Побитовый сдвиг java. Операции над примитивными типами в Java. Операторы break и continue

Дана система уравнений

или кратко F (x , y )=0 (1)

Определение. Система (1) определяет неявно заданную функцию y = f (x ) на D R n

,

если x D : F (x , f (x )) = 0.

Теорема (существование и единственность отображения, неявно заданного системой уравнений). Пусть

Тогда в некоторой окрестности U (x 0 ) существует единственная функция (отображение), определенная в этой окрестности y = f (x ), такая, что

x U (x 0 ) : F (x , f (x ))=0 и y 0 = f (x 0 ).

Эта функция непрерывно дифференцируема в некоторой окрестности точки x 0 .

5.Вычисление производных неявных функций, заданных системой уравнений

Дана система

(1)

Будем предполагать, что выполнены условия теоремы существования и единственности неявной функции, заданной этой системой уравнений. Обозначим эту функцию y = f (x ) . Тогда в некоторой окрестности точки x 0 справедливы тождества

(F(x, f(x))=0) (2)

Дифференцируя эти тождества по x j получим

=0 (3)

Эти равенства можно записать в матричном виде

, (3)

или в развернутом виде

.

Отметим, что переход от равенства F (x , f (x ))=0 к
, соответствует правилам дифференцирования для случая, когда x и y являются точками одномерного пространства. Матрица по условию не вырождена, поэтому матричное уравнение
имеет решение
. Таким образом можно найти частные производные первого порядка неявных функций. Для нахождения дифференциалов обозначим

dy = ,dx = , дифференцируя равенства(2) получим

=0 ,

или в матричном виде

. (4)

В развернутом виде

.

Также как и в случае частных производных, формула (4) имеем такой же вид, как и для случая одномерных пространств n =1, p =1. Решение этого матричного уравнения запишется в виде
. Для нахождения частных производных второго порядка нужно будет дифференцировать тождества(3) (для вычисления дифференциалов второго порядка дифференцировать нужно тождества (4) ). Таким образом, получим

,

где через A обозначены слагаемые, не содержащие искомые
.

Матрицей коэффициентов этой системы для определения производных
служит матрица Якоби.

Аналогичную формулу можно получить для дифференциалов. В каждом из этих случаев будет получаться матричное уравнение с той же матрицей коэффициентов в системе уравнений для определения искомых производных или дифференциалов. То же самое будет происходить и при следующих дифференцированиях.

Пример 1. Найти ,,в точкеu =1, v =1.

Решение. Дифференцируем заданные равенства

(5)

Отметим, что по постановке задачи, независимыми переменными мы должны считать x , y . Тогда функциями будут z , u , v . Таким образом, систему (5) следует решать относительно неизвестных du , dv , dz . В матричном виде это выглядит следующим образом

.

Решим эту систему, используя правило Крамера. Определитель матрицы коэффициентов

, Третий «замещенный» определитель для dz будет равен (его вычисляем разложением по последнему столбцу)

, тогда

dz =
, и
,
.

Дифференцируем (5) еще раз (x , y независимые переменные)

Матрица коэффициентов системы та же самая, третий определитель

Решая эту систему, получим выражение для d 2 z откуда можно будет найти нужную производную.

Будем учиться находить производные функций, заданных неявно, то есть заданных некоторыми уравнениями, связывающими между собой переменные x и y . Примеры функций, заданных неявно:

,

,

Производные функций, заданных неявно, или производные неявных функций, находятся довольно просто. Сейчас же разберём соответствующее правило и пример, а затем выясним, для чего вообще это нужно.

Для того, чтобы найти производную функции, заданной неявно, нужно продифференцировать обе части уравнения по иксу. Те слагаемые, в которых присутствует только икс, обратятся в обычную производную функции от икса. А слагаемые с игреком нужно дифференцировать, пользуясь правилом дифференцирования сложной функции, так как игрек - это функция от икса. Если совсем просто, то в полученной производной слагаемого с иксом должно получиться: производная функции от игрека, умноженная на производную от игрека. Например, производная слагаемого запишется как , производная слагаемого запишется как . Далее из всего этого нужно выразить этот "игрек штрих" и будет получена искомая производная функции, заданной неявно. Разберём это на примере.

Пример 1.

Решение. Дифференцируем обе части уравнения по иксу, считая, что игрек - функция от икса:

Отсюда получаем производную, которая требуется в задании:

Теперь кое-что о неоднозначном свойстве функций, заданных неявно, и почему нужны особенные правила их дифференцирования. В части случаев можно убедиться, что подстановка в заданное уравнение (см. примеры выше) вместо игрека его выражения через икс приводит к тому, что это уравнение обращается в тождество. Так. приведённое выше уравнение неявно определяет следующие функции:

После подстановки выражения игрека в квадрате через икс в первоначальное уравнение получаем тождество:

.

Выражения, которые мы подставляли, получились путём решения уравнения относительно игрека.

Если бы мы стали дифференцировать соответствующую явную функцию

то получили бы ответ как в примере 1 - от функции, заданной неявно:

Но не всякую функцию, заданную неявно, можно представить в виде y = f (x ) . Так, например, заданные неявно функции

не выражаются через элементарные функции, то есть эти уравнения нельзя разрешить относительно игрека. Поэтому и существует правило дифференцирования функции, заданной неявно, которое мы уже изучили и далее будем последовательно применять в других примерах.

Пример 2. Найти производную функции, заданной неявно:

.

Выражаем игрек штрих и - на выходе - производная функции, заданной неявно:

Пример 3. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Пример 4. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем и получаем производную:

.

Пример 5. Найти производную функции, заданной неявно:

Решение. Переносим слагаемые в правой части уравнение в левую часть и справа оставляем ноль. Дифференцируем обе части уравнения по иксу.

Пусть функция задана неявным образом с помощью уравнения
(1) .
И пусть это уравнение, при некотором значении , имеет единственное решение . Пусть функция является дифференцируемой функцией в точке , причем
.
Тогда, при этом значении , существует производная , которая определяется по формуле:
(2) .

Доказательство

Для доказательства рассмотрим функцию как сложную функцию от переменной :
.
Применим правило дифференцирования сложной функции и найдем производную по переменной от левой и правой частей уравнения
(3) :
.
Поскольку производная от постоянной равна нулю и , то
(4) ;
.

Формула доказана.

Производные высших порядков

Перепишем уравнение (4), используя другие обозначения:
(4) .
При этом и являются сложными функциями от переменной :
;
.
Зависимость определяет уравнение (1):
(1) .

Находим производную по переменной от левой и правой части уравнения (4).
По формуле производной сложной функции имеем:
;
.
По формуле производной произведения :

.
По формуле производной суммы :


.

Поскольку производная правой части уравнения (4) равна нулю, то
(5) .
Подставив сюда производную , получим значение производной второго порядка в неявном виде.

Дифференцируя, аналогичным образом, уравнение (5), мы получим уравнение, содержащее производную третьего порядка :
.
Подставив сюда найденные значения производных первого и второго порядков, найдем значение производной третьего порядка.

Продолжая дифференцирование, можно найти производную любого порядка.

Примеры

Пример 1

Найдите производную первого порядка от функции, заданной неявно уравнением:
(П1) .

Решение по формуле 2

Находим производную по формуле (2):
(2) .

Перенесем все переменные в левую часть, чтобы уравнение приняло вид .
.
Отсюда .

Находим производную по , считая постоянной.
;
;
;
.

Находим производную по переменной , считая переменную постоянной.
;
;
;
.

По формуле (2) находим:
.

Мы можем упростить результат если заметим, что согласно исходному уравнению (П.1), . Подставим :
.
Умножим числитель и знаменатель на :
.

Решение вторым способом

Решим этот пример вторым способом. Для этого найдем производную по переменной левой и правой частей исходного уравнения (П1).

Применяем :
.
Применяем формулу производной дроби :
;
.
Применяем формулу производной сложной функции :
.
Дифференцируем исходное уравнение (П1).
(П1) ;
;
.
Умножаем на и группируем члены.
;
.

Подставим (из уравнения (П1)):
.
Умножим на :
.

Ответ

Пример 2

Найти производную второго порядка от функции , заданной неявно с помощью уравнения:
(П2.1) .

Решение

Дифференцируем исходное уравнение, по переменной , считая что является функцией от :
;
.
Применяем формулу производной сложной функции.
.

Дифференцируем исходное уравнение (П2.1):
;
.
Из исходного уравнения (П2.1) следует, что . Подставим :
.
Раскрываем скобки и группируем члены:
;
(П2.2) .
Находим производную первого порядка:
(П2.3) .

Чтобы найти производную второго порядка, дифференцируем уравнение (П2.2).
;
;
;
.
Подставим выражение производной первого порядка (П2.3):
.
Умножим на :

;
.
Отсюда находим производную второго порядка.

Ответ

Пример 3

Найти производную третьего порядка при от функции , заданной неявно с помощью уравнения:
(П3.1) .

Решение

Дифференцируем исходное уравнение по переменной считая, что является функцией от .
;
;
;
;
;
;
(П3.2) ;

Дифференцируем уравнение (П3.2) по переменной .
;
;
;
;
;
(П3.3) .

Дифференцируем уравнение (П3.3).
;
;
;
;
;
(П3.4) .

Из уравнений (П3.2), (П3.3) и (П3.4) находим значения производных при .
;
;
.

Операторы в языке Java - это специальные символы, которые сообщают транслятору о том, что вы хотите выполнить операцию с не­которыми операндами. Некоторые операторы требуют одного операн­да, их называют унарными. Одни операторы ставятся перед операндами и называются пре­фиксными, другие - после, их называют постфиксными операторами. Большинство же операторов ставят между двумя операндами, такие операторы называют­ся инфиксными бинарными операторами. Существует тернарный опе­ратор, работающий с тремя операндами.

В Java имеется 44 встроенных оператора. Их можно разбить на 4 класса - арифметические, битовые, операторы сравнения и логические.

Арифметические операторы

Арифметические операторы используются для вычислений так же как в алгебре (см. таблицу со сводкой арифметических операторов ниже). Допустимые операнды должны иметь числовые типы. Например, исполь­зовать эти операторы для работы с логическими типами нельзя, а для работы с типом char можно, поскольку в Java тип char - это подмно­жество типа int.

Оператор

Результат

Оператор

Результат

Сложение

сложение с присваиванием

вычитание (также унарный минус)

вычитание с присваиванием

Умножение

умножение с присваиванием

деление с присваиванием

деление по модулю

деление по модулю с присваиванием

Инкремент

декремент

Четыре арифметических действия

Ниже, в качестве примера, приведена простая программа, демонстрирующая использование операторов. Обратите внимание на то, что операторы работают как с целыми литерала­ми, так и с переменными.

class BasicMath{ public static void int a = 1 + 1;

intb = a *3;

main(String args) {

int c = b / 4;

int d = b - а;

int e = -d;

System.out.println("a =" +а);

System.out.println("b =" +b);

System.out.println("c =" +c);

System.out.println("d =" +d);

System.out.println("e =" +e);

} }

Исполнив эту программу, вы должны получить приведенный ниже ре­зультат:

C: \> java BasicMath

a = 2

b = 6

c = 1

d = 4

e = -4

Оператор деления по модулю

Оператор деления по модулю, или оператор mod, обозначается сим­волом %. Этот оператор возвращает остаток от деления первого операнда на второй. В отличие от C++, функция mod в Java работает не только с целыми, но и с вещественными типами. Приведенная ниже программа иллюстрирует работу этого оператора.

class Modulus {

public static void main (String args ) {

int x = 42;

double у = 42.3;

System.out.println("x mod 10 = " + x % 10);

System.out.println("y mod 10 = " + у % 10);

} }

Выполнив эту программу, вы получите следующий результат:

С:\> Modulus

x mod 10 = 2

y mod 10 = 2.3

Арифметические операторы присваивания

Для каждого из арифметических операторов есть форма, в которой одновременно с заданной операцией выполняется присваивание. Ниже приведен пример, который иллюстрирует использование подобной разновидности операторов.

class OpEquals {

int a = 1;

int b = 2;

int с = 3;

a += 5;

b *= 4;

c += a * b;

с %= 6;

} }

А вот и результат, полученный при запуске этой программы:

С:> Java OpEquals

а = 6

b = 8

с = 3

Инкремент и декремент

В С существует 2 оператора, называемых операторами инкремента и декремента (++ и --) и являющихся сокращенным вариантом записи для сложения или вычитания из операнда единицы. Эти операторы уникальны в том плане, что могут использоваться как в префиксной, так и в постфиксной форме. Следующий при­мер иллюстрирует использование операторов инкремента и декреме нта.

class IncDec {

public static void main(String args) {

int a = 1;

int b = 2;

int c = ++b;

int d = a++;

c++;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

} }

Результат выполнения данной программы будет таким:

C:\ java IncDec

a = 2

b = 3

c = 4

d = 1

Целочисленные битовые операторы

Для целых числовых типов данных - long, int, short, char и byte, определен дополнительный набор операторов, с помощью которых можно проверять и модифицировать состояние отдельных битов соответствую­щих значений. В таблице приведена сводка таких операторов. Операторы битовой арифметики работают с каждым битом как с самостоятельной величиной.

Оператор

Результат

Оператор

Результат

побитовое унарное отрицание (NOT)

побитовое И (AND)

побитовое И (AND) с присваиванием

побитовое ИЛИ (OR)

побитовое ИЛИ (OR) с присваиванием

побитовое исключающее ИЛИ (XOR)

побитовое исключающее ИЛИ (XOR) с присваиванием

сдвиг вправо

сдвиг вправо с присваиванием

сдвиг вправо с заполнением нулями

сдвиг вправо с заполнением нулями с присваиванием

сдвиг влево

сдвиг влево с присваиванием

Пример программы, манипулирующей с битами

В таблице, приведенной ниже, показано, как каждый из операторов битовой арифметики воздействует на возможные комбинации битов своих операндов. Приведенный после таблицы пример иллюстрирует ис­пользование этих операторов в программе на языке Java.

class Bitlogic {

public static void main(String args ) {

String binary = { "OOOO", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001","1010", "1011", "1100", "1101",

"1110", "1111" };

int a = 3;//0+2+1или двоичное 0011

int b = 6;//4+2+0или двоичное 0110

int c = a | b;

int d = a & b;

int e = a ^ b;

int f = (~a & b) | (a & ~b);

int g = ~a & 0x0f;

System.out.println(" a = " + binary[a]);

System.out.println(" b = " + binary[b]);

System.out.println(" ab = " + binary[c]);

System.out.println(" a&b = " + binary[d]);

System.out.println(" a^b = " + binary[e]);

System.out.рrintln("~a&b|а^~Ь = " + binary[f]);

System.out.println(" ~a = " + binary[g]);

} }

Ниже при­веден результат, полученный при выполнении этой программы:

С: \> Java BitLogic

a = 0011

b = 0110

a | b = 0111

a & b = 0010

a ^ b = 0101

~a & b | a & ~b = 0101

~а = 1100

Сдвиги влево и вправо

Оператор << выполняет сдвиг влево всех битов своего левого операнда на число позиций, заданное правым операндом. При этом часть битов в левых разрядах выходит за границы и теряется, а соответствующие правые позиции заполняются нулями. В предыдущей главе уже говорилось об автоматическом повышении типа всего выражения до int в том слу­чае если в выражении присутствуют операнды типа int или целых типов меньшего размера. Если же хотя бы один из операндов в выражении имеет тип long, то и тип всего выражения повышается до long.

Оператор >> означает в языке Java сдвиг вправо. Он перемещает все биты своего левого операнда вправо на число позиций, заданное правым операндом.Когда биты левого операнда выдвигаются за самую правую позицию слова, они теряются. При сдвиге вправо освобождающиеся старшие (левые) разряды сдви­гаемого числа заполняются предыдущим содержимым знакового разряда. Такое поведение называют расширением знакового разряда.

В следующей программе байтовое значение преобразуется в строку, содержащую его шестнадцатиричное представление. Обратите внимание - сдвинутое значение приходится маскировать, то есть логически умножать на значение 0 х0 f, для того, чтобы очистить заполняемые в результате расширения знака биты и по­низить значение до пределов, допустимых при индексировании массива шестнадцатиричных цифр.

classHexByte {

char hex = { "0", "1, "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f };

byte b = (byte) 0xf1;

System.out.println(“b = 0x” + hex[(b >> 4) & 0x0f] + hex);

} }

Ниже приведен результат работы этой программы:

С:\> java HexByte

b = 0xf1

Беззнаковый сдвиг вправо

Часто требуется, чтобы при сдвиге вправо расширение знакового раз­ряда не происходило, а освобождающиеся левые разряды просто запол­нялись бы нулями.

class ByteUShift{

static public void main(String args) {

char hex = { "0", "1’, "2", "3", "4","5", "6", "7", "8", "9", "а", "b", "с", "d","e", "f’ };

byte b = (byte) 0xf1;

byte c = (byte) (b >> 4);

byte d = (byte) (b >> 4);

byte e = (byte) ((b & 0xff) >> 4);

System.out.println(" b = 0x" + hex(b >> 4) & 0x0f] + hex);

System.out.println(“ b >> 4 =0x" + hex[(c >> 4) & 0x0f] + hex);

System.out.println(“b >>> 4 = 0x" + hex[(d >> 4) & 0x0f] + hex);

System.out.println(“(b & 0xff) >> 4 = 0x" + hex[(e >> 4) & 0x0f] + hex);

} }

Для этого примера переменную b можно было бы инициализировать произвольным отрицательным числом, мы использовали число с шест­надцатиричным представлением 0xf1. Переменной с присваивается ре­зультат знакового сдвига b вправо на 4 разряда. Как и ожидалось, рас­ширение знакового разряда приводит к тому, что 0xf1 превращается в 0xff. Затем в переменную d заносится результат беззнакового сдвига b вправо на 4 разряда. Можно было бы ожидать, что в результате d со­держит 0x0f, однако на деле мы снова получаем 0xff. Это - результат расширения знакового разряда, выполненного при автоматическом по­вышении типа переменной b до int перед операцией сдвига вправо. На­конец, в выражении для переменной е нам удается добиться желаемого результата - значения 0x0f. Для этого нам пришлось перед сдвигом вправо логически умножить значение переменной b на маску 0xff, очис­тив таким образом старшие разряды, заполненные при автоматическом повышении типа. Обратите внимание, что при этом уже нет необходи­мости использовать беззнаковый сдвиг вправо, поскольку мы знаем со­стояние знакового бита после операции AND.

С: \> java ByteUShift

b = 0xf1

b >> 4 = 0xff

b >>> 4 = 0xff

b & 0xff) >> 4 = 0x0f

Битовые операторы присваивания

Так же, как и в случае арифметических операторов, у всех бинарных битовых операторов есть родственная форма, позволяющая автоматичес­ки присваивать результат операции левому операнду. В следующем примере создаются несколько целых переменных, с ко­торыми с помощью операторов, указанных выше, выполняются различ­ные операции.

class OpBitEquals {

public static void main(String args) {

int a = 1;

int b = 2;

int с = 3;

a |= 4;

b >>= 1;

с <<= 1;

а ^= с;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

} }

Результаты исполнения программы таковы:

С:\> Java OpBitEquals

а = 3

b = 1

с = 6

Операторы отношения

Для того, чтобы можно было сравнивать два значения, в Java имеется набор операторов, описывающих отношение и равенство. Список таких операторов приведен в таблице.

Оператор

Результат

больше или равно

меньше или равно

Значения любых типов, включая целые и вещественные числа, сим­волы, логические значения и ссылки, можно сравнивать, используя опе­ратор проверки на равенство == и неравенство!=. Обратите внимание - в языке Java, так же, как в С и C++ проверка на равенство обознача­ется последовательностью (==). Один знак (=) - это оператор присваи­вания.

Булевы логические операторы

Булевы логические операторы, сводка которых приведена в таблице ниже, оперируют только с операндами типа boolean. Все бинарные ло­гические операторы воспринимают в качестве операндов два значения типа boolean и возвращают результат того же типа.

Оператор

Результат

Оператор

Результат

логическое И (AND)

И (AND) с присваиванием

логическое ИЛИ (OR)

ИЛИ (OR) с присваиванием

логическое исключающее ИЛИ (XOR)

исключающее ИЛИ (XOR) с присваиванием

оператор OR быстрой оценки выражений (short circuit OR)

оператор AND быстрой оценки выражений (short circuit AND)

логическое унарное отрицание (NOT)

тернарный оператор if-then-else

Результаты воздействия логических операторов на различные комби­нации значений операндов показаны в таблице.

Программа, приведенная ниже, практически полностью повторяет ужезнакомый вам пример BitLogic. Только но на этот раз мы работаем с булевыми логическими значениями.

class BoolLogic {

public static void main(String args) {

boolean a = true;

boolean b = false;

boolean с = a | b;

boolean d = a & b;

boolean e = a ^ b;

boolean f = (!a & b) | (a & !b);

boolean g = !a;

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" a|b = " + c);

System.out.println(" a&b = " + d);

System.out.println(" a^b = " + e);

System.out.println("!a&b|a&!b = " + f);

System.out.println(" !a = " + g);

} }

С: \> Java BoolLogic

а = true

b = false

a|b = true

a&b = false

a^b = true

!a&b|a&!b = true

!a = false

Операторы быстрой оценки логических выражений (short circuit logical operators)

Существуют два интересных дополнения к набору логических опера­торов. Это - альтернативные версии операторов AND и OR, служащие для быстрой оценки логических выражений. Вы знаете, что если первый операнд оператора OR имеет значение true, то независимо от значения второго операнда результатом операции будет величина true. Аналогично в случае оператора AND, если первый операнд - false, то значение вто­рого операнда на результат не влияет - он всегда будет равен false. Если вы в используете операторы && и || вместо обычных форм & и |, то Java не производит оценку правого операнда логического выражения, если ответ ясен из значения левого операнда. Общепринятой практикой является использование операторов && и || практически во всех случаях оценки булевых логических выражений. Версии этих операторов & и | применяются только в битовой арифметике.

Тернарный оператор if-then-else

Общая форма оператора if-then-use такова:

выражение1? выражение2: выражениеЗ

В качестве первого операнда - «выражение1» - может быть исполь­зовано любое выражение, результатом которого является значение типа boolean. Если результат равен true, то выполняется оператор, заданный вторым операндом, то есть, «выражение2». Если же первый операнд paвен false, то выполняется третий операнд - «выражениеЗ». Второй и третий операнды, то есть «выражение2» и «выражениеЗ», должны воз­вращать значения одного типа и не должны иметь тип void.

В приведенной ниже программе этот оператор используется для про­верки делителя перед выполнением операции деления. В случае нулевого делителя возвращается значение 0.

class Ternary {

public static void main(String args) {

int a = 42;

int b = 2;

int c = 99;

int d = 0;

int e = (b == 0) ? 0: (a / b);

int f = (d == 0) ? 0: (c / d);

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

System.out.println("a / b = " + e);

System.out.println("c / d = " + f);

} }

При выполнении этой программы исключительной ситуации деления на нуль не возникает и выводятся следующие результаты:

С: \>java Ternary

а = 42

b = 2

с = 99

d = 0

a / b = 21

с / d= 0

Приоритеты операторов

В Java действует определенный порядок, или приоритет, операций. В элементарной алгебре нас учили тому, что у умножения и деления более высокий приоритет, чем у сложения и вычитания. В программировании также приходится следить и за приоритетами операций. В таблице ука­заны в порядке убывания приоритеты всех операций языка Java.

В первой строке таблицы приведены три необычных оператора, о которых мы пока не говорили. Круглые скобки () используются для явной установки приоритета. Как вы узнали из предыдущей главы, квадратные скобки используются для индексирования переменной-массива. Оператор. (точка) использует­ся для выделения элементов из ссылки на объект - об этом мы поговорим в главе 7 . Все же остальные операторы уже обсуждались в этой главе.

Явные приоритеты

Поскольку высший приоритет имеют круглые скобки, вы всегда мо­жете добавить в выражение несколько пар скобок, если у вас есть со­мнения по поводу порядка вычислений или вам просто хочется сделать свои код более читабельным.

а >> b + 3

Какому из двух выражений, а >> (b + 3) или (а >> b) + 3, соответствует первая строка? Поскольку у оператора сложения более высокий приоритет, чем у оператора сдвига, правильный ответ - а>> (b + а). Так что если вам требуется выполнить операцию (а>>b)+ 3 без скобок не обойтись.

Итак, мы рассмотрели все виды операторов языка Java. Теперь вы можете сконструировать любое выражение с различными типами данных . В следующей главе познакомимся с конструкциями ветвления, организацией циклов и научимся управлять выполнением программы.

Мне кажется, давно уже пора приступить к разработке документа, в котором будет четко оговорено, что граждане могут делать в свое свободное время, а чего они делать не должны.

Из к/ф «Забытая мелодия для флейты»

Все операторы Java можно разделить на четыре группы: арифметические, логиче- ские, побитовые и сравнения. Рассмотрим последовательно каждую группу опе- раторов. Начнем с арифметических. Эти операторы перечислены в табл. 1.2.


Таблица 1.2. Арифметические операторы Java

Оператор Название Пояснение
+ Сложение Бинарный оператор. Результатом команды a+b являет- ся сумма значений переменных a и b
- Вычитание Бинарный оператор. Результатом команды a-b являет- ся разность значений переменных a и b
* Умножение Бинарный оператор. Результатом команды a*b являет- ся произведение значений переменных a и b
/ Деление Бинарный оператор. Результатом команды a/b являет- ся частное от деления значений переменных a и b. Для целочисленных операндов по умолчанию выполняется деление нацело
% Остаток Бинарный оператор. Результатом команды a%b яв- ляется остаток от целочисленного деления значений переменных a и b
+= Сложение (упро- щенная форма с присваиванием) Упрощенная форма оператора сложения с присваива- нием. Команда a+=b является эквивалентом команды a=a+b
-= Вычитание (упро- щенная форма с присваиванием) Упрощенная форма оператора вычитания с присваива- нием. Команда a-=b является эквивалентом команды a=a-b
*= Умножение (упро- щенная форма с присваиванием) Упрощенная форма оператора умножения с присваи- ванием. Команда a*=b является эквивалентом команды a=a*b
/= Деление (упро- щенная форма с присваиванием) Упрощенная форма оператора деления с присваива- нием. Команда a/=b является эквивалентом команды a=a/b
%= Остаток (упро- щенная форма) Упрощенная форма оператора вычисления остатка с присваиванием. Команда a%=b является эквивален- том команды a=a%b
++ Инкремент Унарный оператор. Команда a++ (или ++a) является эквивалентом команды a=a+1
-- Декремент Унарный оператор. Команда a-- (или --a) является эквивалентом команды a=a-1

Эти операторы имеют некоторые особенности. В первую очередь обращаем вни- мание на оператор деления /. Если операндами являются целые числа, в ка- честве значения возвращается результат целочисленного деления. Рассмотрим последовательность команд:

int a=5,b=2; double x=a/b;

В данном примере переменная x получает значение 2.0, а не 2.5, как можно было бы ожидать. Дело в том, что сначала вычисляется выражение a/b. Поскольку


операнды целочисленные, выполняется целочисленное деление. И только по- сле этого полученное значение преобразуется к формату double и присваивается переменной x.

Для того чтобы при целочисленных операндах выполнялось обычное деление, перед выражением с оператором деления указывается в круглых скобках иден- тификатор типа double (или float). Например, так:

double x=(double)a/b;

Теперь значение переменной x равно 2.5.

В Java, как и в С++, есть группа упрощенных арифметических операторов с присваиванием. Если op - один из операторов сложения, умножения, деления и вычисления остатка, то упрощенная форма этого оператора с присваиванием имеет вид op=. Это тоже бинарный оператор, как и оператор op, а команда вида x op=y является эквивалентом команды x=x op y.

Еще два исключительно полезных унарных оператора - операторы инкремента (++) и декремента (--). Действие оператора декремента сводится к увеличению на единицу значения операнда, а оператор декремента на единицу уменьшает операнд. Другими словами, команда x++ эквивалентна команде x=x+1, а команда x-- эквивалентна команде x=x-1. У операторов инкремента и декремента есть не только представленная здесь постфиксная форма (оператор следует после опе- ранда: x++ или x--), но и префиксная (оператор располагается перед операндом:

X или --x). С точки зрения действия на операнд нет разницы в том, префикс- ная или постфиксная формы оператора использованы. Однако если выражение с оператором инкремента или декремента является частью более сложного вы- ражения, различие в префиксной и постфиксной формах операторов инкремента и декремента существует. Если использована префиксная форма оператора, сна- чала изменяется значение операнда, а уже после этого вычисляется выражение. Если использована постфиксная форма оператора, сначала вычисляется выраже- ние, а затем изменяется значение операнда. Рассмотрим небольшой пример:

В этом случае после выполнения команд переменная n будет иметь значение 11, а переменная m - значение 10. На момент выполнения команды m=n++ значение переменной n равно 10. Поскольку в команде m=n++ использована постфиксная форма оператора инкремента, то сначала выполняется присваивание значения переменной m, а после этого значение переменной n увеличивается на единицу.

Иной результат выполнения следующих команд:


Обе переменные (n и m) в этом случае имеют значение 11. Поскольку в команде m=++n использована префиксная форма инкремента, сначала на единицу увели- чивается значение переменной n, а после этого значение переменной n присваи- вается переменной m.

Следующую группу образуют логические операторы. Операндами логических операторов являются переменные и литералы типа boolean. Логические опера- торы Java перечислены в табл. 1.3.

Таблица 1.3. Логические операторы Java

Оператор Название Пояснение
& Логическое И Бинарный оператор. Результатом операции A&B явля- ется true, если значения обоих операндов равны true. В противном случае возвращается значение false
&& Сокращенное логическое И Бинарный оператор. Особенность оператора, по срав- нению с оператором &, состоит в том, что если значе- ние первого операнда равно false, то значение второго операнда не проверяется
| Логическое ИЛИ Бинарный оператор. Результатом операции A|B являет- ся true, если значение хотя бы одного операнда равно true. В противном случае возвращается значение false
|| Сокращенное логическое ИЛИ Бинарный оператор. Особенность оператора, по срав- нению с оператором |, состоит в том, что если значе- ние первого операнда равно true, то значение второго операнда не проверяется
^ Исключающее ИЛИ Бинарный оператор. Результатом операции A^B являет- ся true, если значение одного и только одного опе- ранда равно true. В противном случае возвращается значение false
! Логическое отрицание Унарный оператор. Результатом команды!A является true, если значение операнда A равно false. Если зна- чение операнда A равно true, результатом команды!A является значение false

Логические операторы обычно используются в качестве условий в условных операторах и операторах цикла.

В табл. 1.4 перечислены операторы сравнения, используемые в Java.

Таблица 1.4. Операторы сравнения Java


Оператор Название Пояснение
< Меньше Результатом операции Aменьше значения операнда B. В противном случае значением является false
<= Меньше или равно Результатом операции A<=B является значения true, если значение операнда A не больше значения операн- да B. В противном случае значением является false
> Больше Результатом операции A>B является значения true, если значение операнда A больше значения операнда B. В противном случае значением является false
>= Больше или равно Результатом операции A>=B является значения true, если значение операнда A не меньше значения опе- ранда B. В противном случае значением является false
!= Не равно Результатом операции A!=B является значения true, если операнды A и B имеют разные значения. В про- тивном случае значением является false

Операторы сравнения обычно используются совместно с логическими операто- рами.

Для понимания принципов работы поразрядных операторов необходимо иметь хотя бы элементарные познания о двоичном представлении чисел. Напомним читателю некоторые основные моменты.

‰ В двоичном представлении позиционная запись числа содержит нули и еди- ницы.

‰ Старший бит (самый первый слева) определяет знак числа. Для положитель- ных чисел старший бит равен нулю, для отрицательных - единице.

‰ Перевод из двоичной системы счисления положительного числа с позицион-


ной записью


bnbn -1...b 2b 1b 0


(bi могут принимать значения 0 или 1, старший


бит для положительных чисел bn = 0) в десятичную выполняется так:



n -1 n





+ ... + bn -12



‰ Для перевода отрицательного двоичного числа в десятичное представление производится побитовое инвертирование кода (об операции побитового ин- вертирования - см. далее), полученное двоичное число переводится в деся- тичную систему, к нему прибавляется единица (и добавляется знак минус).

‰ Для перевода отрицательного числа из десятичной в двоичную систему от модуля числа отнимают единицу, результат переводят в бинарный код и затем этот код инвертируют.

‰ Умножение числа на два эквивалентно сдвигу влево на один бит позиционной записи числа (с заполнением первого бита нулем).

Побитовые операторы Java описаны в табл. 1.5.


Таблица 1.5. Побитовые операторы Java

Оператор Название Пояснение
& Побитовое И Бинарный оператор. Логическая операция И приме- няется к каждой паре битов операндов. Результатом является 1, если каждый из двух сравниваемых битов равен 1. В противном случае результат равен 0
| Побитовое ИЛИ Бинарный оператор. Логическая операция ИЛИ при- меняется к каждой паре битов операндов. Результатом является 1, если хотя бы один из двух сравниваемых битов равен 1. В противном случае результат равен 0
^ Побитовое ИСКЛЮЧА- ЮЩЕЕ ИЛИ Бинарный оператор. Логическая операция ИСКЛЮЧАЮЩЕЕ ИЛИ применяется к каждой паре битов операндов. Результатом является 1, если один и только один из двух сравниваемых битов равен 1. В противном случае результат равен 0
~ Побитовое отрицание Унарный оператор. Выполняется инверсия двоичного кода: 0 меняется на 1, а 1 меняется на 0
>> Сдвиг вправо Бинарный оператор. Результатом является число, получаемое сдвигом вправо в позиционном пред- ставлении первого операнда (слева от оператора) на количество битов, определяемых вторым операндом (справа от оператора). Исходное значение перво- го операнда при этом не меняется. Младшие биты теряются, а старшие заполняются дублированием знакового бита
<< Сдвиг влево Бинарный оператор. Результатом является число, получаемое сдвигом влево в позиционном представле- нии первого операнда (слева от оператора) на количе- ство битов, определяемых вторым операндом (справа от оператора). Исходное значение первого операнда при этом не меняется. Младшие биты заполняются нулями, а старшие теряются
>>> Беззнаковый сдвиг вправо Бинарный оператор. Результатом является число, по- лучаемое сдвигом вправо в позиционном представле- нии первого операнда (слева от оператора) на количе- ство битов, определяемых вторым операндом (справа от оператора). Исходное значение первого операнда при этом не меняется. Младшие биты теряются, а старшие заполняются нулями
&= Упрощенная форма побито- вого оператора & с присваиванием Команда вида A& A=A&B
|= Упрощенная форма побито- вого оператора | с присваиванием Команда вида A|=B является эквивалентом команды A=A|B

Оператор Название Пояснение
^= Упрощенная Команда вида A^=B является эквивалентом команды
форма побито-
вого оператора ^ A=A^B
с присваиванием
>>= Упрощенная Команда вида A>>=B является эквивалентом команды
форма побитово-
го оператора >> A=A>>B
с присваиванием
<<= Упрощенная Команда вида A<<=B является эквивалентом команды
форма побитово-
го оператора << A=A<
с присваиванием
>>>= Упрощенная Команда вида A>>>=B является эквивалентом команды
форма побитово-
го оператора >>> A=A>>>B
с присваиванием

За редким исключением, побитовые операции используются в случаях, когда необходимо оптимизировать программу в отношении быстродействия.

Помимо перечисленных операторов, в Java есть единственный тернарный опе- ратор (у оператора три операнда). Формально оператор обозначается как?:. Синтаксис вызова этого оператора следующий:

условие?значение_1:значение_2

Первым операндом указывается условие - выражение, возвращающее в качестве значения логическое значение. Если значение выражения-условия равно true, в качестве значения тернарным оператором возвращается значение_1. Если зна- чением выражения-условия является false, тернарным оператором в качестве значения возвращается значение_2.

Несколько замечаний по поводу оператора присваивания (оператор =). В Java оператор присваивания возвращает значение. Команда вида x=y выполняется следующим образом. Сначала вычисляется выражение y, после чего это выра- жение приводится к типу переменной x и затем записывается в эту переменную. Благодаря тому, что, в отличие от других операторов с равными приоритетами, присваивание выполняется справа налево, в Java допустимыми являются ко- манды вида x=y=z. В этом случае значение переменной z присваивается сначала переменной y, а затем значение переменной y присваивается переменной x.

Еще одно замечание касается упрощенных форм операторов с присваиванием, то есть операторов вида op=. Хотя утверждалось, что команда вида A op=B эк- вивалента команде A=A op B, это не совсем так. При выполнении команды вида A op=B сначала вычисляется выражение A op B, затем полученное значение при- водится к типу переменной A и только после этого присваивается переменной A. Поскольку приведение к типу переменной A выполняется, фактически, явно, а в команде A=A op B приведение типов неявное, может проявиться разница


в использовании полной и упрощенной форм команд присваивания. Рассмо- трим простой пример:

// Правильно: a+=20;

// Неправильно: a=a+b;

В данном случае команда a+=20 является корректной, а команда a=a+b - нет. В первом случае литерал 20 типа int «насильственно» приводится к типу byte в силу особенностей оператора +=. Во втором случае результат вычисления вы- ражения a+b автоматически расширяется до типа int, а автоматическое приведе- ние типа int к типу byte запрещено.

Напоследок приведем в табл. 1.6 данные о приоритете различных операторов в Java.

Таблица 1.6. Приоритеты операторов в Java

Приоритет Операторы
Круглые скобки (), квадратные скобки и оператор «точка»
Инкремент ++, декремент --, отрицания ~ и!
Умножение *, деление / и вычисление остатка %
Сложение + и вычитание -
Побитовые сдвиги >>, << и >>>
Больше >, больше или равно >=, меньше или равно <= и меньше <
Равно == и неравно!=
Побитовое И &
Побитовое исключающее ИЛИ ^
Побитовое ИЛИ |
Логическое И &&
Логические ИЛИ ||
Тернарный оператор?:
Присваивание = и сокращенные формы операторов вида op=

Операторы равных приоритетов (за исключением присваивания) выполняются слева направо. В случаях когда возникают сомнения в приоритете операторов и последовательности вычисления выражений, рекомендуется использовать круглые скобки.




Top