для освещения улиц, в промышленности и в быту. Это самые чистые с экологической точки зрения источники освещения.

Их безопасность основана на применении в изготовлении компонентов, не имеющих вредности. Не используется ртуть, поэтому в случае перегорания или разрушения лампы на светодиодах не опасны.

Устройство, принцип действия

Основными составляющими светодиодной лампы являются:

  • Корпус.
  • Цоколь.
  • Драйвер.
  • Светодиоды.

Обозначают светоизлучающий диод буквенным сокращением СИД или СД. На английском языке его обозначение LED. Он является в составе светодиодной лампы источником света.

Схема его принципа работы совпадает с процессом любого полупроводникового диода из германия или кремния с р-n переходом. При подаче к аноду положительной разницы потенциалов, а к катоду отрицательной, происходит движение электронов к аноду, движение дырок к катоду. Ток идет по диоду в одном направлении прямо.

Но, в составе другие материалы из полупроводников, при бомбардировке которых в прямом направлении дырками и электронами осуществляют рекомбинацию, переводят их на следующий энергетический уровень. В результате выделяются фотоны, которые являются элементарными частицами излучения волн светового диапазона.

В электросхемах светодиоды обозначают как обычные диоды, добавляют к ним стрелки (излучение света).

Полупроводники имеют различные свойства излучения фотонов. Прямозонные проводники – вещества нитрид галлия и арсенид галлия прозрачны для световых волн видимого спектра. Выделение света происходит в результате замены слоев р-n перехода.

В светодиоде слои располагаются:

1 — Анод
2 — Катод
3 — Активный слой на основе In-GaN
4 — Буферный слой на основе GaN
5 — Сапфировая подложка
6 — Токопроводящий слой n-GaN
7 — Токопроводящий слой p-GaN

Имеются площадки контактов в слоях для катода и анода.

При переходе электронов в фотоны теряется энергия по следующим причинам:

  • Световые волны преломляются на выходе из полупроводника в месте кристалл – воздух, длина волны искажается.
  • Внутри слоя часть частиц света теряется, хотя слой очень тонкий.

Световой поток может повыситься, если использовать подложку из сапфира. В лампах такие конструкции нашли применение. В обычных светодиодах для индикаторов подложка не применяется.

Такие диоды имеют линзу из рефлектора, направляющего свет и эпоксидной смолы. Соответственно назначению лампы угол распространения света имеет широкий интервал от 5 до 160 градусов.

Дорогостоящие диоды для ламп производят с ламбертовой диаграммой, то есть в пространстве яркость светодиода постоянная, независимо от угла, направления света.

Размеры кристалла малы, от одного кристалла будет мало света. В лампах содержится группа светодиодов. Сделать освещение равномерным сложно, так как каждый диод – это точечный источник света.

1 — Вывод 1
2 — Корпус
3 — ЧИП
4 — Слой люминофора
5 — Проводник
6 — Рефлектор
7 — Вывод 2
8 — Теплоотвод
9 — Изолятор
10 — Печатная плата

Узкий спектр волн света от полупроводниковых диодов приводит к утомляемости глаз, дискомфорту, в отличие от солнца или ламп накаливания. Чтобы как-то исправить этот недостаток, в конструкцию светодиодов ввели слой люминофора.

Размер потока света, излучаемого полупроводниковым диодом, зависит от силы тока р-п перехода. При большем токе излучение выше, до определенного порога.

Габариты светодиодов малы, поэтому применять большие токи не получается. Ток для индикаторных диодов не превышает 20 мА. Для более мощных ламп освещения делается отвод тепла и защитные меры, которые имеют ограничения.

Поток света в лампе возрастает по мере увеличения тока, затем снижается из-за потери тепла. Выделение тепла не происходит при свечении светодиодной лампы, они считаются холодным светом.

Но, это не значит, что лампа не нагревается. Ток, проходящий через светодиод, в различных контактах проходит через сопротивления участков, что вызывает нагревание лампы. Энергия теряется из-за тепла, при повышении тока тепло может вывести из строя конструкцию лампы на светодиодах.

Кристаллы светодиодов в лампах могут достигать большого количества (более 100). Для подведения тока оптимальной величины сделаны платы из стеклотекстолита с дорожками, проводящими ток, и имеющими разную конфигурацию.

Кристаллы светодиодов припаивают к контактным площадкам по группам, последовательно подают питание, одинаковый ток пропускают по каждой цепочке. Эта схема простая в техническом плане, но имеет серьезный недостаток. Если нарушится какой-либо контакт, то перестают светить все звенья цепи, лампа выходит из строя.

К каждой группе диодов подводится напряжение постоянной величины от устройства – драйвера. Раньше он назывался источником питания. Драйвер преобразовывает напряжение входа сети в питающее напряжение светодиодов. Входное напряжение может быть как 220 В (в квартире), так и 12 В (в автомобиле).

Подключение стабилизированного постоянного тока к каждому светодиоду параллельно выполнить трудно, редко применяется. Драйверы имеют различные схемы: трансформаторная и т.д. Распространенные варианты схем зависят от конфигурации.

Драйверы имеют низкую стоимость при условии, если они подключаются к постоянному напряжению, защищенному от скачков, перепадов и импульсов, не имеют резистора, ограничивающего ток, в цепи выхода питания. Это используется в фонариках на аккумуляторах, в них светодиоды соединены с аккумуляторами.

Они запитаны повышенным током, ярко светят, перегорают довольно часто. Если в драйверах нет защиты от скачков напряжения, то дешевые лампы быстро выгорают, не отработав ресурса по гарантии.

Блоки питания качественного изготовления не нагреваются, перегруженные драйверы нагреваются, энергия расходуется на потерю тепла. Эти потери довольно значительные, они могут превышать энергию выделяемых фотонов (света).

Квартирные лампы на светодиодах имеют цоколь Е27. Он дает возможность применять лампы в обычных патронах. Импортные лампы снабжены другими цоколями, для которых нужны соответствующие патроны, с отличием в шаге резьбы и диаметре. Напряжение питания может быть 110 В. Лампы для автомобилей тоже бывают разными по конструкции цоколей.

Чтобы защитить светодиоды, не нужны герметичные колбы, не требуется выкачивать из них воздух или создавать среду газа. Светодиоды закрыты материалами из пластика, пропускающего свет.

Размещение частей на светодиодах отличается у производителей, для различных целей. Последовательность монтажа у них одинаковая: от драйвера к светодиодной плате, закрывается защитным стеклом. Могут устанавливаться экраны защиты от нагрева, и т.д.

Устройство и конструктивные особенности разных производителей может значительно отличаться в аналогичных лампах, но принципы конструирования у них общие.

Виды и применение лампы на светодиодах

По применяемости лампы на светодиодах делятся:

  • Для дома и офиса.
  • Уличные.
  • Прожекторы.
  • Автомобильные.
  • Лампы на светодиодах для растений (ультрафиолетовые).
  • Светильники для зданий.

По конструкции и световому потоку лампы на светодиодах делятся:

  • Общего назначения, для офисов и жилых помещений, похожи на лампы накаливания, свечи, «кукурузы».
  • Направленного света – для подсветки витрин, площадей.
  • Линейные, в виде трубки, похожи на люминесцентные лампы. Применяются для торговых залов и офисов.

По используемым типам светодиодов на:

  • Индикаторных диодах. К ним относятся лампы на диодах 3 мм и на «Пираньях». Качество света от таких ламп низкое.
  • SMD диодах, распространенные, имеют малый размер, не греются, широкое применение.
  • Диодах 1, 3, 5 Вт, нагрев значительный.
  • СОВ диодах, по новой технологии, преимущество перед другими: более надежны за счет монтажа диодов сразу на плату, равномерный световой поток, разные исполнения формы ламп.
  • Филаментных диодах, освещение на 360 градусов, малая цена, теплоотвод.
Разделение по типу цоколей


Широко распространены цоколи «Эдисона» с резьбой и обозначением буковой Е с цифрой. Цифра – это диаметр цоколя в мм (Е27, Е14, Е40). Цоколь G – штыревое соединение. Цифра указывает расстояние между штырями (выводами). Такие лампы подключаются только через блок питания. Цоколь Т используется для замены ламп люминесцентных, измеряется в дюймах.

Достоинства, недостатки, особенности

К достоинствам относятся:

  • Экономия электроэнергии, энергоэффективность, потребляют в 5 раз меньше энергии.
  • Срок эксплуатации, составляет для разных типов 30-50 тысяч часов работы.
  • Механическая прочность.
  • Безопасность, не содержат вредных веществ, нет сильного нагрева, применяют в любых светильниках, для натяжных потолков.
  • Широкий интервал температуры использования, работают до -60 градусов мороза.
  • Быстрый запуск, сразу светят ярко.
  • Надежность при частых выключениях и включениях.
  • Экологически безопасны, можно утилизировать с обычным мусором.

К недостаткам относится:

  • Большие размеры из-за технической стороны устройства.
  • Боятся перегрева, эффективность уменьшается, тускнеют.
  • Не в любую люстру могут поместиться из-за увеличенного размера.
  • Световой поток направленный, по бокам и сзади светит хуже.
  • Стоимость выше других типов ламп, с каждым годом цена снижается.

Особенности

Лампы на светодиодах состоят из платы со светодиодами, цоколя, корпуса, блока питания, колбы матовой. Ток сразу преобразуется в свет, минуя стадию нагрева, как в лампах накаливания. Потери на нагрев наименьшие, светодиоды экономичны, безопасны.

Светодиоды придуманы еще в 70-х годах, но использовались лишь в приборах, индикаторах, экранах. Светодиоды голубого цвета высокояркие изготовлены в 1993 году, белые в 1996 году. Современные светодиоды имеют отдачу света до 170 лм / Вт.

Еще несколько лет назад LED лампы были очень дороги, из-за чего применялись крайне редко. С развитием технологии цены становились все ниже, параметры ламп все лучше. И сегодня многие хотят выбрать светодиодную лампу, но теряются в большом разнообразии моделей и разбросе цен на лампы одной и той же световой мощности. В чем разница и от чего это зависит — в статье.

Выбор по техническим параметрам

Выборе светодиодной лампы в квартиру или дом необходимо начинать с технических характеристик. Это у ламп накаливания была только мощность, да еще размер цоколя.

Светодиодные лампы — более серьезное оборудование, в котором кроме кристалла, который излучает свет, есть еще встроенный преобразователь напряжения — драйвер, который трансформирует переменное сетевое напряжение в 12 вольт постоянного тока. Так что для правильного выбора придется ознакомится с некоторыми техническими нюансами.

Мощность и световой поток

Мощность измеряется в ваттах. Сокращенно на русском это «Вт», на английском обозначения буквой W. Именно эта величина традиционно применялась для определения световой эффективности ламп накаливания. Так оно и продолжается, хотя современные осветительные приборы имеют во много раз меньшие номиналы, а светят также. Вот в этом и будем разбираться.

На нынешнем этапе развития технологий светодиодные лампы считаются наиболее экономичными: при потреблении минимального количества электроэнергии они вырабатывают большее количество света. Если сравнивать их с лампами накаливания, то они эффективнее почти в 10 раз. Это значит, что там, где раньше стояла 100-ваттная лампа «Ильича», надо поставить светодиодную на 9-10 Вт. Хороший способ значительно уменьшить счета за потребленное электричество. Чтобы проще было выбрать светодиодную лампу по мощности, есть таблица соответствия мощности источников света разного типа.

Лампы накаливания Люминесцентные и энергосберегающие Светодиодные Световой поток
20 Вт 5-7 Вт 2-3 Вт 250 Лм
40 Вт 10-13 Вт 4-5 Вт 400 Лм
60 Вт 15-16 Вт 6-10 Вт 700 Лм
75 Вт 18-20 Вт 10-12 Вт 900 Лм
100 Вт 25-30 Вт 12-15 Вт 1200 Лм
150 Вт 40-50 Вт 18-20 Вт 1800 Лм
200 Вт 60-80 Вт 25-30Вт 2500 Лм

Сегодня в магазинах есть лампы разных типов — накаливания, галогенные, энергосберегающие, светодиодные. Все они имеют разную эффективность. И если нет у вас под рукой таблицы соответствия, можно ориентироваться на световой поток, создаваемый лампой. За основу можно взять все те же лампы накаливания — привыкли мы к ним, давно пользуемся и неплохо представляем, какой количество света дает, например, лампа на 100 Вт. Так вот, эта лампа дает около 1200 Лм. Запомнив эту цифру, можно более-менее точно представлять, какой световой поток выдает рассматриваемая вами лампа, так как на большинстве упаковок стоят именно Люмы, которые отображают количество света, которое излучает данный источник.

Цветовая температура

Вы, наверное, замечали, что свет искусственных источников имеет разную окраску. Это и есть цветовая температура света. Светодиоды имеют чрезвычайно широкий диапазон излучения — они могут быть цветными — зелеными, красными, синими, выдавать фиолетовый свет. Эта их особенность используется если необходима цветная подсветка.

При выборе светодиодных ламп для освещения дома или квартиры рассматривают только небольшую часть спектра. Но и тут выбор большой. Светодиоды воссоздают много оттенков света — от того, который излучает яркого полуденное солнце, до приглушенного с желтоватым или слегка красноватым оттенком — солнца на закате или рассвете.

Цветовая температура Оттенок Характеристика и область применения
2700 К Теплый белый с красноватым оттенком Этот свет излучают лампы накаливания не очень большой мощности. Ощущение тепла и уюта.
3000 К Теплый белый с желтоватым оттенком Характерен для галогенных ламп, свет чуть более холодный.
3500 К Обычный белый или нейтральный белый Характерен для люминесцентных ламп. Нейтральный свет, который не искажает цветовосприятие.
4000 К Холодный белый Используется в некоторых современных стилях - хай-тек, например. Может утомлять своей "стерильностью".
5000-6000 К Дневной свет Применяется при освещении оранжерей. Слишком яркий для освещения дома.
6500 К Холодный дневной, имеет голубоватый оттенок Очень яркий. Используется при фото и видео съемке.

Выбрать светодиодную лампу по цветовой температуре стоит исходя из назначения помещения. Для верхнего освещения в спальне имеет смысл выбрать теплый белый цвет с желтоватым, а лучше — красноватым оттенком. Он более других способствует расслаблению.

В то же время в лампы для чтения — бра или настольные — стоит поставить лампы с нейтральным белым светом. Их же рекомендуем использовать и во всех остальных помещениях. Несмотря на то, что более привычен нам желтоватый свет, с нейтральным белым вы будете себя чувствовать лучше — читать проще, глаза устают меньше. Это субъективные ощущения, основанные на личном опыте.

Цветопередача

Имея лампы одной и той же цветовой температуры мы можем получить различное восприятие цвета. Это зависит от точности цветопередачи, которая характеризуется индексом (коэффициентом) цветопередачи. Обозначается латинскими буквами CRI (Color Rendering Index), после которых стоят цифры от 0 до 100. Иногда обозначается как Ra.

Характеристика цветопередачи Степень цветопередачи Коэффициент цветопередачи CRI Примеры ламп
Очень хорошая 1 А Более 90 Светодиодные и галогенные лампы, люминесцентные лампы Philips TL-D 90 Graphica Pro, OSRAM DE LUXE и Color proof
Очень хорошая 1 B 80-89 Светодиодные и люминесцентные лампы (OSRAM LUMILUX, VANTEX, ЛДЦ, ЛБТЦ)
Хорошая 2 A 70-79 Люминесцентные лампы OSRAM BASIC
Хорошая 2 B 60-69 Люминесцентные лампы ЛД, ЛБ
Достаточная 3 40-59 Ртутные лампы
Низкая 4 39 и меньше Натриевые

Самое самое высокое значение — 100. Источник света с таким коэффициентом цветопередачи совершенно не искажает цвета, но стоимость такой лампы будет очень высокой. Для освещения дома нормальными считаются лампы с CRI от 80 и выше. Вот в этом диапазоне и стоит искать светодиодные лампы для освещения дома. И снова-таки придется подбирать в зависимости от назначения светильника. Например, для подсветки картин желательно использовать лампы с коэффициентом цветопередачи 100 или около того, так как они не будут искажать цвета. Для других помещений можно и с более низкими показателями.

Угол рассеивания

Отличительная черта светодиодов в том, что они светят прямо перед собой. В стороны отклоняется очень небольшое количество световых волн. То есть, сам кристалл выдает узконаправленный пучок света. Но светодиодная лампа содержит некоторое количество этих кристаллов. От того, как они расположены и зависит угол рассеивания света. Это позволяет создавать как очень узкий поток света, так и очень широкий. Угол рассеивания светодиодных ламп может быть от 30° до 360°.

Выбирать угол рассеивания светодиодной лампы также необходимо исходя из назначения светильника. Если это лампа общего освещения, размещенная на потолке, угол рассеивания стоит брать от 90° и больше — вплоть до 180 градусов. Если это лампа для чтения или для освещения какой-то небольшой зоны (для подсветки картин, например), стоит выбрать более узконаправленный луч.

В декоративные светильники с прорезями стоит поставить лампу с углом рассеивания 360° или установить узконаправленные. Можно получить очень интересный эффект.

Примеры использования светодиодных ламп с разным углом рассеивания

Если у вас раньше не получалось создать подобную игру теней, теперь знаете, что надо правильно выбрать светодиодную лампу.

Тип цоколя и наличие радиатора

Цоколь выбирается просто: под имеющийся в наличии светильник. Промышленность выпускает светодиодные лампы со стандартными патронами для замены ламп накаливания (Е14, Е 27, Е40), есть варианты для замены галогенных лам (G4, GU5.3, GU10). Есть светодиодные лампы, которые встраиваются в мебель — для подсветки шкафов и шкафчиков. Они имеют цоколь типа GX53.

Один из недостатков светодиодов в том, что они греются, а при значительном увеличении температуры теряют свою яркость. При сильном перегреве они вообще могут выйти из строя. Есть две конструкции светодиодных ламп — в виде привычной нам колбы и без нее — так называемая лампа-кукуруза. Для лучшего отвода тепла от кристаллов в колбовых лампах обычно ставят радиаторы. У кукурузы, за счет отсутствия колбы, отвод тепла происходит эффективно и без радиатора.

Для светодиодных ламп с колбой есть несколько типов радиаторов:

  • Ребристый алюминиевый. Хорошо справляется с отводом тепла за счет ребристости, которая увеличивает площадь теплоотдачи. Но алюминий хорошо проводит ток, чтобы защитить от опасного прикосновения, поверхность радиатора покрыта обычно краской или лаком.

  • Гладкий алюминиевый. Обычно это тонкий слой алюминия. Отвод тепла обычно хуже, для лучшей вентиляции могут иметься отверстия.

  • Керамический. Наиболее эффективный способ отвода тепла, но такие светодиодные лампы — самые дорогие. Керамика не проводит ток, потому светодиоды часто монтируют прямо на радиатор, что способствует более эффективному охлаждению.

  • Композитный. Это алюминиевый радиатор, поверх которого нанесен слой теплопроводящего пластика. Этот тип радиаторов широко распространен, так как наряжу с неплохим отводом тепла и безопасностью имеет невысокую цену. Соответственно, светодиодные лампы с композитными радиаторами — это средний или низкий ценовой сегмент.

    Композитные — средний и невысокий ценовой диапазон

  • Пластиковый. Пластик используется специальный, хорошо проводящий тепло. Это самый недорогой вариант радиаторов для светодиодных ламп, который имеет среднюю эффективность. Для улучшения отвода тепла могут иметься отверстия.

Выбрать дешевую светодиодную лампу и надеяться, что в ней установлен керамический радиатор не стоит. Но и пугаться пластиковых охладителей тоже. Они имеют более чем приличный срок службы и многократно «отобьют» деньги, потраченные на их приобретение.

Лампы с керамическими или рифлеными алюминиевыми радиаторами стоит ставить в тех местах, где отвод тепла критичен. Например, во встроенных светильниках, у которых самая горячая тыльная часть лампы находится на уровне натяжного потолка или мебельного щита/древесины/ДВП. Тут сильный нагрев может привести к изменениям в структуре и цвете материала, что явно не хорошо. В менее критических ситуациях нормально работают даже пластиковые и композитные радиаторы — светодиодные лампы все равно греются в разы меньше ламп накаливания.

Рабочий ресурс и гарантийный срок

Один из наиболее важных для потребителей параметров — рабочий ресурс. Он указывается в часах и показывает, на протяжении какого времени LED лампа сохраняет работоспособность (при нормальных условиях эксплуатации). Средняя «продолжительность жизни» современных светодиодных ламп — около 30 000 часов, что эквивалентно 10 годам, максимальная- порядка 50-60 тыс — это около 15-18 лет. Но ЛЕД технология активно развивается и, скорее всего, в ближайшем будущем появятся светодиодные лампы с рабочим ресурсом в 100 000 часов или даже больше.

Но не стоит особо обольщаться. Рабочий ресурс — это то время, которое кристалл способен излучать свет. К сожалению есть такое явление, как выгорание светодиодов. В результате этого явления они теряют яркость свечения. Скорость этих изменений зависит от условий эксплуатации — чем меньше перегревается светодиод и чем меньше он находится при низких температурах, тем дольше сохраняется изначальная яркость. Как понять, как долго прослужит лампа без потери яркости? По гарантийному сроку эксплуатации. Эта цифра более реально отображает положение дел, так как при проблемах прибор просто заменяется на новый. Тут производители наоборот, склонны слегка занижать цифру, чтобы гарантийных случаев было как можно меньше.

Диммирование

Изменять яркость освещения в помещении можно двумя способами — увеличивая или уменьшая количество включенных осветительных приборов или . Второй способ удобнее, так как позволяет точно «настроить» освещение под требования плавно изменяя яркость свечения поворотом регулятора.

Но, если вам надо выбрать светодиодную лампу в сеть с диммером, в технических характеристиках должна стоять отметка о том, что она диммируемая. Обычная будет светить в полную силу, а при определенном положении диммера просто начнет мигать.

Кроме того, что лампа должна быть диммируемой, надо смотреть предел диммирования. У некоторых минимальный предел диммирования 5%, у других — 20%.

Рейтинг производителей

Выбрать светодиодную лампу по техническим параметрам — это еще не все. Вам придется еще определиться с производителем. В свете того, что светодиодные лампы не так уж дешевы, хочется сэкономить и купить из тех, что подешевле. Это, как правило китайские осветительные приборы, причем из, что не отличаются хотя-бы нормальным качеством. Их отличительная черта — плохая упаковка, отсутствие гарантийного срока или он есть, но очень маленький. Собираются они в основном из самых дешевых деталей, в результате коэффициент цветопередачи (реальный, а не написанный) может не превышать 60, из-за некачественных деталей в преобразователе лампы, она мерцает. О сроке службы таких изделий говорить сложно — тут как повезет. В общем, как бы ни хотелось сэкономить, лучше выбрать светодиодную лампу из продукции нормальных производителей.

Самые качественные

Очень хорошую продукцию выпускают европейские фирмы Philips и Osram. Офисы их находятся в Европе, но заводы вынесены в основном в Китай. Несмотря на это выпускают они светодиодные лампы очень хорошего качества. Имидж необходимо поддерживать, потому качество контролируется жестко. Это так, но и цены у них высокие. У Филипс светодиодные лампы стоят от 800 до 1800 рублей за штуку, у Осрам есть бюджетные линейки со стоимостью коло 100 рублей, есть премиум — с ценой 2700 рублей, а средний диапазон — от 400 до 800 рублей.

Нормальное качество при невысокой цене

Лучшее сочетание цены и качества можно найти у представителей средней ценовой категории. Тут есть российские производители, есть китайские, также представлены некоторые другие страны Азии. Продукция этих фирм имеет преимущественно хорошую оценку продукции. Также заявленные данные совпадают с реалиями:


Есть еще много других фирм, но отзывы на продукцию этих фирм чаще носят негативный характер. Если вы хотите выбрать светодиодную лампу хорошего качества за вменяемые деньги — присмотритесь к выше названным маркам.




Top