Спектральные и корреляционные свойства сигнала

Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем следующее скалярное произведение сигналов:

B su () =s(t) u(t+) dt. (6.2.1)

Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой “устойчивости” данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом:

|B su ()|  ||s(t)||||u(t)||,

что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам.

При замене переменной t = t- в формуле (6.2.1), получаем:

B su () =s(t-) u(t) dt = u(t) s(t-) dt = B us (-).

Отсюда следует, что для ВКФ не выполняется условие четности, B su ()  B su (-), и значения ВКФ не обязаны иметь максимум при  = 0.

Рис. 6.2.1. Сигналы и ВКФ.

Это можно наглядно видеть на рис. 6.2.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений  означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+)). При =0 сигналы ортогональны и значение B 12 ()=0. Максимум В 12 () будет наблюдаться при сдвиге сигнала s2(t) влево на значение =1, при котором происходит полное совмещение сигналов s1(t) и s2(t+).

Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1") наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал  сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно сигнала u(t) влево, т.е. B su () = B us (-

Рис. 6.2.2. Взаимноковариационные функции сигналов.

На рис. 6.2.2 приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2.

Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при =0, что и фиксируется функцией B su . Вместе с тем функция B su резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака  при увеличения значения  от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига – функция B sv на рис. 6.2.2. Если поменять местами выражения функций в (6.2.1), то новая функция B vs будет зеркально повернутой относительно =0 функцией B sv .

С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний:

B su () =s(t) u(t+) dt. B us () =u(t) s(t+) dt. (6.2.1")

Взаимная корреляция зашумленных сигналов . Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде:

B uv () = B s1s2 () + B s1q2 () + B q1s2 () + B q1q2 (). (6.2.2)

Последние три члена в правой части (6.2.2) затухают до нуля при увеличении . При больших интервалах задания сигналов выражение может быть записано в следующей форме:

B uv () = B s 1 s 2 () +
+
+
. (6.2.3)

При нулевых средних значениях шумов и статистической независимости от сигналов имеет место:

B uv () → B s 1 s 2 ().

ВКФ дискретных сигналов. Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы 6.1.9-6.1.12). В частности, при t = const =1 для сигналов x(k) и y(k) с числом отсчетов К:

B xy (n) =
x k y k-n . (6.2.4)

При нормировании в единицах мощности:

B xy (n) = x k y k-n 
. (6.2.5)

Оценка периодических сигналов в шуме . Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения.

Для сигнала u(k)=s(k)+q(k) при статистической независимости шума и → 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p(k) при q2(k)=0 принимает вид:

B up (k) = B sp (k) + B qp (k) = B sp (k) + .

А поскольку → 0 при увеличении N, тоB up (k) → B sp (k). Очевидно, что функция B up (k) будет иметь максимум, когда p(k) = s(k). Меняя форму шаблона p(k) и добиваясь максимизации функции B up (k), можно получить оценку s(k) в виде оптимальной формы p(k).

Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэффициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t):

 su () = C su ()/ s  v . (6.2.6)

Интервал изменения значений корреляционных коэффициентов при сдвигах  может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах , на которых наблюдаются нулевые значения  su (), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины.

При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений  su (n)| > 1.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем.

Функции корреляции сигналов применяются для интегральных количественных оценок формы сигналов и степени их сходства друг с другом.

Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

B s (t) = s(t) s(t+t) dt. (2.25)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала:

B s (0) =s(t) 2 dt = E s .

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t-t в выражении (2.25):

B s (t) =s(t-t) s(t) dt = s(t) s(t-t) dt = B s (-t). (2.25")

С учетом четности, графическое представление АКФ производится только для положительных значений t. На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак +t в выражении (2.25) означает, что при увеличении значений t копия сигнала s(t+t) сдвигается влево по оси t и уходит за 0, что требует соответствующего продления сигнала в область отрицательных значений аргумента. А так как при вычислениях интервал задания t, как правило, много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.25) функции s(t-t) вместо s(t+t).

По мере увеличения значения величины сдвига t для финитных сигналов временное перекрытие сигнала с его копией уменьшается и скалярное произведение стремятся к нулю.

Пример. На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

При сдвиге копии импульса по оси t вправо, при 0≤t≤T сигналы перекрываются на интервале от t до Т. Скалярное произведение:

B s (t) =A 2 dt = A 2 (T-t).

При сдвиге копии импульса влево, при -T≤t<0 сигналы перекрываются на интервале от 0 до Т-t. Скалярное произведение:

B s (t) = A 2 dt = A 2 (T+t).

При |t| > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).

Обобщая вычисления, можем записать:

B s (t) = .

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах периода:



B s (t) = (1/Т)s(t) s(t-t) dt.

При t=0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т. АКФ периодических сигналов также является периодической функцией с тем же периодом Т. Для однотонального гармонического сигнала это очевидно. Первое максимальное значение АКФ будет соответствовать t=0. При сдвиге копии сигнала на четверть периода относительно оригинала подынтегральные функции становятся ортогональными друг другу (cos w o (t-t) = cos (w o t-p/2) º sin w o t) и дают нулевое значение АКФ. При сдвиге на t=T/2 копия сигнала по направлению становится противоположной самому сигналу и скалярное произведение достигает минимального значения. При дальнейшем увеличении сдвига начинается обратный процесс увеличения значений скалярного произведения с пересечением нуля при t=3T/2 и повторением максимального значения при t=T=2p/w o (cos w o t-2p копии º cos w o t сигнала). Аналогичный процесс имеет место и для периодических сигналов произвольной формы (рис. 2.11).

Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ.

Для сигналов, заданных на определенном интервале , вычисление АКФ производится с нормировкой на длину интервала :

B s (t) =s(t) s(t+t) dt. (2.26)

Автокорреляция сигнала может оцениваться и функцией автокорреляционных коэффициентов, вычисление которых производится по формуле (по центрированным сигналам):

r s (t) = cos j(t) = ás(t), s(t+t)ñ /||s(t)|| 2 .

Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной), для чего используется та же формула (2.25), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время t:

B 12 (t) = s 1 (t) s 2 (t+t) dt. (2.27)

При замене переменной t = t-t в формуле (2.4.3), получаем:

B 12 (t) =s 1 (t-t) s 2 (t) dt =s 2 (t) s 1 (t-t) dt = B 21 (-t)

Рис. 2.12. Сигналы и ВКФ

Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при t = 0. Это можно наглядно видеть на рис. 2.12, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.27) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)).

При t=0 сигналы ортогональны и значение B 12 (t)=0. Максимум В 12 (t) будет наблюдаться при сдвиге сигнала s2(t) влево на значение t=1, при котором происходит полное совмещение сигналов s1(t) и s2(t+t). При вычислении значений B 21 (-t) аналогичный процесс выполняется последовательным сдвигом сигнала s1(t) вправо по временной оси с постепенным увеличением отрицательных значений t, а соответственно значения B 21 (-t) являются зеркальным (относительно оси t=0) отображением значений B 12 (t), и наоборот. На рис. 2.13 это можно видеть наглядно.

Рис. 2.13. Сигналы и ВКФ

Таким образом, для вычисления полной формы ВКФ числовая ось t должна включать отрицательные значения, а изменение знака t в формуле (2.27) равносильно перестановке сигналов.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода систем при изучении характеристик систем.

Функция коэффициентов взаимной корреляции двух сигналов вычисляется по формуле (по центрированным сигналам):

r sv (t) = cos j(t) = ás(t), v(t+t)ñ /||s(t)|| ||v(t)||. (2.28)

Значение коэффициентов взаимной корреляции может изменяться от -1 до 1.

Литература: [Л.1], с 77-83

[Л.2], с 22-26

[Л.3], с 39-43

Во многих радиотехнических задачах часто возникает необходимость сравнения сигнала и его копии, сдвинутой на некоторое время

При снятии АКФ на один из входов перемножителя поступает сигнал , а на второй – этот же сигнал, но задержанный на время . Сигнал, пропорциональный произведению , подвергается операции интегрирования. На выходе интегратора формируется напряжение, пропорциональное значению АКФ при фиксированном . Изменяя время задержки, можно построить АКФ сигнала.

Для экспериментального построения ВКФ сигнал подается на один из входов перемножителя, а сигнал – на устройство задержки (входящие цепи показаны пунктиром). В остальном, устройство работает аналогичным образом. Отметим, что описанное устройство называется коррелятором и широко используется в различных радиотехнических системах для приема и обработки сигналов.

До сих пор мы проводили корреляционный анализ непериодических сигналов, обладающих конечной энергией. Вместе с тем, необходимость подобного анализа часто возникает и для периодических сигналов, которые теоретически обладают бесконечной энергией, но конечной средней мощностью. В этом случае АКФ и ВКФ вычисляются усреднением по периоду и имеют смысл средней мощности (собственной или взаимной соответственно). Таким образом, АКФ периодического сигнала:

, (2.66)

а взаимная корреляционная функция двух периодических сигналов с кратными периодами:

, (2.67)

где – наибольшее значение периода.

Найдем автокорреляционную функцию гармонического сигнала

,

где – круговая частота, – начальная фаза.

Подставляя это выражение в (2.66) и вычисляя интеграл с использованием известного тригонометрического соотношения:

.

Из рассмотренного примера можно сделать следующие выводы, справедливые для любого периодического сигнала.

1. АКФ периодического сигнала является периодической функцией с тем же периодом.

2. АКФ периодического сигнала является четной функцией аргумента .

3. При значение представляет собой среднюю мощность, которая выделяется на сопротивлении в 1 Ом и имеет размеренность .

4. АКФ периодического сигнала не содержит информации о начальной фазе сигнала.

Следует также отметить, что интервал корреляции периодического сигнала .

А теперь вычислим взаимную корреляционную функцию двух гармонических сигналов одинаковой частоты, но отличающихся амплитудами и начальными фазами

и .

Воспользовавшись (2.67) и проводя несложные вычисления, получим

,

где – разность начальных фаз сигналов и .

Таким образом, взаимная корреляционная функция двух рассматриваемых сигналов содержит информацию о разности начальных фаз. Это важное свойство широко используется при построении различных радиотехнических устройств, в частности, устройств синхронизации некоторых систем радиоавтоматики и других.

В заключение установим связь между АКФ непериодического сигнала и его энергетическим спектром, определение которого [см. (2.51)] было дано выше. Для этого воспользуемся (2.49) при . Тогда получим соотношение

где – функция, комплексно сопряженная с .

Положим теперь и . В соответствии с (2.45) преобразование Фурье имеет вид

С другой стороны

.

Подставляя эти выражения в (2.68), получим

.

Но в соответствие с (2.51) есть энергетический спектр. Тогда окончательно

. (2.69)

Применяя к прямое преобразование Фурье, приходим к соотношению

. (2.70)

Таким образом, АКФ и энергетический спектр сигнала связаны парой преобразований Фурье.

Так как и – вещественные и четные функции, выражения (2.69) и (2.70) можно записать соответственно в виде

, (2.71)

. (2.72)

Рассмотренный корреляционно-спектральный анализ позволяет дать еще одну трактовку эффективной ширины спектра. Если известен энергетический спектр, то эффективная ширина спектра определяется так:

. (2.73)

Иными словами представляет собой сторону прямоугольника по площади равного площади под кривой одностороннего спектра, вторая сторона которого равна (рис.2.13). Очевидно, произведение эффективной ширины энергетического спектра на величину интервала корреляции есть величина постоянная

.

Таким образом, и в этом случае мы сталкиваемся с проявлением принципа неопределенности: чем больше интервал корреляции, тем меньше ширина энергетического спектра, и наоборот.

Контрольные вопросы к главе 2

1. Что такое система базисных тригонометрических функций?

2. Как можно записать тригонометрический ряд Фурье?

3. Дайте определение амплитудного и фазового спектра периодического сигнала.

4. Какой характер носит спектр последовательности прямоугольных импульсов?

5. Чем отличается спектр одиночного импульса от спектра периодической последовательности импульсов?

6. Запишите прямое и обратное преобразование Фурье.

7. Как найти эффективную длительность и эффективную ширину спектра прямоугольного сигнала?

8. Что представляет собой спектр сигнала в виде дельта-функции?

9. Дайте определение автокорреляционной функции детерминированного сигнала.

10. Что такое взаимная корреляционная функция двух сигналов?

11. Как найти коэффициент взаимной корреляции?

12. Какими свойствами обладает автокорреляционная функция периодического сигнала?

Распределения Релея и Райса характеризуют замирания сигнала не в полной мере. В частности, они не дают представление о том, как протекает процесс замирания сигнала во времени. Допустим, что процесс рассматривается в два момента времени t и t +t, где t - задержка. Тогда статистическая связь замираний дается функцией корреляции, которая определяется следующим образом.

Предположим, что рассматриваемый процесс является стационарным. Это значит, что его статистические параметры, такие как среднее, дисперсия и взаимная корреляция, не зависят от времени t . Для узкополосного процесса (2.3.37) получаем функцию корреляции в виде

Введем функции корреляции квадратурных сигналов:

Теперь выражение (2.3.61) преобразуем к виду

Для дальнейшего преобразования (2.3.63) воспользуемся тригонометрическими соотношениями.

(2.3.64)

В результате получим, что

Поскольку процесс является стационарным, функция корреляции не должна зависеть от времени. Это требование может быть выполнено, если второе и четвертое слагаемые в (2.3.65) равны нулю, что, в свою очередь, возможно, если функции корреляции квадратурных сигналов удовлетворяют следующим соотношениям:

Таким образом, функция корреляции стационарного нормального узкополосного сигнала равна

Покажем, что функция корреляции является нечетной функцией t. Для этого учтем, что

Подставим (2.3.68) во вторую формулу в (2.3.66) и находим, что

. (2.3.69)

Таким образом, функция взаимной корреляции квадратурных сигналов является нечетной. Отсюда следует важный результат, что в совпадающий момент времени квадратурные сигналы не коррелированны, то есть .

Рассмотрим теперь корреляцию комплексной амплитуды

По определению функции корреляции можно записать, что

. (2.3.71)

Функция комплексная и обладает свойством симметрии, т.е.

. (2.3.72)

Подставим (2.3.70) в (2.3.71) и учтем (2.3.62). Тогда (2.3.71) принимает вид

Если учесть (2.3.66), то эта формула существенно упрощается:

Функция корреляции (2.3.67) узкополосного сигнала и функция корреляции (2.3.74) его комплексной амплитуды взаимосвязаны. Эта связь легко выявляется из сравнения (2.3.67) и (2.3.74). В результате будем иметь



Корреляционные свойства сигнала тесно связаны с его спектральными свойствами. В частности, спектральная плотность мощности находится с помощью преобразования Фурье от корреляционной функции и равна

. (2.3.76)

Покажем, что - действительная функция, в то время как корреляционная функция является комплексной. Для этого возьмем комплексное сопряжение от выражения (2.3.76) и учтем свойство симметрии (2.3.72) функции корреляции. В результате получим, что

Сравнивая (2.3.77) с (2.3.76) имеем, что . Это доказывает, что спектр комплексной амплитуды является действительной функцией.

Далее будет показано, что спектр комплексной амплитуды сигнала, описывающего замирания в многолучевом канале, является четной действительной функцией частоты, т.е. . Тогда функция корреляции становится действительной. Чтобы это доказать, запишем функцию корреляции в виде обратного преобразования Фурье от спектральной плотности мощности в виде

. (2.3.78)

Возьмем комплексное сопряжение выражения (2.3.78) и учтем четность функции . Получим, что

Сравнивая (2.3.79) с (2.3.78) имеем, что . Это доказывает, что функция корреляции комплексной амплитуды с действительным спектром в виде четной функции является действительной функцией.

Учитывая действительность функции корреляции, из (2.3.74) находим, что

. (2.3.80)

С помощью (2.3.75) получим функцию корреляции узкополосного сигнала в виде

Теперь поставим задачу, найти в явном виде спектр и функцию корреляции, которые описывают замирания сигнала в многолучевом канале. Снова рассмотрим два момента времени t и t +t. Если за время t передатчик, приемник и переотражатели не изменяют свое местоположение и сохраняют свои параметры, то суммарный сигнал в приемнике не изменяется. Чтобы происходили замирания сигнала, необходимо взаимное перемещение передатчика, приемника и (или) переотражателей. Только в этом случае наблюдается изменение амплитуд и фаз сигналов, суммирующихся на входе приемной антенны. Чем быстрее происходит это движение, тем с большей скоростью происходят замирания сигнала и, следовательно, более широким должен быть его спектр.

Будем считать, что приемник движется со скоростью v , а передатчик остается неподвижным. Если антенна передатчика излучает гармонический сигнал некоторой частоты f , то из-за эффекта Доплера приемник регистрирует сигнал другой частоты. Разница между этими частотами называется доплеровским смещением частоты. Чтобы найти величину смещения частоты, рассмотрим рис. 2.16, где изображены передатчик, приемник, волновой вектор k плоской волны и вектор v скорости приемника.

Рис. 2.16. К определению доплеровского смещения частоты

Уравнение равномерного движения приемника запишем в виде

Тогда фаза принимаемого сигнала будет функцией времени

где q - угол между вектором скорости и волновым вектором.

Мгновенная частота определяется как производная от фазы. Поэтому, дифференцируя (2.3.83) и учитывая, что волновое число , будем иметь

. (2.3.84)

При равномерном движении приемника, как следует из (2.3.84), наблюдается смещение частоты, равное

Для примера предположим, что скорость v =72 км/ч = 20 м/с, частота передатчика f =900 МГц, а угол q=0. Длина волны l и частота f связаны через скорость света с соотношением с =fl . Отсюда имеем, что l=c /f =0.33 м. Теперь из (2.3.85) находим, что доплеровское смещение частоты f d =60 Гц.

Доплеровское смещение частоты (2.3.85) принимает как положительные, так и отрицательные значения, в зависимости от угла q между вектором скорости и волновым вектором. Величина доплеровского смещения не превышает максимального значения, равного f max =v /l. Формулу (2.3.85) удобно представить в виде

. (2.3.86)

Когда имеется много переотражателей, то естественно предположить, что они располагаются вокруг приемника равномерно, например, по окружности, как показано на рис. 2.17. Такая модель переотражателей называется моделью Кларка.

Рис. 2.17. Расположение переотражателей в моделе Кларка

Спектральная плотность мощности в случае модели Кларка определяется следующим путем. Выделим интервал частот df d вблизи частоты f d . Заключенная в этом интервале принимаемая мощность равна . Эта мощность обусловлена доплеровским смещением частоты (2.3.86). Рассеянная мощность, связанная с угловым интервалом d q, равна , где - угловая плотность рассеянной мощности. Заметим, что одинаковое доплеровское смещение f d наблюдается для переотражетелей с угловыми координатами ±q. Отсюда вытекает следующее равенство мощностей

Будем полагать, что полная рассеянная мощность равна единице и равномерно распределена в интервале .

Рис. 2.18. Доплеровским спектр Джейкса для f max =10 Гц

Чтобы определить функцию корреляции (2.3.71) комплексной амплитуды, необходимо полученное для спектральной плотности мощности выражение (2.3.90) подставить в (2.3.78). В результате получим, что

Модуль функции корреляции (2.3.91) комплексной амплитуды для двух максимальных частот Доплера f max =10 Гц (сплошная кривая) и f max =30 Гц (пунктирная кривая) показаны на рис. 2.19. Если оценить время корреляции замираний сигнала в канале по уровню 0.5, то оно равно . Это дает 24 мсек для f max =10 Гц и 8 мсек для f max =30 Гц.

Рис. 2.19. Модуль функции корреляции для f max =10 и 30 Гц (сплошная и пунктирная кривые,
соответственно).

В общем случае доплеровский спектр может отличаться от спектра Джейкса (2.3.90). Область значений Df d , в которой существенно отличается от нуля, называют допплеровским рассеянием в канале. Поскольку связана с преобразованием Фурье, то временем когерентности t coh канала является величина t coh »1/Df d , которая характеризует скорость изменения свойств канала.

При выводе (2.3.90) и (2.3.91) предполагалось, что средняя мощность рассеянного сигнала равна единице. Это следует также из (2.3.91) и (2.3.71), так как

Коэффициент корреляции равен отношению функции корреляции к средней мощности . Поэтому в данном случае выражение (2.3.91) дает также коэффициент корреляции .

Из (2.3.81) найдем функцию корреляции узкополосного сигнала равную

На практике могут представлять интерес корреляционные свойства таких случайных величин, как амплитуда А и мгновенная мощность P =А 2 . Эти величины обычно являются регистрируемыми, например, на выходе линейного или квадратичного детектора. Их корреляционные свойства определенным образом связаны с корреляционными свойствами комплексной амплитуды Z (t ).

Коэффициент корреляции мгновенной мощности связан с коэффициентом корреляции комплексной амплитуды простым соотношением вида:

. (2.3.94)

Приведем доказательство этой формулы. Исходя из определения коэффициента корреляции, можем записать, что

, (2.3.95)

где - функция корреляции мощности.

Предположим, что детерминированной компоненты сигнала нет и амплитуда А имеет релеевское распределение. Тогда <P >=<A 2 >=2σ 2 . Входящая в (2.3.95) величина . Используя релеевский закон распределения, находим, что

. (2.3.96)

Учитывая (2.3.96), найдем функцию корреляции мощности из (2.3.95) с помощью простых алгебраических преобразований. Получим, что

. (2.3.97)

Функцию корреляции мощности выразим также через квадратурные компоненты в виде

Выполняя перемножение и усреднение в правой части равенства (2.3.98), получаем слагаемые, которые представляют собой следующие моменты четвертого порядка:

Таким образом, нам необходимо вычислить моменты четвертого порядка. Учтем, что квадратурные компоненты I и Q являются гауссовскими случайными величинами с нулевым средним и одинаковой дисперсией σ 2 и воспользуемся известным правилом размыкания моментов четвертого порядка . В соответствии с ним, если имеются четыре случайные величины a , b , c , и d , то справедлива следующая формула:

Применяя это правило, вычислим моменты четвертого порядка в (2.3.99). В результате будем иметь

(2.3.101)

Если принять во внимание (2.3.96), (2.3.66) и (2.3.74), то (2.3.98) можно записать в виде

Теперь необходимо учесть, что . В результате получим следующее выражение для функции корреляции мощности:

Сравнивая полученную формулу с (2.3.97), убеждаемся в справедливости (2.3.94).

Для канальной модели Кларка мы нашли, что коэффициент корреляции определяется (2.3.91). С учетом (2.3.94), коэффициент корреляции мощности в случае модели Кларка будет равен

. (2.3.104)

Корреляционные свойства амплитуды А исследуются с привлечением значительно более сложного математического аппарата и здесь не рассматриваются. Однако следует отметить, что коэффициент корреляции амплитуды А удовлетворяет следующему приближенному равенству .

СИГНАЛЫ и ЛИНЕЙНЫЕ СИСТЕМЫ

Signals and linear systems. Correlation of signals

Тема 6. КОРРЕЛЯЦИЯ СИГНАЛОВ

Предельный страх и предельный пыл храбрости одинаково расстраивают желудок и вызывают понос.

Мишель Монтень. Французский юрист-мыслитель, XVI в.

Вот это номер! Две функции имеют стопроцентную корреляцию с третьей и ортогональны друг другу. Ну и шуточки были у Всевышнего при сотворении Мира.

Анатолий Пышминцев. Новосибирский геофизик Уральской школы, ХХ в.

1. Автокорреляционные функции сигналов. Понятие автокорреляционных функций (АКФ). АКФ сигналов, ограниченных во времени. АКФ периодических сигналов. Функции автоковариации (ФАК). АКФ дискретных сигналов. АКФ зашумленных сигналов. АКФ кодовых сигналов.

2. Взаимнокорреляционные функции сигналов (ВКФ). Взаимная корреляционная функция (ВКФ). Взаимная корреляция зашумленных сигналов. ВКФ дискретных сигналов. Оценка периодических сигналов в шуме. Функция взаимных корреляционных коэффициентов.

3. Спектральные плотности корреляционных функций. Спектральная плотность АКФ. Интервал корреляции сигнала. Спектральная плотность ВКФ. Вычисление корреляционных функций при помощи БПФ.

введение

Корреляция (correlation), и ее частный случай для центрированных сигналов – ковариация, является методом анализа сигналов. Приведем один из вариантов использования метода. Допустим, что имеется сигнал s(t), в котором может быть (а может и не быть) некоторая последовательность x(t) конечной длины Т, временное положение которой нас интересует. Для поиска этой последовательности в скользящем по сигналу s(t) временном окне длиной Т вычисляются скалярные произведения сигналов s(t) и x(t). Тем самым мы "прикладываем" искомый сигнал x(t) к сигналу s(t), скользя по его аргументу, и по величине скалярного произведения оцениваем степень сходства сигналов в точках сравнения.

Корреляционный анализ дает возможность установить в сигналах (или в рядах цифровых данных сигналов) наличие определенной связи изменения значений сигналов по независимой переменной, то есть, когда большие значения одного сигнала (относительно средних значений сигнала) связаны с большими значениями другого сигнала (положительная корреляция), или, наоборот, малые значения одного сигнала связаны с большими значениями другого (отрицательная корреляция), или данные двух сигналов никак не связаны (нулевая корреляция).

В функциональном пространстве сигналов эта степень связи может выражаться в нормированных единицах коэффициента корреляции, т. е. в косинусе угла между векторами сигналов, и, соответственно, будет принимать значения от 1 (полное совпадение сигналов) до -1 (полная противоположность) и не зависит от значения (масштаба) единиц измерений .

В варианте автокорреляции (autocorrelation) по аналогичной методике производится определение скалярного произведения сигнала s(t) с собственной копией, скользящей по аргументу. Автокорреляция позволяет оценить среднестатистическую зависимость текущих отсчетов сигнала от своих предыдущих и последующих значений (так называемый радиус корреляции значений сигнала), а также выявить в сигнале наличие периодически повторяющихся элементов.

Особое значение методы корреляции имеют при анализе случайных процессов для выявления неслучайных составляющих и оценки неслучайных параметров этих процессов.

Заметим, что в терминах "корреляция" и "ковариация" существует некоторая путаница. В математической литературе термин "ковариация" применяется к центрированным функциям, а "корреляция" – к произвольным. В технической литературе , и особенно в литературе по сигналам и методам их обработки, часто применяется прямо противоположная терминология. Принципиального значения это не имеет, но при знакомстве с литературными источниками стоит обращать внимание на принятое назначение данных терминов.

6.1. Автокорреляционные функции сигналов .

Понятие автокорреляционных функций сигналов . Автокорреляционная функция (АКФ, CF - correlation function) сигнала s(t), конечного по энергии, является количественной интегральной характеристикой формы сигнала, выявления в сигнале характера и параметров взаимной временной связи отсчетов, что всегда имеет место для периодических сигналов, а также интервала и степени зависимости значений отсчетов в текущие моменты времени от предыстории текущего момента. АКФ определяется интегралом от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время t:

Bs(t) =s(t) s(t+t) dt = ás(t), s(t+t)ñ = ||s(t)|| ||s(t+t)|| cos j(t). (6.1.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига t. Соответственно, АКФ имеет физическую размерность энергии, а при t = 0 значение АКФ непосредственно равно энергии сигнала и является максимально возможным (косинус угла взаимодействия сигнала с самим собой равен 1):

Bs(0) =s(t)2 dt = Es.

АКФ относится к четным функциям, в чем нетрудно убедиться заменой переменной t = t-t в выражении (6.1.1):

Bs(t) = s(t-t) s(t) dt = Bs(-t).

Максимум АКФ, равный энергии сигнала при t=0, всегда положителен, а модуль АКФ при любом значении временного сдвига не превосходит энергии сигнала. Последнее прямо вытекает из свойств скалярного произведения (как и неравенство Коши-Буняковского):

ás(t), s(t+t)ñ = ||s(t)||×||s(t+t)||×cos j(t),

cos j(t) = 1 при t = 0, ás(t), s(t+t)ñ = ||s(t)||×||s(t)|| = Es,

cos j(t) < 1 при t ¹ 0, ás(t), s(t+t)ñ = ||s(t)||×||s(t+t)||×cos j(t) < Es.

В качестве примера на рис. 6.1.1 приведены два сигнала – прямоугольный импульс и радиоимпульс одинаковой длительности Т, и соответствующие данным сигналам формы их АКФ. Амплитуда колебаний радиоимпульса установлена равной амплитуды прямоугольного импульса, при этом энергии сигналов также будут одинаковыми, что подтверждается равными значениями центральных максимумов АКФ. При конечной длительности импульсов длительности АКФ также конечны, и равны удвоенным значениям длительности импульсов (при сдвиге копии конечного импульса на интервал его длительности как влево, так и вправо, произведение импульса со своей копией становится равным нулю). Частота колебаний АКФ радиоимпульса равна частоте колебаний заполнения радиоимпульса (боковые минимумы и максимумы АКФ возникают каждый раз при последовательных сдвигах копии радиоимпульса на половину периода колебаний его заполнения).

С учетом четности, графическое представление АКФ обычно производится только для положительных значений t. На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак +t в выражении (6.1.1) означает, что при увеличении значений t копия сигнала s(t+t) сдвигается влево по оси t и уходит за 0. Для цифровых сигналов это требует соответствующего продления данных в область отрицательных значений аргумента. А так как при вычислениях интервал задания t обычно много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т. е. применение в выражении (6.1.1) функции s(t-t) вместо s(t+t).

Bs(t) = s(t) s(t-t) dt. (6.1.1")

Для финитных сигналов по мере увеличения значения величины сдвига t временное перекрытие сигнала с его копией уменьшается, а, соответственно, косинус угла взаимодействия и скалярное произведение в целом стремятся к нулю:

АКФ, вычисленная по центрированному значению сигнала s(t), представляет собой автоковариационную функцию сигнала:

Cs(t) = dt, (6.1.2)

где ms – среднее значение сигнала. Ковариационные функции связаны с корреляционным функциями достаточно простым соотношением:

Cs(t) = Bs(t) - ms2.

АКФ сигналов, ограниченных во времени. На практике обычно исследуются и анализируются сигналы, заданные на определенном интервале. Для сравнения АКФ сигналов, заданных на различных временных интервалах, практическое применение находит модификация АКФ с нормировкой на длину интервала. Так, например, при задании сигнала на интервале :

Bs(t) =s(t) s(t+t) dt. (6.1.3)

АКФ может быть вычислена и для слабозатухающих сигналов с бесконечной энергией, как среднее значение скалярного произведения сигнала и его копии при устремлении интервала задания сигнала к бесконечности:

Bs(t) =. (6.1.4)

АКФ по данным выражениям имеет физическую размерность мощности, и равна средней взаимной мощности сигнала и его копии в функциональной зависимости от сдвига копии.

АКФ периодических сигналов. Энергия периодических сигналов бесконечна, поэтому АКФ периодических сигналов вычисляется по одному периоду Т, с усреднением скалярного произведения сигнала и его сдвинутой копии в пределах периода:

Bs(t) = (1/Т)s(t) s(t-t) dt. (6.1.5)

Математически более строгое выражение:

Bs(t) =.

При t=0 значение нормированной на период АКФ равно средней мощности сигналов в пределах периода. При этом АКФ периодических сигналов является периодической функцией с тем же периодом Т. Так, для сигнала s(t) = A cos(w0t+j0) при T=2p/w0 имеем:

Bs(t) = A cos(w0t+j0) A cos(w0(t-t)+j0) = (A2/2) cos(w0t). (6.1.6)

Полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ. С помощью функций автокорреляции можно проверять наличие периодических свойств в любых произвольных сигналах. Пример автокорреляционной функции периодического сигнала приведен на рис. 6.1.2.

Функции автоковариации (ФАК) вычисляются аналогично, по центрированным значениям сигнала. Замечательной особенностью этих функций являются их простые соотношения с дисперсией ss2 сигналов (квадратом стандарта - среднего квадратического отклонения значений сигнала от среднего значения). Как известно, значение дисперсии равно средней мощности сигналов, откуда следует:

|Cs(t)| ≤ ss2, Cs(0) = ss2 º ||s(t)||2. (6.1.7)

Значения ФАК, нормированные на значение дисперсии, представляют собой функцию автокорреляционных коэффициентов:

rs(t) = Cs(t)/Cs(0) = Cs(t)/ss2 º cos j(t). (6.1.8)

Иногда эту функцию называют "истинной" автокорреляционной функцией. В силу нормировки ее значения не зависят от единиц (масштаба) представления значений сигнала s(t) и характеризуют степень линейной связи между значениями сигнала в зависимости от величины сдвига t между отсчетами сигнала. Значения rs(t) º cos j(t) могут изменяться от 1 (полная прямая корреляция отсчетов) до -1 (обратная корреляция).

На рис. 6.1.3 приведен пример сигналов s(k) и s1(k) = s(k)+шум с соответствующими этим сигналам коэффициентами ФАК - rs и rs1. Как видно на графиках, ФАК уверенно выявила наличие периодических колебаний в сигналах. Шум в сигнале s1(k) понизил амплитуду периодических колебаний без изменения периода. Это подтверждает график кривой Cs/ss1, т. е. ФАК сигнала s(k) с нормировкой (для сопоставления) на значение дисперсии сигнала s1(k), где наглядно можно видеть, что шумовые импульсы при полной статистической независимости своих отсчетов вызвали увеличение значения Сs1(0) по отношению к значению Cs(0) и несколько "размыли" функцию коэффициентов автоковариации. Это вызвано тем, что значение rs(t) шумовых сигналов стремится к 1 при t ® 0 и флюктуирует относительно нуля при t ≠ 0, при этом амплитуды флюктуаций статистически независимы и зависят от количества выборок сигнала (стремятся к нулю при увеличении количества отсчетов).

АКФ дискретных сигналов. При интервале дискретизации данных Dt = const вычисление АКФ выполняется по интервалам Dt = Dt и обычно записывается, как дискретная функция номеров n сдвига отсчетов nDt:

Bs(nDt) = Dtsk×sk-n. (6.1.9)

Дискретные сигналы обычно задаются в виде числовых массивов определенной длины с нумерацией отсчетов к = 0,1,…К при Dt=1, а вычисление дискретной АКФ в единицах энергии выполняется в одностороннем варианте с учетом длины массивов. Если используется весь массив сигнала и число отсчетов АКФ равно числу отсчетов массива, то вычисление выполняется по формуле:

Bs(n) = sk×sk-n. (6.1.10)

Множитель K/(K-n) в данной функции является поправочным коэффициентом на постепенное уменьшение числа перемножаемых и суммируемых значений по мере увеличения сдвига n. Без этой поправки для нецентрированных сигналов в значениях АКФ появляется тренд суммирования средних значений. При измерениях в единицах мощности сигнала множитель К/(K-n) заменяется на множитель 1/(K-n).

Формула (6.1.10) применяется довольно редко, в основном для детерминированных сигналов с небольшим числом отсчетов. Для случайных и зашумленных сигналов уменьшение знаменателя (K-n) и числа перемножаемых отсчетов по мере увеличения сдвига приводит к нарастанию статистических флюктуаций вычисления АКФ. Большую достоверность в этих условиях обеспечивает вычисление АКФ в единицах мощности сигнала по формуле:

Bs(n) = sk×sk-n, sk-n = 0 при k-n < 0, (6.1.11)

т. е. с нормированием на постоянный множитель 1/K и с продлением сигнала нулевыми значениями (в левую сторону при сдвигах k-n или в правую сторону при использовании сдвигов k+n). Эта оценка является смещенной и имеет несколько меньшую дисперсию, чем по формуле (6.1.10). Разницу между нормировками по формулам (6.1.10) и (6.1.11) можно наглядно видеть на рис. 6.1.4.

Формулу (6.1.11) можно рассматривать, как усреднение суммы произведений, т. е. как оценку математического ожидания:

Bs(n) = M{sk sk-n} @ . (6.1.12)

Практически, дискретная АКФ имеет такие же свойства, как и непрерывная АКФ. Она также является четной, а ее значение при n = 0 равно энергии или мощности дискретного сигнала в зависимости от нормировки.

АКФ зашумленных сигналов . Зашумленный сигнал записывается в виде суммы v(k) = s(k)+q(k). В общем случае, шум не обязательно должен иметь нулевое среднее значение, и нормированная по мощности автокорреляционная функция цифрового сигнала, содержащая N – отсчетов, записывается в следующем виде:

Bv(n) = (1/N) ás(k)+q(k), s(k-n)+q(k-n)ñ =

= (1/N) [ás(k), s(k-n)ñ + ás(k), q(k-n)ñ + áq(k), s(k-n)ñ + áq(k), q(k-n)ñ] =

Bs(n) + M{sk qk-n} + M{qk sk-n} + M{qk qk-n}.

Bv(n) = Bs(n) + + + . (6.1.13)

При статистической независимости полезного сигнала s(k) и шума q(k) с учетом разложения математического ожидания

M{sk qk-n} = M{sk} M{qk-n} =

может использоваться следующая формула:

Bv(n) = Bs(n) + 2 + . (6.1.13")

Пример зашумленного сигнала и его АКФ в сопоставлении с незашумленным сигналом приведен на рис. 6.1.5.

Из формул (6.1.13) следует, что АКФ зашумленного сигнала состоит из АКФ сигнальной компоненты полезного сигнала с наложенной затухающей до значения 2+шумовой функцией. При больших значениях K, когда → 0, имеет место Bv(n) » Bs(n). Это дает возможность не только выделять по АКФ периодические сигналы, практически полностью скрытые в шуме (мощность шумов много больше мощности сигнала), но и с высокой точностью определять их период и форму в пределах периода, а для одночастотных гармонических сигналов – и их амплитуду с использованием выражения (6.1.6).

Сигнал Баркера

АКФ сигнала

1, 1, 1, -1, -1, 1, -1

7, 0, -1, 0, -1, 0, -1

1,1,1,-1,-1,-1,1,-1,-1,1,-1

11,0,-1,0,-1,0,-1,0,-1,0,-1

1,1,1,1,1,-1,-1,1,1-1,1,-1,1

13,0,1,0,1,0,1,0,1,0,1,0,1

Кодовые сигналы являются разновидностью дискретных сигналов. На определенном интервале кодового слова М×Dt они могут иметь только два амплитудных значения: 0 и 1 или 1 и –1. При выделении кодов на существенном уровне шумов форма АКФ кодового слова имеет особое значение. С этой позиции наилучшими считаются такие коды, значения боковых лепестков АКФ которых минимальны по всей длине интервала кодового слова при максимальном значении центрального пика. К числу таких кодов относится код Баркера, приведенный в таблице 6.1. Как видно из таблицы, амплитуда центрального пика кода численно равна значению М, при этом амплитуда боковых осцилляций при n ¹ 0 не превышает 1.

6.2. Взаимные корреляционные функции сигналов .

Взаимная корреляционная функция (ВКФ) разных сигналов (cross-correlation function, CCF) описывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной). Обобщая формулу (6.1.1) автокорреляционной функции на два различных сигнала s(t) и u(t), получаем следующее скалярное произведение сигналов:

Bsu(t) =s(t) u(t+t) dt. (6.2.1)

Взаимная корреляция сигналов характеризует определенную корреляцию явлений и физических процессов, отображаемых данными сигналами, и может служить мерой “устойчивости” данной взаимосвязи при раздельной обработке сигналов в различных устройствах. Для конечных по энергии сигналов ВКФ также конечна, при этом:

|Bsu(t)| £ ||s(t)||×||u(t)||,

что следует из неравенства Коши-Буняковского и независимости норм сигналов от сдвига по координатам.

При замене переменной t = t-t в формуле (6.2.1), получаем:

Bsu(t) =s(t-t) u(t) dt = u(t) s(t-t) dt = Bus(-t).

Отсюда следует, что для ВКФ не выполняется условие четности, Bsu(t) ¹ Bsu(-t), и значения ВКФ не обязаны иметь максимум при t = 0.

Это можно наглядно видеть на рис. 6.2.1, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (6.2.1) с постепенным увеличением значений t означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+t)). При t=0 сигналы ортогональны и значение B12(t)=0. Максимум В12(t) будет наблюдаться при сдвиге сигнала s2(t) влево на значение t=1, при котором происходит полное совмещение сигналов s1(t) и s2(t+t).

Одни и те же значения ВКФ по формулам (6.2.1) и (6.2.1") наблюдаются при одном и том же взаимном положении сигналов: при сдвиге на интервал t сигнала u(t) относительно s(t) вправо по оси ординат и сигнала s(t) относительно сигнала u(t) влево, т. е. Bsu(t) = Bus(-t).

На рис. 6.2.2 приведены примеры ВКФ для прямоугольного сигнала s(t) и двух одинаковых треугольных сигналов u(t) и v(t). Все сигналы имеют одинаковую длительность Т, при этом сигнал v(t) сдвинут вперед на интервал Т/2.

Сигналы s(t) и u(t) одинаковы по временному расположению и площадь "перекрытия" сигналов максимальна при t=0, что и фиксируется функцией Bsu. Вместе с тем функция Bsu резко асимметрична, так как при асимметричной форме сигнала u(t) для симметричной формы s(t) (относительно центра сигналов) площадь "перекрытия" сигналов изменяется по разному в зависимости от направления сдвига (знака t при увеличения значения t от нуля). При смещении исходного положения сигнала u(t) влево по оси ординат (на опережение сигнала s(t) - сигнал v(t)) форма ВКФ остается без изменения и сдвигается вправо на такое же значение величины сдвига – функция Bsv на рис. 6.2.2. Если поменять местами выражения функций в (6.2.1), то новая функция Bvs будет зеркально повернутой относительно t=0 функцией Bsv.

С учетом этих особенностей полное ВКФ вычисляется, как правило, отдельно для положительных и отрицательных запаздываний:

Bsu(t) =s(t) u(t+t) dt. Bus(t) =u(t) s(t+t) dt. (6.2.1")

Взаимная корреляция зашумленных сигналов . Для двух зашумленных сигналов u(t) = s1(t)+q1(t) и v(t) = s2(t)+q2(t), применяя методику вывода формул (6.1.13) с заменой копии сигнала s(t) на сигнал s2(t), нетрудно вывести формулу взаимной корреляции в следующем виде:

Buv(t) = Bs1s2(t) + Bs1q2(t) + Bq1s2(t) + Bq1q2(t). (6.2.2)

Последние три члена в правой части (6.2.2) затухают до нуля при увеличении t. При больших интервалах задания сигналов выражение может быть записано в следующей форме:

Buv(t) = Bs1s2(t) + + + . (6.2.3)

При нулевых средних значениях шумов и статистической независимости от сигналов имеет место:

Buv(t) → Bs1s2(t).

ВКФ дискретных сигналов. Все свойства ВКФ аналоговых сигналов действительны и для ВКФ дискретных сигналов, при этом для них действительны и особенности дискретных сигналов, изложенные выше для дискретных АКФ (формулы 6.1.9-6.1.12). В частности, при Dt = const =1 для сигналов x(k) и y(k) с числом отсчетов К:

Bxy(n) = xk yk-n. (6.2.4)

При нормировании в единицах мощности:

Bxy(n) = xk yk-n @ . (6.2.5)

Оценка периодических сигналов в шуме . Зашумленный сигнал можно оценить по взаимной корреляции с "эталонным" сигналом методом проб и ошибок с настройкой функции взаимной корреляции до максимального значения.

Для сигнала u(k)=s(k)+q(k) при статистической независимости шума и → 0 функция взаимной корреляции (6.2.2) с шаблоном сигнала p(k) при q2(k)=0 принимает вид:

Bup(k) = Bsp(k) + Bqp(k) = Bsp(k) + .

А поскольку → 0 при увеличении N, то Bup(k) → Bsp(k). Очевидно, что функция Bup(k) будет иметь максимум, когда p(k) = s(k). Меняя форму шаблона p(k) и добиваясь максимизации функции Bup(k), можно получить оценку s(k) в виде оптимальной формы p(k).

Функция взаимных корреляционных коэффициентов (ВКФ) является количественным показателем степени сходства сигналов s(t) и u(t). Аналогично функции автокорреляционных коэффициентов, она вычисляется через центрированные значения функций (для вычисления взаимной ковариации достаточно центрировать только одну из функций), и нормируется на произведение значений стандартов функций s(t) и v(t):

rsu(t) = Csu(t)/sssv. (6.2.6)

Интервал изменения значений корреляционных коэффициентов при сдвигах t может изменяться от –1 (полная обратная корреляция) до 1 (полное сходство или стопроцентная корреляция). При сдвигах t, на которых наблюдаются нулевые значения rsu(t), сигналы независимы друг от друга (некоррелированны). Коэффициент взаимной корреляции позволяет устанавливать наличие связи между сигналами вне зависимости от физических свойств сигналов и их величины.

При вычислении ВКФ зашумленных дискретных сигналов ограниченной длины с использованием формулы (6.2.4) имеется вероятность появления значений |rsu(n)| > 1.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода при изучении характеристик систем.

6.3. Спектральные плотности корреляционных функций .

Спектральная плотность АКФ может быть определена из следующих простых соображений.

В соответствии с выражением (6.1.1) АКФ представляет собой функцию скалярного произведения сигнала и его копии, сдвинутой на интервал t, при -¥ < t < ¥:

Bs(t) = ás(t), s(t-t)ñ.

Скалярное произведение может быть определено через спектральные плотности сигнала и его копии, произведение которых представляет собой спектральную плотность взаимной мощности:

ás(t), s(t-t)ñ = (1/2p)S(w) St*(w) dw.

Смещение сигнала по оси абсцисс на интервал t отображается в спектральном представлении умножением спектра сигнала на exp(-jwt), а для сопряженного спектра на множитель exp(jwt):

St*(w) = S*(w) exp(jwt).

С учетом этого получаем:

Bs(t) = (1/2p)S(w) S*(w) exp(jwt) dw =

= (1/2p)|S(w)|2 exp(jwt) dw. (6.3.1)

Но последнее выражение представляет собой обратное преобразование Фурье энергетического спектра сигнала (спектральной плотности энергии). Следовательно, энергетический спектр сигнала и его автокорреляционная функция связаны преобразованием Фурье:

Bs(t) Û |S(w)|2 = Ws(w). (6.3.2)

Таким образом, спектральная плотность АКФ есть не что иное, как спектральная плотность мощности сигнала, которая, в свою очередь, может определяться прямым преобразованием Фурье через АКФ:

|S(w)|2 = Bs(t) exp(-jwt) dt. (6.3.3)

Последние выражение накладывает определенные ограничения на форму АКФ и методику их ограничения по длительности.

Рис. 6.3.1. Спектр несуществующей АКФ

Энергетический спектр сигналов всегда положителен, мощность сигналов не может быть отрицательной. Следовательно, АКФ не может иметь формы прямоугольного импульса, т. к. преобразование Фурье прямоугольного импульса – знакопеременный интегральный синус. На АКФ не должно быть и разрывов первого рода (скачков), т. к. с учетом четности АКФ любой симметричный скачек по координате ±t порождает “разделение” АКФ на сумму определенной непрерывной функции и прямоугольного импульса длительностью 2t с соответствующим появлением отрицательных значений в энергетическом спектре. Пример последнего приведен на рис. 6.3.1 (графики функций приведены, как принято для четных функций, только своей правой частью).

АКФ достаточно протяженных сигналов обычно ограничиваются по размерам (исследуются ограниченные интервалы корреляции данных от –Т/2 до Т/2). Однако усечение АКФ, это умножение АКФ на прямоугольный селектирующий импульс длительностью Т, что в частотной области отображается сверткой фактического спектра мощности со знакопеременной функцией интегрального синуса sinc(wT/2). С одной стороны, это вызывает определенное сглаживание спектра мощности, что зачастую бывает полезным, например, при исследовании сигналов на значительном уровне шумов. Но, с другой стороны, может происходить и существенное занижение величины энергетических пиков, если в сигнале имеются какие-либо гармонические составляющие, а также появление отрицательных значений мощности на краевых частях пиков и скачков. Пример проявления данных факторов приведен на рис. 6.3.2.

Рис. 6.3.2. Вычисление энергетического спектра сигнала по АКФ разной длины.

Как известно, спектры мощности сигналов не имеют фазовой характеристики и по ним невозможно восстановление сигналов. Следовательно, АКФ сигналов, как временное представление спектров мощности, также не имеет информации о фазовых характеристиках сигналов и восстановление сигналов по АКФ невозможно. Сигналы одной формы, сдвинутые во времени, имеют одинаковые АКФ. Больше того, сигналы разной формы могут иметь сходные АКФ, если имеют близкие спектры мощности.

Перепишем уравнение (6.3.1) в следующей форме

s(t) s(t-t) dt = (1/2p)S(w) S*(w) exp(jwt) dw,

и подставим в это выражение значение t=0. Полученное равенство хорошо известно и называется равенством Парсеваля

s2(t) dt = (1/2p)|S(w)|2 dw.

Оно позволяет вычислять энергию сигнала, как по временной, так и по частотной области описания сигналов.

Интервал корреляции сигнала является числовым параметром оценки ширины АКФ и степени значимой корреляции значений сигнала по аргументу.

Если допустить, что сигнал s(t) имеет примерно равномерный энергетический спектр со значением W0 и с верхней граничной частотой до wв (форма центрированного прямоугольного импульса, как, например, сигнал 1 на рис. 6.3.3 с fв=50 Гц в одностороннем представлении), то АКФ сигнала определится выражением:

Bs(t) = (Wo/p)cos(wt) dw = (Wowв/p) sin(wвt)/(wвt).

Интервалом корреляции сигнала tк считается величина ширины центрального пика АКФ от максимума до первого пересечения нулевой линии. В данном случае для прямоугольного спектра с верхней граничной частотой wв первое пересечение нуля соответствует sinc(wвt) = 0 при wвt = p, откуда:

tк = p/wв =1/2fв. (6.3.4)

Интервал корреляции тем меньше, чем выше верхняя граничная частота спектра сигнала. Для сигналов с плавным срезом по верхней граничной частоте роль параметра wв играет средняя ширина спектра (сигнал 2 на рис. 6.3.3).

Спектральная плотность мощности статистических шумов при единичном измерении представляет собой случайную функцию Wq(w) со средним значением Wq(w) Þ sq2, где sq2 – дисперсия шумов. В пределе, при равномерном спектральном распределении шумов от 0 до ¥, АКФ шумов стремится к значению Bq(t) Þ sq2 при t Þ 0, Bq(t) Þ 0 при t ¹ 0, т. е. статистические шумы не коррелированны (tк Þ 0).

Практические вычисления АКФ финитных сигналов обычно ограничиваются интервалом сдвигов t = {0, (3-5)tk}, в котором, как правило, сосредоточена основная информация по автокорреляции сигналов.

Спектральная плотность ВКФ может быть получена на основании тех же соображений, что и для АФК, или непосредственно из формулы (6.3.1) заменой спектральной плотности сигнала S(w) на спектральную плотность второго сигнала U(w):

Bsu(t) = (1/2p)S*(w) U(w) exp(jwt) dw. (6.3.5)

Или, при смене порядка сигналов:

Bus(t) = (1/2p)U*(w) S(w) exp(jwt) dw. (6.3.5")

Произведение S*(w)U(w) представляет собой взаимный энергетический спектр Wsu(w) сигналов s(t) и u(t). Соответственно, U*(w)S(w) = Wus(w). Следовательно, как и АКФ, взаимнокорреляционная функция и спектральная плотность взаимной мощности сигналов связаны между собой преобразованиями Фурье:

Bsu(t) Û Wsu(w) º W*us(w). (6.3.6)

Bus(t) Û Wus(w) º W*su(w). (6.3.6")

В общем случае, за исключением спектров четных функций, из условия несоблюдения четности для функций ВКФ следует, что взаимные энергетические спектры являются комплексными функциями:

U(w) = Au(w) + j Bu(w), V(w) = Av(w) + j Bv(w).

Wuv = AuAv+BuBv+j(BuAv - AuBv) = Re Wuv(w) + j Im Wuv(w),

На рис. 6.3.4 можно наглядно видеть особенности формирования ВКФ на примере двух одинаковых по форме сигналов, сдвинутых относительно друг друга.

Рис. 6.3.4. Формирование ВКФ.

Форма сигналов и их взаимное расположение приведены на виде А. Модуль и аргумент спектра сигнала s(t) приведены на виде В. Модуль спектра u(t) тождественен модулю S(w). На этом же виде приведен модуль спектра взаимной мощности сигналов S(w)U*(w). Как известно, при перемножении комплексных спектров модули спектров перемножаются, а фазовые углы складываются, при этом для сопряженного спектра U*(w) фазовый угол меняет знак. Если первым в формуле вычисления ВКФ (6.2.1) стоит сигнал s(t), а сигнал u(t-t) на оси ординат стоить впереди s(t), то фазовые углы S(w) по мере увеличения частоты нарастают в сторону отрицательных значений углов (без учета периодического сброса значений на 2p), а фазовые углы U*(w) по абсолютным значениям меньше фазовых углов s(t) и нарастают (за счет сопряжения) в сторону положительных значений. Результатом умножения спектров (как это видно на рис. 6.3.4, вид С) является вычитание из фазовых углов S(w) значений углов U*(w), при этом фазовые углы спектра S(w)U*(w) остаются в области отрицательных значений, что обеспечивает сдвиг всей функции ВКФ (и ее пиковых значений) вправо от нуля по оси t на определенную величину (для одинаковых сигналов – на величину разности между сигналами по оси ординат). При смещении начального положения сигнала u(t) в сторону сигнала s(t) фазовые углы S(w)U*(w) уменьшаются, в пределе до нулевых значений при полном совмещении сигналов, при этом функция Bsu(t) смещается к нулевым значениям t, в пределе до обращения в АКФ (для одинаковых сигналах s(t) и u(t)).

Как известно для детерминированных сигналов, если спектры двух сигналов не перекрываются и, соответственно, взаимная энергия сигналов равна нулю, такие сигналы ортогональны друг другу. Связь энергетических спектров и корреляционных функций сигналов показывает еще одну сторону взаимодействия сигналов. Если спектры сигналов не перекрываются и их взаимный энергетический спектр равен нулю на всех частотах, то при любых временных сдвигах t друг относительно друга их ВКФ также равна нулю. А это означает, что такие сигналы являются некоррелированными. Это действительно как для детерминированных, так и для случайных сигналов и процессов.

Вычисление корреляционных функций при помощи БПФ является, особенно для длинных числовых рядов, в десятки и сотни раз более быстрым методом, чем последовательными сдвигами во временной области при больших интервалах корреляции. Суть метода вытекает из формул (6.3.2) для АКФ и (6.3.6) для ВКФ. Учитывая, что АКФ можно рассматривать как частный случай ВКФ при одном и том же сигнале, процесс вычисления рассмотрим на примере ВКФ для сигналов x(k) и y(k) с числом отсчетов К. Он включает:

1. Вычисление БПФ спектров сигналов x(k) → X(k) и y(k) → Y(k). При разном количестве отсчетов более короткий ряд дополняется нулями до размера большего ряда.

2. Вычисление спектров плотности мощности Wxy(k) = X*(k) Y(k).

3. Обратное БПФ Wxy(k) → Bxy(k).

Отметим некоторые особенности метода.

При обратном БПФ, как известно, вычисляется циклическая свертка функций x(k) ③ y(k). Если число отсчетов функций равно К, число комплексных отсчетов спектров функций также равно К, равно как и число отсчетов их произведения Wxy(k). Соответственно, число отсчетов Bxy(k) при обратном БПФ также равно К и циклически повторяется с периодом, равным К. Между тем, при линейной свертке полных массивов сигналов по формуле (6.2.5) размер только одной половины ВКФ составляет К точек, а полный двусторонний размер составляет 2К точек. Следовательно, при обратном БПФ с учетом цикличности свертки произойдет наложение на главный период ВКФ ее боковых периодов, как и при обычной циклической свертке двух функций.

На рис. 6.3.5 приведен пример двух сигналов и значения ВКФ, вычисленные линейной сверткой (В1ху) и циклической сверткой через БПФ (В2ху). Для исключения эффекта наложения боковых периодов необходимо дополнить сигналы нулями, в пределе, до удвоения количества отсчетов, при этом результат БПФ (график В3ху на рисунке 6.3.5) полностью повторяет результат линейной свертки (с учетом нормировки на увеличение количества отсчетов).

На практике число нулей продления сигналов зависит от характера корреляционной функции. Минимальное количество нулей обычно принимается равным значимой информационной части функций, т. е. порядка (3-5) интервалов корреляции.

литература

1. Баскаков цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 1988.

19. Отнес Р., Эноксон Л. Прикладной анализ временных рядов . – М.: Мир, 1982. – 428 с.

25. Сергиенко обработка сигналов. / Учебник для вузов. – СПб.: Питер, 203. – 608 с.

33. Айфичер Э., Джервис Б. Цифровая обработка сигналов. Практический подход. / М., "Вильямс", 2004, 992 с.

О замеченных опечатках, ошибках и предложениях по дополнению: *****@***ru.

Copyright ©2008 Davydov А. V .




Top