Дискретное изображение. Алгоритм повышения резкости изображения

Как решить систему дифференциальных уравнений?

Предполагается, что читатель уже неплохо умеет решать дифференциальные уравнения, в частности, однородные уравнения второго порядка и неоднородные уравнения второго порядка с постоянными коэффициентами. В системах дифференциальных уравнений нет ничего сложного, и если вы уверенно расправляетесь с вышеуказанными типами уравнений, то освоение систем не составит особого труда.

Существуют два основных типа систем дифференциальных уравнений:

– Линейные однородные системы дифференциальных уравнений
– Линейные неоднородные системы дифференциальных уравнений

И два основных способа решения системы дифференциальных уравнений:

– Метод исключения . Суть метода состоит в том, что в ходе решения система ДУ сводится к одному дифференциальному уравнению.

– С помощью характеристического уравнения (так называемый метод Эйлера).

В подавляющем большинстве случаев систему дифференциальных уравнений требуется решить первым способом. Второй способ в условиях задач встречается значительно реже, за всю мою практику я решил им от силы 10-20 систем. Но и его тоже коротко рассмотрим в последнем параграфе данной статьи.

Сразу прошу прощения за теоретическую неполноту материала, но зато я включил в урок только те задания, которые реально могут встретиться на практике. То, что выпадает метеоритным дождем раз в пятилетку, вы вряд ли здесь найдете, и с такими нежданчиками следует обратиться к специализированным кирпичам по диффурам.

Линейные однородные системы дифференциальных уравнений

Простейшая однородная система дифференциальных уравнений имеет следующий вид:

Собственно, почти все практические примеры такой системой и ограничиваются =)

Что тут есть?

– это числа (числовые коэффициенты). Самые обычные числа. В частности, один, несколько или даже все коэффициенты могут быть нулевыми. Но такие подарки подкидывают редко, поэтому числа чаще всего не равны нулю.

И – это неизвестные функции. В качестве независимой переменной выступает переменная – это «как бы икс в обычном дифференциальном уравнении».

И – первые производные неизвестных функций и соответственно.

Что значит решить систему дифференциальных уравнений?

Это значит, найти такие функции и , которые удовлетворяют и первому и второму уравнению системы. Как видите, принцип очень похож на обычные системы линейных уравнений . Только там корнями являются числа, а здесь – функции.

Найденный ответ записывают в виде общего решения системы дифференциальных уравнений :

В фигурных скобках! Эти функции находятся «в одной упряжке».

Для системы ДУ можно решить задачу Коши, то есть, найти частное решение системы , удовлетворяющее заданным начальным условиям. Частное решение системы тоже записывают с фигурными скобками.

Более компактно систему можно переписать так:

Но в ходу традиционно более распространен вариант решения с производными, расписанными в дифференциалах, поэтому, пожалуйста, сразу привыкайте к следующим обозначениям:
и – производные первого порядка;
и – производные второго порядка.

Пример 1

Решить задачу Коши для системы дифференциальных уравнений с начальными условиями , .

Решение: В задачах чаще всего система встречается с начальными условиями, поэтому почти все примеры данного урока будут с задачей Коши. Но это не важно, поскольку общее решение по ходу дела все равно придется найти.

Решим систему методом исключения . Напоминаю, что суть метода – свести систему к одному дифференциальному уравнению. А уж дифференциальные уравнения, надеюсь, вы решаете хорошо.

Алгоритм решения стандартен:

1) Берем второе уравнение системы и выражаем из него :

Данное уравнение нам потребуется ближе к концу решения, и я помечу его звёздочкой. В учебниках, бывает, натыкают 500 обозначений, а потом ссылаются: «по формуле (253)…», и ищи эту формулу где-нибудь через 50 страниц сзади. Я же ограничусь одной единственной пометкой (*).

2) Дифференцируем по обе части полученного уравнения :

Со «штрихами» процесс выглядит так:

Важно, чтобы этот простой момент был понятен, далее я не буду на нём останавливаться.

3) Подставим и в первое уравнение системы :

И проведём максимальные упрощения:

Получено самое что ни на есть обычное однородное уравнение второго порядка с постоянными коэффициентами. Со «штрихами» оно записывается так: .



– получены различные действительные корни, поэтому:
.

Одна из функций найдена, пол пути позади.

Да, обратите внимание, что у нас получилось характеристическое уравнение с «хорошим» дискриминантом, а значит, мы ничего не напутали в подстановке и упрощениях.

4) Идём за функцией . Для этого берём уже найденную функцию и находим её производную. Дифференцируем по :

Подставим и в уравнение (*):

Или короче:

5) Обе функции найдены, запишем общее решение системы:

Ответ: частное решение:

Полученный ответ достаточно легко проверить, проверку осуществим в три шага:

1) Проверяем, действительно ли выполняются начальные условия , :


Оба начальных условия выполняются.

2) Проверим, удовлетворяет ли найденный ответ первому уравнению системы .

Берём из ответа функцию и находим её производную:

Подставим , и в первое уравнение системы:

Получено верное равенство, значит, найденный ответ удовлетворяет первому уравнению системы.

3) Проверим, удовлетворяет ли ответ второму уравнению системы

Берём из ответа функцию и находим её производную:

Подставим , и во второе уравнение системы:

Получено верное равенство, значит, найденный ответ удовлетворяет второму уравнению системы.

Проверка завершена. Что проверено? Проверено выполнение начальных условий. И, самое главное, показан тот факт, что найденное частное решение удовлетворяет каждому уравнению исходной системы .

Аналогично можно проверить и общее решение , проверка будет даже еще короче, так как не надо проверять выполнение начальных условий.

Теперь вернемся к прорешанной системе и зададимся парой вопросов. Решение начиналось так: мы взяли второе уравнение системы и выразили из него . А можно ли было выразить не «икс», а «игрек»? Если мы выразим , то это нам ничего не даст – в данном выражении справа есть и «игрек» и «икс», поэтому нам не удастся избавиться от переменной и свести решение системы к решению одного дифференциального уравнения.

Вопрос второй. Можно ли было начать решение не со второго, а с первого уравнения системы? Можно. Смотрим на первое уравнение системы: . В нём у нас два «икса» и один «игрек», поэтому необходимо выразить строго «игрек» через «иксы»: . Далее находится первая производная: . Потом следует подставить и во второе уравнение системы. Решение будет полностью равноценным, с тем отличием, что сначала мы найдем функцию , а затем .

И как раз на второй способ будет пример для самостоятельного решения:

Пример 2

Найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям.

В образце решения, который приведен в конце урока, из первого уравнения выражен и вся пляска начинается от этого выражения. Попытайтесь самостоятельно по пунктам провести зеркальное решение, не заглядывая в образец.

Можно пойти и путём Примера №1 – из второго уравнения выразить (заметьте, что выразить следует именно «икс»). Но этот способ менее рационален, по той причине, что у нас получилась дробь, что не совсем удобно.

Линейные неоднородные системы дифференциальных уравнений

Практически то же самое, только решение будет несколько длиннее.

Неоднородная система дифференциальных уравнений, которая в большинстве случаев может встретиться вам в задачах, имеет следующий вид:

По сравнению с однородной системой в каждом уравнении дополнительно добавляется некоторая функция, зависящая от «тэ». Функции могут быть константами (причем, по крайне мере одна из них не равна нулю), экспонентами, синусами, косинусами и т.д.

Пример 3

Найти частное решение системы линейных ДУ, соответствующее заданным начальным условиям

Решение: Дана линейная неоднородная система дифференциальных уравнений, в качестве «добавок» выступают константы. Используем метод исключения , при этом сам алгоритм решения полностью сохраняется. Для разнообразия я начну как раз с первого уравнения.

1) Из первого уравнения системы выражаем:

Это важная штуковина, поэтому я её снова замаркирую звёздочкой. Скобки лучше не раскрывать, зачем лишние дроби?

И еще раз заметьте, что из первого уравнения выражается именно «игрек» – через два «икса» и константу.

2) Дифференцируем по обе части:

Константа (тройка) исчезла, ввиду того, что производная константы равна нулю.

3) Подставим и во второе уравнение системы :

Сразу после подстановки целесообразно избавиться от дробей, для этого каждую часть уравнения умножаем на 5:

Теперь проводим упрощения:

В результате получено линейное неоднородное уравнение второго порядка с постоянными коэффициентами. Вот, по сути, и всё отличие от решения однородной системы уравнений, разобранного в предыдущем параграфе.

Примечание: Тем не менее, в неоднородной системе иногда может получиться и однородное уравнение .

Найдем общее решение соответствующего однородного уравнения:

Составим и решим характеристическое уравнение:

– получены сопряженные комплексные корни, поэтому:
.

Корни характеристического уравнения опять получились «хорошими», значит, мы на верном пути.

Частное решение неоднородного уравнения ищем в виде .
Найдем первую и вторую производную:

Подставим в левую часть неоднородного уравнения:

Таким образом:

Следует отметить, что частное решение легко подбирается устно, и вполне допустимо вместо длинных выкладок написать: «Очевидно, что частное решение неоднородного уравнения: ».

В результате:

4) Ищем функцию . Сначала находим производную от уже найденной функции :

Не особо приятно, но подобные производные в диффурах приходится находить часто.

Шторм в самом разгаре, и сейчас будет девятый вал. Привяжите себя канатом к палубе.

Подставим
и в уравнение (*):

5) Общее решение системы:

6) Найдем частное решение, соответствующее начальным условиям :

Окончательно, частное решение:

Вот видите, какая история со счастливым концом, теперь можно безбоязненно плавать на шлюпках по безмятежному морю под ласковым солнцем.

Ответ: частное решение:

Кстати, если начать решать эту систему со второго уравнения, то вычисления получатся заметно проще (можете попробовать), но многие посетители сайта просили разбирать и более трудные вещи. Как тут откажешь? =) Пусть будут и более серьезные примеры.

Пример проще для самостоятельного решения:

Пример 4

Найти частное решение линейной неоднородной системы дифференциальных уравнений, соответствующее заданным начальным условиям

Данная задача решена мной по образцу Примера №1, то есть, из второго уравнения выражен «икс». Решение и ответ в конце урока.

В рассмотренных примерах я не случайно использовал различные обозначения, применял разные пути решения. Так, например, производные в одном и том же задании записывались тремя способами: . В высшей математике не нужно бояться всяких закорючек, главное, понимать алгоритм решения.

Метод характеристического уравнения (метод Эйлера)

Как уже отмечалось в начале статьи, с помощью характеристического уравнения систему дифференциальных уравнений требуют решить довольно редко, поэтому в заключительном параграфе я рассмотрю всего лишь один пример.

Пример 5

Дана линейная однородная система дифференциальных уравнений

Найти общее решение системы уравнений с помощью характеристического уравнения

Решение: Смотрим на систему уравнений и составляем определитель второго порядка:

По какому принципу составлен определитель, думаю, всем видно.

Составим характеристическое уравнение, для этого из каждого числа, которое располагается на главной диагонали , вычитаем некоторый параметр :

На чистовике, естественно, сразу следует записать характеристическое уравнение, я объясняю подробно, по шагам, чтобы было понятно, что откуда взялось.

Раскрываем определитель:

И находим корни квадратного уравнения:

Если характеристическое уравнение имеет два различных действительных корня , то общее решение системы дифференциальных уравнений имеет вид:

Коэффициенты в показателях экспонент нам уже известны, осталось найти коэффициенты

1) Рассмотрим корень и подставим его в характеристическое уравнение:

(эти два определителя на чистовике тоже можно не записывать, а сразу устно составить нижеприведенную систему)

Из чисел определителя составим систему двух линейных уравнений с двумя неизвестными:

Из обоих уравнений следует одно и то же равенство:

Теперь нужно подобрать наименьшее значение , такое, чтобы значение было целым. Очевидно, что следует задать . А если , то

Задания для самостоятельной работы

Найти общие решения следующих однородных систем дифференциальных уравнений одним из рассмотренных методов, и произвести их проверку любым другим методом:

8.1. 8.2.

8.3. 8.4.

8.5. 8.6.

8.7. 8.8.

8.9. 8.10.


Линейная система дифференциальных уравнений имеет вид:

(9.1)

Системы (9.1) и (9.2) называются неоднородными , если хотя быодна из функций f i (х ) не равна тождественно нулю.Если при всех значениях независимой переменной х все функции f i (х ) равны нулю, то, например, система (8.14) принимает вид:

и называется однородной линейной системой.

Если все функции a ij (x ) и f i (х ) непрерывны на отрезке a £x £b , то система, например, (9.2) имеет единственное решение:

(9.4)

определенное во всем отрезке a £x £b и удовлетворяющее начальным условиям:

причем начальные данные можно выбирать совершенно произвольно, а х 0 необходимо выбирать из интервала a £x £b .

Неоднородная линейная система уравнений с постоянными коэффициентами имеет вид:

(9. 6)

Если все f i (x ) =0, то получим однородную систему с постоянными коэффициентами

Если компоненты некоторого вектора ,

а компоненты производной вектора , при этом коэффициенты a ij являются элементами матрицы , то, например, систему уравнений (9.8) можно представить в виде:

Рассмотрим методы интегрирования линейных систем с постоянными коэффициентами.

1. Систему дифференциальных уравнений с постоянными коэффициентами можно разрешить, например, методом Эйлера . Суть этого метода заключается в том, что решение системы (9.9) ищется в виде

, (9.10)

где λ k - собственные значения матрицы коэффициентов А , которые можно найти из уравнения :

(9.11)

(Е единичная матрица), которое называется характеристическим уравнением ; - компоненты собственного вектора P ( k ) , соответствующие собственному значению λ k .

Если выражение (9.10) подставить в уравнение (9.9) и после сокращения на множитель , получим однородную систему линейных алгебраических уравнений из которой можно найти вектора P ( k ) :

,

или в развернутом виде

(9.12)

Таким образом, общее решение системы (9.9) будет выражаться формулой:

. (9.13)

Из этой формулы видно, что решение исходной системы зависит от собственных значений матрицы коэффициентов λ k или, что по существу то же самое от вида корней характеристического уравнения .

1-й случай. Все корни λ k –действительные и различные, тогда общее решение системы определяется формулой (9.13). Запишем ее в развернутом виде:


(9.14)

Пример 9.1.6. Найти общее решение системы

▲ Составим матрицу коэффициентов , а затем составим характеристическое уравнение (31):

Корни этого характеристического уравнения действительные и различные: .

Найдем собственные вектора, соответствующие своим собственным значениям (корням характеристического уравнения).

.

Значение можно взять произвольно, например, пусть =1, тогда , следовательно вектор Р (1) равен: Р (1) =.

Для этого корня также составим систему (9.12)

,

следовательно, если =1, тогда . Поэтому вектор Р (2) =.

Таким образом, общее решение исходной системы можно записать в виде:

Следовательно, компоненты общего решения принимают вид:

2-й случай. Корни λ k различные, но среди них имеются комплексные. Если является корнем характеристического уравнения, то и тоже будет его корнем, т.к. все коэффициенты исходной системы a ij являются действительными.

Компоненты общего решения системы (8.29), отвечающие корню находим точно так же, как и в случае 1. Затем, отделив комплексную и действительную часть из функций y k , образующих это решение, получим два действительных решения той же системы (8.29). Сопряженный корень не дает новых решений (если использовать этот корень, то получим решения, линейно зависимые от уже полученных). Так поступают для каждого комплексного корня.

Пример 9.2. Найти общее решение системы

Корни этого характеристического уравнения комплексно-сопряженные: .

Найдем собственный вектор, соответствующий собственному значению (корню характеристического уравнения) равному: .

Составим систему алгебраических уравнений (9.12)

Таким образом, приняв =1, находим , т.е. собственный вектор Р (1) равен: Р (1) =.

Следовательно, фундаментальная система будет иметь вид:

В этих решениях отделим действительную и мнимую части (корень мы не рассматриваем, т.к. решения соответствующие этому корню являются линейно зависимыми корню), в результате получаем:

Таким образом, общее решение окончательно имеет вид:

3-й случай. Среди корней характеристического уравнения имеются кратные корни.

Если корень λ k , имеет кратность т , то ему соответствует п частных решений системы (9.9). Эти решения получаем в виде:

где q 1 (x ),…., q n (x ) – многочлены от х с неопределенными коэффициентами, каждый степени не выше (т -1):

Следовательно, решения будут иметь вид:

(9.15)

Подставляя выражения (9.15) в систему (9.9) и приравнивая коэффициенты при одинаковых степенях независимой переменной х в каждом уравнении, мы получим систему алгебраических уравнений для определения неизвестных коэффициентов многочленов q 1 (x ),…., q n (x ). Число полученных алгебраических уравнений будет меньше числа неизвестных коэффициентов, поэтому т из этих коэффициентов остаются произвольными, а остальные выражаются через них.

Если λ 1 , является комплексным числом, то полученные рассмотренным путем решения тоже будут комплексными функциями от х . Отделив в каждом из решений действительные и мнимые части, получим 2т решений. Эти решения соответствуют паре сопряженных т – кратных комплексных корней и .

Пример 9.3. Найти общее решение системы

▲ Составим матрицу коэффициентов , а затем составим характеристическое уравнение (9.11):

Корни этого характеристического уравнения действительные и различные: . Степень кратности т равна: т = 2. Следовательно, в этом случае многочлены p 1 (t ) и p 2 (t ) имеют вид:

Таким образом, двукратному корню соответствует решение

Дифференцируя х и у , получим

Значения х , у , подставим в исходную систему, и после сокращения на e 4 t будем иметь

Приравнивая коэффициенты при t и свободные члены, получим следующие системы

Отсюда следует, что

Таким образом, общее решение исходной системы будет иметь вид:

2. Систему вида (9.8): ,

можно разрешить методом неопределенных коэффициентов . Алгоритм этого метода следующий:

1. Составить характеристическое уравнение системы (9.8):

и найти его корни .

2. В зависимости от вида корней записать решение системы, причем для каждого решения y i имеет свои произвольные постоянные:

3. Вычисляются производные и вместе с найденными функциями , подставляются в уравнения исходной системы.

4. Приравниваются коэффициенты при одинаковых функциях в левых и правых частях уравнений.

5. Из полученных систем можно выразить все коэффициенты через одни, например, коэффициентычерез коэффициент C i .

Пример 9.4. Найти общее решение системы

Замену непрерывного изображения дискретным можно выполнить различными способами. Можно, например, выбрать какую-либо систему ортогональных функций и, вычислив коэффициенты представления изображения по этой системе (по этому базису), заменить ими изображение. Многообразие базисов дает возможность образования различных дискретных представлений непрерывного изображения. Однако наиболее употребительной является периодическая дискретизация, в частности, как упоминалось выше, дискретизация с прямоугольным растром. Такой способ дискретизации может рассматриваться как один из вариантов применения ортогонального базиса, использующего в качестве своих элементов сдвинутые -функции. Далее, следуя, в основном, , подробно рассмотрим основные особенности прямоугольной дискретизации.

Пусть - непрерывное изображение, а - соответствующее ему дискретное, полученное из непрерывного путем прямоугольной дискретизации. Это означает, что связь между ними определяется выражением:

где - соответственно вертикальный и горизонтальный шаги или интервалы дискретизации. Рис.1.1 иллюстрирует расположение отсчетов на плоскости при прямоугольной дискретизации.

Основной вопрос, который возникает при замене непрерывного изображения дискретным, состоит в определении условий, при которых такая замена является полноценной, т.е. не сопровождается потерей информации, содержащейся в непрерывном сигнале. Потери отсутствуют, если, располагая дискретным сигналом, можно восстановить непрерывный. С математической точки зрения вопрос, таким образом, заключается в восстановлении непрерывного сигнала в двумерных промежутках между узлами, в которых его значения известны или, иными словами, в осуществлении двумерной интерполяции. Ответить на этот вопрос можно, анализируя спектральные свойства непрерывного и дискретного изображений.

Двумерный непрерывный частотный спектр непрерывного сигнала определяется двумерным прямым преобразованием Фурье:

которому отвечает двумерное обратное непрерывное преобразование Фурье:

Последнее соотношение верно при любых значениях , в том числе и в узлах прямоугольной решетки . Поэтому для значений сигнала в узлах, учитывая (1.1), соотношение (1.3) можно записать в виде:

Обозначим для краткости через прямоугольный участок в двумерной частотной области . Вычисление интеграла в (1.4) по всей частотной области можно заменить интегрированием по отдельным участкам и суммированием результатов:

Выполняя замену переменных по правилу , добиваемся независимости области интегрирования от номеров и :

Здесь учтено, что при любых целых значениях и . Данное выражение по своей форме очень близко к обратному преобразованию Фурье. Отличие состоит лишь в неправильном виде экспоненциального множителя. Для придания ему необходимого вида введем нормированные частоты и выполним в соответствии с этим замену переменных. В результате получим:

Теперь выражение (1.5) имеет форму обратного преобразования Фурье, следовательно, стоящая под знаком интеграла функция

(1.6)

является двумерным спектром дискретного изображения. В плоскости ненормированных частот выражение (1.6) имеет вид:

(1.7)

Из (1.7) следует, что двумерный спектр дискретного изображения является прямоугольно периодическим с периодами и по осям частот и соответственно. Спектр дискретного изображения образуется в результате суммирования бесконечного количества спектров непрерывного изображения, отличающихся друг от друга частотными сдвигами и . Рис.1.2 качественно показывает соотношение между двумерными спектрами непрерывного (рис.1.2.а) и дискретного (рис.1.2.б) изображений.

Рис. 1.2. Частотные спектры непрерывного и дискретного изображений

Сам результат суммирования существенно зависит от значений этих частотных сдвигов, или, иными словами, от выбора интервалов дискретизации . Допустим, что спектр непрерывного изображения отличен от нуля в некоторой двумерной области в окрестности нулевой частоты, т. е. описывается двумерной финитной функцией. Если при этом интервалы дискретизации выбраны так, что при , , то наложения отдельных ветвей при формировании суммы (1.7) происходить не будет. Следовательно, в пределах каждого прямоугольного участка от нуля будет отличаться лишь одно слагаемое. В частности, при имеем:

при , . (1.8)

Таким образом, в пределах частотной области спектры непрерывного и дискретного изображений с точностью до постоянного множителя совпадают. При этом спектр дискретного изображения в этой частотной области содержит полную информацию о спектре непрерывного изображения. Подчеркнем, что данное совпадение имеет место лишь при оговоренных условиях, определяемых удачным выбором интервалов дискретизации. Отметим, что выполнение этих условий, согласно (1.8), достигается при достаточно малых значениях интервалов дискретизации , которые должны удовлетворять требованиям:

в которых - граничные частоты двумерного спектра.

Соотношение (1.8) определяет способ получения непрерывного изображения из дискретного . Для этого достаточно выполнить двумерную фильтрацию дискретного изображения низкочастотным фильтром с частотной характеристикой

Спектр изображения на его выходе содержит ненулевые компоненты лишь в частотной области и равняется, согласно (1.8), спектру непрерывного изображения . Это означает, что изображение на выходе идеального фильтра низких частот совпадает с .

Таким образом, идеальное интерполяционное восстановление непрерывного изображения выполняется при помощи двумерного фильтра с прямоугольной частотной характеристикой (1.10). Нетрудно записать в явном виде алгоритм восстановления непрерывного изображения. Двумерная импульсная характеристика восстанавливающего фильтра, которую легко получить при помощи обратного преобразования Фурье от (1.10), имеет вид:

.

Продукт фильтрации может быть определен при помощи двумерной свертки входного изображения и данной импульсной характеристики. Представив входное изображение в виде двумерной последовательности -функций

после выполнения свертки находим:

Полученное соотношение указывает способ точного интерполяционного восстановления непрерывного изображения по известной последовательности его двумерных отсчетов. Согласно этому выражению для точного восстановления в роли интерполирующих функций должны использоваться двумерные функции вида . Соотношение (1.11) представляет собой двумерный вариант теоремы Котельникова-Найквиста.

Подчеркнем еще раз, что эти результаты справедливы, если двумерный спектр сигнала является финитным, а интервалы дискретизации достаточно малы. Справедливость сделанных выводов нарушается, если хотя бы одно из этих условий не выполняется. Реальные изображения редко имеют спектры с ярко выраженными граничными частотами. Одной из причин, приводящих к неограниченности спектра, является ограниченность размеров изображения. Из-за этого при суммировании в (1.7) в каждой из зон проявляется действие слагаемых из соседних спектральных зон. При этом точное восстановление непрерывного изображения становится вообще невозможным. В частности, не приводит к точному восстановлению и использование фильтра с прямоугольной частотной характеристикой.

Особенностью оптимального восстановления изображения в промежутках между отсчетами является использование всех отсчетов дискретного изображения, как это предписывается процедурой (1.11). Это не всегда удобно, часто требуется восстанавливать сигнал в локальной области, опираясь на некоторое небольшое количество имеющихся дискретных значений. В этих случаях целесообразно применять квазиоптимальное восстановление при помощи различных интерполирующих функций. Такого рода задача возникает, например, при решении проблемы привязки двух изображений, когда из-за геометрических расстроек этих изображений имеющиеся отсчеты одного из них могут соответствовать некоторым точкам, находящимся в промежутках между узлами другого. Решение этой задачи более подробно обсуждается в последующих разделах данного пособия.

Рис. 1.3. Влияние интервала дискретизации на восстановление изображения

«Отпечаток пальца»

Рис. 1.3 иллюстрирует влияние интервалов дискретизации на восстановление изображений. Исходное изображение, представляющее собой отпечаток пальца, приведено на рис. 1.3, а, а одно из сечений его нормированного спектра - на рис. 1.3, б. Данное изображение является дискретным, а в качестве граничной частоты использовано значение . Как следует из рис. 1.3, б, значение спектра на этой частоте пренебрежимо мало, что гарантирует качественное восстановление. По сути дела, наблюдаемая на рис. 1.3.а картина и является результатом восстановления непрерывного изображения, а роль восстанавливающего фильтра выполняет устройство визуализации - монитор или принтер. В этом смысле изображение рис. 1.3.а может рассматриваться как непрерывное.

Рис. 1.3, в, г показывают последствия от неправильного выбора интервалов дискретизации. При их получении осуществлялась “дискретизация непрерывного” изображения рис. 1.3.а путем прореживания его отсчетов. Рис. 1.3, в соответствует увеличению шага дискретизации по каждой координате в три, а рис. 1.3, г - в четыре раза. Это было бы допустимо, если бы значения граничных частот были ниже в такое же число раз. В действительности, как видно из рис. 1.3, б, происходит нарушение требований (1.9), особенно грубое при четырехкратном прореживании отсчетов. Поэтому восстановленные при помощи алгоритма (1.11) изображения оказываются не только расфокусированными, но и сильно искажают текстуру отпечатка.

Рис. 1.4. Влияние интервала дискретизации на восстановление изображения «Портрет»

На рис. 1.4 приведена аналогичная серия результатов, полученных для изображения типа “портрет”. Последствия более сильного прореживания (в четыре раза на рис. 1.4.в и в шесть раз на рис. 1.4.г) проявляются в основном в потере четкости. Субъективно потери качества представляются менее значительными, чем на рис. 1.3. Это находит свое объяснение в значительно меньшей ширине спектра, чем у изображения отпечатка пальца. Дискретизация исходного изображения соответствует граничной частоте . Как видно из рис. 1.4.б, это значение намного превышает истинное значение . Поэтому увеличение интервала дискретизации, иллюстрируемое рис. 1.3, в, г, хотя и ухудшает картину, все же не приводит к таким разрушительным последствиям, как в предыдущем примере.

Тема 9. Цифровое представление изображений (2 часа) .
Многие отрасли техники, имеющие отношение к получению, обработке, хранению и передаче информации, в значительной степени ориентируются в настоящее время на развитие систем, в которых информация имеет характер изображений. Изображение, которое можно рассматривать как двумерный сигнал, является значительно более емким носителем информации, чем обычный одномерный (временной) сигнал. Вместе с тем, решение научных и инженерных задач при работе с визуальными данными требует особых усилий, опирающихся на знание специфических методов, поскольку традиционная идеология одномерных сигналов и систем мало пригодна в этих случаях. В особой мере это проявляется при создании новых типов информационных систем, решающих такие проблемы, которые до сих пор в науке и технике не решались, и которые решаются сейчас благодаря использованию информации визуального характера.

В связи с этим, в вузовских программах появляются дисциплины, направленные на изучение принципов обработки изображений, причем, приоритетное внимание уделяется цифровым методам, привлекательным своей гибкостью. Отсутствие учебной литературы является сильным препятствием данному изучению, что и побудило авторов к написанию пособия. Следует отметить, что ограниченный объем не позволил охватить многие важные аспекты проблемы цифровой обработки изображений. Авторы пособия, читающие курс цифровой обработки изображений в БГУИР, исходили из своих представлений о важности тех или иных разделов, а также опирались на многолетний научно-исследовательский и педагогический опыт.

^ 9.1. Типы изображений

Цифровое изображение представляет собой прямоугольную табли-цу точек, или элементов изображения, расположенных в т строках и п столбцах. Выражение т х п называется разрешением изображения (хотя иногда этот термин используется для обозначения чи-сла пикселей, приходящихся на единицу длины изображения). Точки изображения называются пикселами (за исключением случаев, когда изображение передается факсом или видео; в этих случаях точка называется пелом). Для целей сжатия графических образов удобно выделить следующие типы изображений:

1. Двухуровневое (или монохроматическое) изображение. В этом случае все пикселы могут иметь только два значения, которые обычно называют черным (двоичная единица, или основной цвет) и белым (двоичный нуль или цвет фона). Каждый пиксел такого изображения представлен одним битом, поэтому это самый простой тип изображения.

2. Полутоновое изображение. Каждый пиксел такого изображения может иметь значений от 0 до
, обозначающих одну из 2 п градаций серого (или иного) цвета. Число п обычно сравнимо с размером байта, то есть, оно равно 4, 8,12,16, 24 или другое кратное 4 или 8. Множество самых значимых битов всех пикселов образуют самую значимую битовую плоскость или слой изображения. Итак, полутоновое изображение со шкалой из уровней составлено из п битовых слоев.

3. ^ Цветное изображение. Существует несколько методов задания цвета, но в каждом из них участвуют три параметра. Следователь-но, цветной пиксел состоит из трех частей. Обычно, цветной пиксел состоит из трех байтов. Типичными цветовыми моделями являются RGB, HLS и CMYK.

4. Изображение с непрерывным тоном. Этот тип изображений может иметь много похожих цветов (или полутонов). Когда соседние пикселы отличаются всего на единицу, глазу практически невозможно различить их цвета. В результате такие изображения могут содержать области, в которых цвет кажется глазу непрерывно меняющимся. В этом случае пиксел представляется или большим числом (в полутоновом случае) или тремя компонентами (в случае цветного образа). Изображения с непрерывным тоном являются природными или естественными (в отличие от рукотворных, искусственных); обычно они получаются при съемке на цифровую фотокамеру или при сканировании фотографий или рисунков.

5. Дискретно-тоновое изображение (оно еще называется синтетическим). Обычно, это изображение получается искусственным путем. В нем может быть всего несколько цветов или много цветов, но в нем нет шумов и пятен естественного изображения. Примерами таких изображений могут служить фотографии искусственных объектов, машин или механизмов, страницы текста, карты, рисунки или изображения на дисплее компьютера. (Не каждое искусственное изображение будет обязательно дискретно-тоновым. Сгенерирован-ное компьютером изображение, которое должно выглядеть натуральным, будет иметь непрерывные тона, несмотря на свое искусственное происхождение.) Искусственные объекты, тексты, нарисованные линии имеют форму, хорошо определяемые границы. Они сильно контрастируют на фоне остальной части изображения (фона). Прилегающие пикселы дискретно-тонового образа часто бывают одиночными или сильно меняют свои значения. Такие изо-бражения плохо сжимаются методами с потерей данных, поскольку искажение всего нескольких пикселов буквы делает ее неразборчивой, преобразует привычное начертание в совершенно неразличимое. Методы сжатия изображений с непрерывными тонами плохо обращаются с четкими краями дискретно-тоновых образов, для которых следует разрабатывать особые методы компрессии. Отметим, что дискретно-тоновые изображения, обычно, несут в себе большую избыточность. Многие ее фрагменты повторяются много раз в разных местах изображения.

6. Изображения, подобные мультфильмам. Это цветные изображения, в которых присутствуют большие области одного цвета. При этом соприкасающиеся области могут весьма различаться по своему цвету. Это свойство можно использовать для достижения лучшей компрессии.

Интуитивно становится ясно, что каждому типу изображений присуща определенная избыточность, но все они избыточны по-разному. Поэтому трудно создать один метод, который одинаково хорошо сжимает любые типы изображений. Существуют отдельные методы для сжатия двухуровневых образов, непрерывно-тоновых и дискретно-тоновых изображений. Существуют также методы, ко-торые пытаются разделить изображение на непрерывно-тоновую и дискретно-тоновую части и сжимать их по отдельности.
^ 9.2. Дискретизация непрерывных изображений

Очень редко изображения, получаемые в информационных системах, имеют цифровую форму. Поэтому их преобразование к этому виду является обязательной операцией, если предполагается использовать цифровую обработку, передачу, хранение. Как и при одномерных сигналах, данное преобразование включает в себя две процедуры. Первая состоит в замене непрерывного кадра дискретным и обычно называется дискретизацией, а вторая выполняет замену непрерывного множества значений яркости множеством квантованных значений и носит название квантования. При цифровом представлении каждому из квантованных значений яркости ставится в соответствие двоичное число, чем и достигается возможность ввода изображения в ЭВМ.

Двумерный характер изображения по сравнению с обычными сигналами содержит дополнительные возможности оптимизации цифрового представления с целью сокращения объема получаемых цифровых данных. В связи с этим изучался вопрос о наилучшем размещении уровней квантования, а также об использовании различных растров, другие аспекты данной задачи. Следует, однако, сказать, что в подавляющем большинстве случаев на практике применяют дискретизацию, основанную на использовании прямоугольного растра, и равномерное квантование яркости. Это связано с простотой выполнения соответствующих операций и относительно небольшими преимуществами от использования оптимальных преобразований. При использовании прямоугольного растра в окончательном виде цифровое изображение обычно представляет собой матрицу, строки и столбцы которой соответствуют строкам и столбцам изображения.

Замену непрерывного изображения дискретным можно выполнить различными способами. Можно, например, выбрать какую-либо систему ортогональных функций и, вычислив коэффициенты представления изображения по этой системе (по этому базису), заменить ими изображение. Многообразие базисов дает возможность образования различных дискретных представлений непрерывного изображения. Однако наиболее употребительной является периодическая дискретизация, в частности, как упоминалось выше, дискретизация с прямоугольным растром. Такой способ дискретизации может рассматриваться как один из вариантов применения ортогонального базиса, использующего в качестве своих элементов сдвинутые -функции. Далее, следуя, в основном, подробно рассмотрим основные особенности прямоугольной дискретизации.

Пусть - непрерывное изображение, а -соответствующее ему дискретное, полученное из непрерывного путем прямоугольной дискретизации. Это означает, что связь между ними определяется выражением:

Где - соответственно вертикальный и горизонтальный шаги или интервалы дискретизации. Рис. 9.1 иллюстрирует расположение отсчетов на плоскости при прямоугольной дискретизации.

Основной вопрос, который возникает при замене непрерывного изображения дискретным, состоит в определении условий, при которых такая замена является полноценной, т.е. не сопровождается потерей информации, содержащейся в непрерывном сигнале. Потери отсутствуют, если, располагая дискретным сигналом, можно восстановить непрерывный. С математической точки зрения вопрос, таким образом, заключается в восстановлении непрерывного сигнала в двумерных промежутках между узлами, в которых его значения известны или, иными словами, в осуществлении двумерной интерполяции. Ответить на этот вопрос можно, анализируя спектральные свойства непрерывного и дискретного изображений.

Двумерный непрерывный частотный спектр непрерывного сигнала определяется двумерным прямым преобразованием Фурье:

Которому отвечает двумерное обратное непрерывное преобразование Фурье:

Последнее соотношение верно при любых значениях , в том числе и в узлах прямоугольной решетки . Поэтому для значений сигнала в узлах, учитывая (9.1), соотношение (9.3) можно записать в виде:

Обозначим для краткости через прямоугольный участок в двумерной частотной области

Вычисление интеграла в (1.4) по всей частотной области можно заменить интегрированием по отдельным участкам и суммированием результатов:

Выполняя замену переменных по правилу , добиваемся независимости области интегрирования от номеров и :

Здесь учтено, что при любых целых значениях и . Данное выражение по своей форме очень близко к обратному преобразованию Фурье. Отличие состоит лишь в неправильном виде экспоненциального множителя. Для придания ему необходимого вида введем нормированные частоты и выполним в соответствии с этим замену переменных. В результате получим:

(9.5)

Теперь выражение (5) имеет форму обратного преобразования Фурье, следовательно стоящая под знаком интеграла функция

(9.6)

Является двумерным спектром дискретного изображения. В плоскости ненормированных частот выражение (9.6) имеет вид:

(9.7)

Из (9.7) следует, что двумерный спектр дискретного изображения является прямоугольно периодическим с периодами и по осям частот и соответственно. Спектр дискретного изображения образуется в результате суммирования бесконечного количества спектров непрерывного изображения, отличающихся друг от друга частотными сдвигами и . Рис.9.2 качественно показывает соотношение между двумерными спектрами непрерывного (рис.9.2.а) и дискретного (рис.9.2.б) изображений.






а)

б)

Рис. 9.2. Частотные спектры непрерывного и дискретного изображений

Сам результат суммирования существенно зависит от значений этих частотных сдвигов, или, иными словами, от выбора интервалов дискретизации . Допустим, что спектр непрерывного изображения отличен от нуля в некоторой двумерной области в окрестности нулевой частоты, т. е. описывается двумерной финитной функцией. Если при этом интервалы дискретизации выбраны так, что при , , то наложения отдельных ветвей при формировании суммы (9.7) происходить не будет. Следовательно, в пределах каждого прямоугольного участка от нуля будет отличаться лишь одно слагаемое. В частности, при имеем:

при
, . (9.8)

Таким образом, в пределах частотной области спектры непрерывного и дискретного изображений с точностью до постоянного множителя совпадают. При этом спектр дискретного изображения в этой частотной области содержит полную информацию о спектре непрерывного изображения. Подчеркнем, что данное совпадение имеет место лишь при оговоренных условиях, определяемых удачным выбором интервалов дискретизации. Отметим, что выполнение этих условий, согласно (9.8), достигается при достаточно малых значениях интервалов дискретизации , которые должны удовлетворять требованиям:

, , (9.9)

В которых - граничные частоты двумерного спектра.

Соотношение (9.8) определяет способ получения непрерывного изображения из дискретного . Для этого достаточно выполнить двумерную фильтрацию дискретного изображения низкочастотным фильтром с частотной характеристикой

Спектр изображения на его выходе содержит ненулевые компоненты лишь в частотной области и равняется, согласно (9.8), спектру непрерывного изображения . Это означает, что изображение на выходе идеального фильтра низких частот совпадает с .

Таким образом, идеальное интерполяционное восстановление непрерывного изображения выполняется при помощи двумерного фильтра с прямоугольной частотной характеристикой (9.10). Нетрудно записать в явном виде алгоритм восстановления непрерывного изображения. Двумерная импульсная характеристика восстанавливающего фильтра, которую легко получить при помощи обратного преобразования Фурье от (9.10), имеет вид:

.

Продукт фильтрации может быть определен при помощи двумерной свертки входного изображения и данной импульсной характеристики. Представив входное изображение в виде двумерной последовательности -функций

После выполнения свертки находим:

(9.11)

Полученное соотношение указывает способ точного интерполяционного восстановления непрерывного изображения по известной последовательности его двумерных отсчетов. Согласно этому выражению для точного восстановления в роли интерполирующих функций должны использоваться двумерные функции вида . Соотношение (9.11) представляет собой двумерный вариант теоремы Котельникова-Найквиста.

Подчеркнем еще раз, что эти результаты справедливы, если двумерный спектр сигнала является финитным, а интервалы дискретизации достаточно малы. Справедливость сделанных выводов нарушается, если хотя бы одно из этих условий не выполняется. Реальные изображения редко имеют спектры с ярко выраженными граничными частотами. Одной из причин, приводящих к неограниченности спектра, является ограниченность размеров изображения. Из-за этого при суммировании в (9.7) в каждой из зон проявляется действие слагаемых из соседних спектральных зон. При этом точное восстановление непрерывного изображения становится вообще невозможным. В частности, не приводит к точному восстановлению и использование фильтра с прямоугольной частотной характеристикой.

Особенностью оптимального восстановления изображения в промежутках между отсчетами является использование всех отсчетов дискретного изображения, как это предписывается процедурой (9.11). Это не всегда удобно, часто требуется восстанавливать сигнал в локальной области, опираясь на некоторое небольшое количество имеющихся дискретных значений. В этих случаях целесообразно применять квазиоптимальное восстановление при помощи различных интерполирующих функций. Такого рода задача возникает, например, при решении проблемы привязки двух изображений, когда из-за геометрических расстроек этих изображений имеющиеся отсчеты одного из них могут соответствовать некоторым точкам, находящимся в промежутках между узлами другого. Решение этой задачи более подробно обсуждается в последующих разделах данного пособия.






а)

б)





в)

г)

Рис. 9.3. Влияние интервала дискретизации на восстановление изображения «Отпечаток пальца»

Рис. 9.3 иллюстрирует влияние интервалов дискретизации на восстановление изображений. Исходное изображение, представляющее собой отпечаток пальца, приведено на рис. 9.3.а, а одно из сечений его нормированного спектра - на рис. 9.3.б. Данное изображение является дискретным, а в качестве граничной частоты использовано значение . Как следует из рис. 9.3.б, значение спектра на этой частоте пренебрежимо мало, что гарантирует качественное восстановление. По сути дела, наблюдаемая на рис. 9.3.а картина и является результатом восстановления непрерывного изображения, а роль восстанавливающего фильтра выполняет устройство визуализации - монитор или принтер. В этом смысле изображение рис. 9.3.а может рассматриваться как непрерывное.

Рис. 9.3.в,г показывают последствия от неправильного выбора интервалов дискретизации. При их получении осуществлялась “дискретизация непрерывного” изображения рис. 9.3.а путем прореживания его отсчетов. Рис. 3.в соответствует увеличению шага дискретизации по каждой координате в три, а рис. 9.3.г - в четыре раза. Это было бы допустимо, если бы значения граничных частот были ниже в такое же число раз. В действительности, как видно из рис.9.3.б, происходит нарушение требований (9.9), особенно грубое при четырехкратном прореживании отсчетов. Поэтому восстановленные при помощи алгоритма (9.11) изображения оказываются не только расфокусированными, но и сильно искажают текстуру отпечатка.





а)

б)





в)

г)

Рис. 9.4. Влияние интервала дискретизации на восстановление изображения «Портрет»

На рис. 9.4 приведена аналогичная серия результатов, полученных для изображения типа “портрет”. Последствия более сильного прореживания (в четыре раза на рис. 9.4.в и в шесть раз на рис. 9.4.г) проявляются в основном в потере четкости. Субъективно потери качества представляются менее значительными, чем на рис. 9.3. Это находит свое объяснение в значительно меньшей ширине спектра, чем у изображения отпечатка пальца. Дискретизация исходного изображения соответствует граничной частоте . Как видно из рис. 9.4.б, это значение намного превышает истинное значение . Поэтому увеличение интервала дискретизации, иллюстрируемое рис. 3.в,г, хотя и ухудшает картину, все же не приводит к таким разрушительным последствиям, как в предыдущем примере.
^ 9.3. Квантование изображений

При цифровой обработке изображений непрерывный динамический диапазон значений яркости делится на ряд дискретных уровней. Эта процедура называется квантованием. Квантователь преобразует непрерывную переменную в дискретную переменную , принимающую конечное множество значений . Эти значения называются уровнями квантования. В общем случае преобразование выражается ступенчатой функцией (рис. 9.5). Если яркость отсчета изображения принадлежит интервалу (т.е., когда ), то исходный отсчет заменяется на уровень квантования , где - пороги квантования. При этом полагается, что динамический диапазон значений яркости ограничен и равен .


Рис. 9.5.Функция, описывающая квантование
Задача построения квантователя состоит в определении значений порогов и уровней . Простейший способ решения этой задачи состоит в разбиении динамического диапазона на одинаковые интервалы. Однако такое решение не является наилучшим. Если значения яркости большинства отсчетов изображения сгруппированы, например, в «темной» области и число уровней ограничено, то целесообразно квантовать неравномерно. В «темной» области следует квантовать чаще, а в «светлой» реже. Это позволит уменьшить ошибку квантования .

Таким образом, задачу построения квантователя можно сформулировать как задачу нахождения оптимальных значений и , удовлетворяющих некоторому критерию оптимизации. Обычно при фиксированном числе уровней квантователь оптимизируется по критерию минимальной среднеквадратической ошибки

, (9.12)

В предположении, что яркость - случайная величина с известной плотностью вероятности .

Cреднеквадратическая ошибка квантования (9.12) равна

. (9.13)

Дифференцируя (9.13) по переменным , и приравнивая производные нулю, получаем нелинейных уравнений

.

Следует отметить, что крайние пороги и определяются динамическим диапазоном яркости. Уравнения (9.14) нетрудно привести к виду

.

Из (9.15) следует, что пороги должны располагаться по середине между двумя соседними уровнями и . Решение этих уравнений можно найти итеративным способом. Оптимальный квантователь, удовлетворяющий критерию (9.12), называется квантователем Ллойда-Макса, а среднеквадратическая ошибка для такого квантователя равна

(9.16)

При равномерном распределении яркости нелинейные уравнения (9.15) можно представить в виде

,

А среднеквадратическая ошибка равна
.

В системах цифровой обработки изображений стремятся уменьшить число уровней и порогов квантования, т.к. от их количества зависит длина двоичного кодового слова, которым представляются проквантованные отсчеты в ЭВМ. Однако при относительно небольшом числе уровней на проквантованном изображении появляются ложные контуры. Они возникают вследствие скачкообразного изменения яркости проквантованного изображения (рис.9.6) и особенно заметны на пологих участках ее изменения.

Ложные контуры значительно ухудшают визуальное качество изображения, т.к. зрение человека особенно чувствительно именно к контурам. При равномерном квантовании типичных изображений требуется не менее 64 уровней. На рис. 9.7 .а и 9.7.б приведены результаты равномерного квантования изображения «Портрет» соответственно на 256 и 14 уровней квантования.

Рис. 9.6. К механизму возникновения ложных контуров

В темных частях изображения заметны ложные контуры. Использование квантователя Ллойда-Макса позволяет существенно снизить их уровень (рис. 9.8, где число уровней квантования также равно 14). На рис. 9.9 приведена гистограмма яркости изображения «Портрет» при 256 уровнях квантования и отмечены пороги при . Из рисунка следует, что чаще квантуются те области динамического диапазона, в которых сгруппированы значения яркости отсчетов.

Чтобы избежать неравномерного квантования, которое не может быть выполнено с помощью стандартного АЦП, используют нелинейные преобразования (рис. 9.10). Отсчет исходного изображения подвергается нелинейному преобразованию, чтобы плотность распределения вероятностей преобразованных отсчетов была равномерной, т.е. выполняется процедура эквализации. Затем отсчеты квантуются с равномерным шагом и подвергаются обратному нелинейному преобразованию.



Рис.9.10. Квантование с предварительным нелинейным преобразованием
Для разрушения ложных контуров Робертс предложил перед равномерным квантованием к отсчетам яркости добавлять шум с равномерной плотностью распределения вероятностей. Добавленный шум переводит одни отсчеты изображения на уровень выше, а другие на уровень ниже. Тем самым разрушаются ложные контуры. Дисперсия добавляемого шума должна быть небольшой, чтобы не привести к искажениям, воспринимаемым как «снег» на изображении, и в то же время достаточной для разрушения ложных контуров. Обычно используют равномерно распределенный шум на интервале . Результаты равномерного квантования на 14 и 8 уровней изображения «Портрет» с предварительным добавлением шума приведены на рис.9.11.а и 9.11.б. При 8-ми уровнях квантования добавляемый шум становится слишком заметным, однако ложные контуры разрушены практически полностью.

Еще один метод квантования используется в полиграфии. Это метод формирования растровых бинарных (2-х уровневых) изображений из полутоновых. При печати (например, газет или журналов) изображение формируется из белых и черных точек. Для этого все исходное изображение разбивается по пространственным координатам на одинаковые квадратные блоки. Обычно блок содержит элементов. К каждому отсчету блока добавляется число с соответствующими координатами из матрицы возмущающего сигнала, размеры которой равны размерам блока. Например, в качестве матрицы возмущающего сигнала используют числа:

.

Эта операция повторяется для всех блоков. Получаемое при этом изображение квантуется на два уровня. На рис. 9.12.а приведено полутоновое изображение «Портрет» с добавленным возмущающим сигналом. На рис. 9.12.б,в приведены результаты бинарного квантования изображения «Портрет» с добавленным возмущающим сигналом (рис.9.13.б) и без него (рис.9.13.в).






б)

в)

Рис.9.12.Растрирование изображений

Бинарное растровое изображение обеспечивает значительно лучшее зрительное впечатление, чем обычное бинарное изображение. Передача шкалы яркости при растрировании достигается благодаря изменению геометрических размеров белого пятна, наблюдаемого на черном фоне. Если в блоке сгруппировались «светлые» отсчеты, то геометрические размеры белого пятна максимальны и равны размеру блока. При уменьшении яркости его геометрические размеры также уменьшаются. Глаз человека выполняет локальное усреднение, создавая иллюзию наблюдения полутонового изображения. Процедура растрирования особенно эффективна при печати изображений с высоким разрешением, когда одиночное пятно едва различимо глазом.

^ 9.4 Препарирование изображения

Препарирование представляет собой целый класс поэлементных преобразований изображений. Характеристики применяемых на практике процедур препарирования приведены на рис.9.13. Остановимся на описании некоторых из них.

Преобразование с пороговой характеристикой (рис. 9.13.а) превращает полутоновое изображение, содержащее все уровни яркости, в бинарное, точки

Которого имеют яркости или . Такая операция, называемая иногда бинаризацией или бинарным квантованием, может быть полезной, когда для наблюдателя важны очертания объектов, присутствующих на изображении,

А детали, содержащиеся внутри объектов или внутри фона, не представляют интереса. Основной проблемой при проведении такой обработки является определение порога , сравнение с которым яркости исходного изображения позволяет определить значение выходного изображения в каждой его точке. Наиболее оправданным для математического описания изображения является применение теории вероятностей, случайных процессов и случайных полей. При этом определение оптимального порога бинарного квантования представляет собой статистическую задачу. Статистическому подходу к обработке изображений в последующих разделах уделяется значительное внимание, в том числе и при решении задачи разделения точек изображения на два класса так называемой бинарной сегментации. Здесь же ограничимся обсуждением частного, но практически важного случая. Иногда при обработке приходится иметь дело с изображениями, хранимыми как полутоновые, но по своему содержанию мало отличающимися от бинарных.








а)

б)

в)







г)

д)

е)







ж)

з)

и)



к)

Рис. 9.13 Примеры преобразований, используемых при препарировании



Рис. 9.14. К выбору порога бинарного квантования

К ним относятся текст, штриховые рисунки, чертежи, изображение отпечатка пальца, пример которого приведен на рис.9.15.а. Плотность вероятности , описывающая распределение яркости такого изображения, может содержать два хорошо разделяющихся пика. Интуитивно понятно, что порог бинарного квантования следует выбирать посредине провала между этими пиками, как это показано на рис.9.14. Замена исходного полутонового изображения бинарным препаратом решает две основные задачи. Во-первых, достигается бóльшая наглядность при визуальном восприятии, чем у исходного изображения. Во-вторых, ощутимо сокращается объем запоминающего устройства для хранения изображения, поскольку бинарный препарат для записи каждой точки бинарного изображения требует лишь 1 бит памяти, в то время как полутоновое изображение для решения той же задачи при наиболее часто применяемом формате представления - 8 бит. Пример бинаризации изображения отпечатка пальца приведен на рис.9.15.б.

Смысл других преобразований, представленных на рис. 9.13, нетрудно понять, рассматривая их характеристики. Например, преобразование рис. 9.13.б выполняет яростный срез изображения, выделяя те его участки, где яркость соответствует выделенному интервалу. При этом остальные участки оказываются полностью “погашенными” (имеют яркость, соответствующую уровню черного). Перемещая выделенный интервал по яркостной шкале и изменяя его ширину, можно детально исследовать содержание картины.






Рис.9.15. Пример бинаризации изображения

Преобразование, приведенное на рис.9.13.ж, также позволяет повысить детальность наблюдаемой картины в выбранном диапазоне яркостей, однако в отличие от предыдущего здесь выходное изображение использует полный динамический диапазон. По существу, это преобразование представляет собой линейное контрастирование, применяемое к избранному диапазону входного изображения. Как и в предыдущем варианте, участки, не попавшие в этот диапазон, образуют после препарирования черный фон.

Иногда наглядность изображения повышается применением преобразования типа пилообразного контрастирования. При этом различные яркостные диапазоны одновременно подвергаются локальному яркостному контрастированию. Однако необходимо иметь в виду, что данное преобразование, как и некоторые другие, может сопровождаться появлением ложных контуров на получаемом препарате.

Аналогично можно качественно рассмотреть и остальные процедуры препарирования, представленные на рис 9.13.

На рис. 9.16 приведены результаты эксперимента, в котором к аэроснимку участка земли (рис, 9.16.а) применялись преобразования типа пороговая обработка (рис. 9.16.б) и пилообразное контрастирование (рис. 9.16.в). Первое приводит к выявлению границ отдельных участков, создавая общее интегральное представление о наблюдаемой сцене. Второе, наоборот, дает возможность наблюдения мелких деталей на всех участках изображения. Сочетание двух таких возможностей может оказаться полезным наблюдателю.






а)

б)



в)

Рис. 9.16. Примеры препарирования изображения

В заключение отметим, что препарирование часто используется и в автоматических системах обработки визуальной информации, поскольку подготавливаемый при этом препарат может содержать всю информацию, необходимую для последующей (вторичной) обработки. Например, если при наблюдении из космоса требуется автоматически обнаружить на изображении некоторый объект, имеющий известную конфигурацию, то для этого может быть достаточно бинарного препарата, передающего эту конфигурацию.

В предыдущей главе мы изучали линейные пространственно-инвариантные системы в непрерывной двумерной области. На практике мы имеем дело с изображениями, которые имеют ограниченные размеры и в то же время отсчитываются в дискретном наборе точек. Поэтому методы, разработанные до сих пор, необходимо приспособить, расширить и модифицировать так, чтобы их можно было применить и в такой области. Возникает также и несколько новых моментов, требующих аккуратного рассмотрения.

Теорема отсчетов говорит о том, при каких условиях по дискретному набору значений можно точно восстановить непрерывное изображение. Мы также узнаем, что происходит, когда условия ее применимости не выполняются. Все это имеет прямое отношение к разработке зрительных систем.

Методы, требующие перехода к частотной области, стали популярными частично благодаря алгоритмам быстрого вычисления дискретного преобразования Фурье. Однако нужно соблюдать осторожность, поскольку эти методы предполагают наличие периодического сигнала. Мы обсудим, как можно удовлетворить этому требованию и к чему приводит его нарушение.

7.1. Ограничение размеров изображения

На практике изображения всегда имеют конечные размеры. Рассмотрим прямоугольное изображение шириной и высотой Я. Теперь нет необходимости брать интегралы в преобразовании Фурье в бесконечных пределах:

Любопытно, что для восстановления функции нам необязательно знать на всех частотах. Знание того, что при представляет собой жесткое ограничение. Иными словами, функция, отличная от нуля только в ограниченной области плоскости изображения, содержит гораздо меньше информации, чем функция, не обладающая этим свойством.

Чтобы в этом убедиться, представим, что плоскость экрана покрыта копиями заданного изображения. Иными словами, мы расширяем наше изображение до периодической в обоих направлениях функции

Здесь - наибольшее целое число, не превосходящее х. Преобразование Фурье такого размноженного изображения имеет вид

С помощью подходящим образом подобранных множителей сходимости в упр. 7.1 доказывается, что

Следовательно,

откуда мы видим, что равна нулю всюду, кроме дискретного набора частот Таким образом, чтобы найти нам достаточно знать в этих точках. Однако функция получается из простым отсечением участка, для которого . Поэтому, чтобы восстановить нам достаточно знать лишь для всех Это - счетное множество чисел.

Обратите внимание на то, что преобразование периодической функции оказывается дискретным. Обратное преобразование можно представить в виде ряда, поскольку




Top