Переменные тип имя значение конспект. Переменные: тип, имя, значение (9 класс). Основные элементы программирования

3. Жизненный цикл клетки: интерфаза (период подготовки клетки к делению) и митоз (деление).

1) Интерфаза - хромосомы деспирализованы (раскручены). В интерфазе происходит синтез бел­ков, липидов, углеводов, АТФ, самоудвоение моле­кул ДНК и образование в каждой хромосоме двух хроматид;

2) фазы митоза (профаза, метафаза, анафаза, телофаза) - ряд последовательных изменений в клетке: а) спирализация хромосом, растворение ядерной оболочки и ядрышка; б) формирование ве­ретена деления, расположение хромосом в центре клетки, присоединение к ним нитей веретена деле­ния; в) расхождение хроматид к противоположным полюсам клетки (они становятся хромосомами); г) формирование клеточной перегородки, деление цитоплазмы и ее органоидов, образование ядерной оболочки, появление двух клеток из одной с одина­ковым набором хромосом (по 46 в материнской и дочерних клетках человека).

4. Значение митоза - образование из материн­ской двух дочерних клеток с таким же набором хромосом, равномерное распределение между до­черними клетками генетической информации.

2. 1. Антропогенез - длительный исторический процесс становления человека, который происходит под влиянием биологических и социальных факто­ров. Сходство человека с млекопитающими - дока­зательство его происхождения от животных.

2. Биологические факторы эволюции человека - наследственная изменчивость, борьба за существо­вание, естественный отбор. 1) Появление у предков человека S-образного позвоночника, сводчатой сто­пы, расширенного таза, прочного крестца - на­следственные изменения, которые способствовали прямохождению; 2) изменения передних конечно­стей - противопоставление большого пальца осталь­ным пальцам - формирование руки. Усложнение -строения и функций головного мозга, позвоночника,руки, гортани - основа формирования трудовой деятельности, развития речи, мышления.

3. Социальные факторы эволюции - труд, раз­витое сознание, мышление, речь, общественный об­раз жизни. Социальные факторы - основное отли­чие движущих сил антропогенеза от движущих сил эволюции органического мира.

Главный признак трудовой деятельности челове­ка - способность изготавливать орудия труда. Труд - важнейший фактор эволюции человека, его роль в закреплении морфологических и физиологи­ческих изменений у предков человека.

4. Ведущая роль биологических факторов на ранних этапах эволюции человека. Ослабление их роли на современном этапе развития общества, че­ловека и возрастание значения социальных фак­торов.

5. Стадии эволюции человека: древнейшие, древние, первые современные люди. Ранние стадии эволюции - австралопитеки, черты их сходства с человеком и человекообразными обезьянами (стро­ение черепа, зубов, таза). Находки остатков челове­ка умелого, его сходство с австралопитеками.

6. Древнейшие люди - питекантроп, синан­троп, развитие у них лобных и височных долей мозга, связанных с речью, - доказательство ее за­рождения. Находки примитивных орудий труда - доказательство зачатков трудовой деятельности. Черты обезьян в строении черепа, лицевого отдела, позвоночника древнейших людей.

7. Древние люди - неандертальцы, их большее сходство с человеком по сравнению с древнейшими людьми (больший объем мозга, наличие слабораз­витого подбородочного выступа), использование бо­лее сложных орудий труда, огня, коллективная охота.

8. Первые современные люди - кроманьонцы, их сходство с современным человеком. Находки разнообразных орудий труда, наскальных рисун­ков - свидетельство высокого уровня их развития.

3. Надо исходить из того, что каждый сорт имеет свой генотип. Значит, один сорт отличается от дру­гого и по фенотипу (длина колоса, число колосков и зерновок в них, окраска, остистость или ее отсутст­вие). Причины различий по фенотипу: различия в генотипе, в условиях выращивания, вызывающих модификационные изменения.


Билет № 12

1. 1. Гаметы - половые клетки, участие их в опло­дотворении, образовании зиготы (первая клетка нового организма). Результат оплодотворения - удвоение числа хромосом, восстановление их ди-плоидного набора в зиготе. Особенности гамет - одинарный, гаплоидный набор хромосом по сравне­нию с диплоидным набором хромосом в клетках тела.

2. Этапы развития половых клеток: 1) увеличе­ние путем митоза числа первичных половых клеток с диплоидным набором хромосом; 2) рост первич­ных половых клеток; 3) созревание половых кле­ток.

3. Мейоз - особый вид деления первичных по­ловых клеток, в результате которого образуются гаметы с гаплоидным набором хромосом. Мейоз - два последовательных деления первичной половой клетки и одна интерфаза перед первым делением.

4. Интерфаза - период активной жизнедеятель­ности клетки, синтеза белка, липидов, углеводов, АТФ, удвоения молекул ДНК и образования,гвух хроматид из каждой хромосомы.

5. Первое деление мейоза, его особенности: конъюгация гомологичных хромосом и возможный обмен участками хромосом, расхождение в каждую клетку по одной гомологичной хромосоме, умень­шение их числа вдвое в двух образовавшихся гап-лоидных клетках.

6. Второе деление мейоза - отсутствие интер­фазы перед делением, расхождение в дочерние клетки гомологичных хроматид, образование по­ловых клеток с гаплоидным набором хромосом. Результаты мейоза: образование в семенниках (или других органах) из одной первичной половой клет­ки четырех сперматозоидов, в яичниках из одной первичной половой клетки одной яйцеклетки (три мелкие клетки при этом погибают).

2. 1. Важный признак вида - расселение его группами, популяциями в пределах ареала. Попу­ляция - совокупность свободно скрещивающихся особей вида, которые длительное время существуют относительно обособленно от других популяций на определенной части ареала.

3. Популяция - структурная единица вида, ха­рактеризуется определенной численностью особей, ее изменениями, общностью занимаемой террито­рии, определенным соотношением возрастного и

полового состава. Изменение численности популя­ций в определенных пределах, сокращение ее ниже допустимого предела - причина возможной гибели популяции.

4. Изменение численности популяций по сезо­нам и годам (массовое размножение в отдельные го­ды насекомых, грызунов). Устойчивость численно­сти популяций, особи которых имеют большую продолжительность жизни и низкую плодовитость.

5. Причины колебания численности популяций: изменение количества пищи, погодных условий, экстремальные условия (наводнения, пожары и пр.). Резкое изменение численности под влиянием случайных факторов, прегрешение смертности над рождаемостью - возможные причины гибели по­пуляции.

3. Для составления вариационного ряда надо опре­делить размеры, массу семян фасоли (или листьев) и расположить их в порядке увеличения размеров, массы. Для этого надо измерить длину или взвесить объекты и записать данные в порядке их увеличе­ния. Под цифрами записать число семян каждого ва­рианта. Выяснить, семена каких размеров (или мас­сы) встречаются чаще, а каких - реже. Выявлена закономерность: наиболее часто встречаются семена средних размеров и массы, а крупные и мелкие (лег­кие и тяжелые) - реже. Причины: в природе преоб­ладают средние условия среды, а очень хорошие и очень плохие встречаются реже.


Билет № 13

1. 1. Размножение - воспроизведение организма­ми себе подобных, передача наследственной инфор­мации от родителей потомству. Значение размно­жения - обеспечение преемственности между по­колениями, продолжение жизни вида, увеличение численности особей в популяции и их расселение на новые территории.

2. Особенности полового размножения - воз­никновение нового организма в результате оплодо­творения, слияния мужской и женской гамет с гап-лоидным набором хромосом. Зигота - первая клет­ка дочернего организма с диплоидным набором хромосом. Объединение материнского и отцовского наборов хромосом в зиготе - причина обогащения наследственной информации потомства, появления у него новых признаков, которые могут повысить приспособленность к жизни в определенных услови­ях, возможность выжить и оставить потомство.

3. Оплодотворение у растений. Значение водной среды для процесса оплодотворения у мхов и папо­ротников. Процесс оплодотворения у голосеменных в женских шишках, а у покрытосеменных - в цветке.

4. Оплодотворение у животных. Внешнее опло­дотворение - одна из причин гибели значительной части половых клеток и зигот. Внутреннее оплодо­творение у членистоногих, пресмыкающихся, птиц и млекопитающих - причина наибольшей вероят­ности образования зиготы, защиты зародыша от не­благоприятных условий среды (хищников, колеба­ний температуры и пр.).

5. Эволюция полового размножения по пути возникновения специализированных клеток (га-плоидных гамет), половых желез, половых орга­нов. Пример: у голосеменных на чешуйках шишки располагаются пыльники (место образования муж­ских половых клеток) и семязачатки (место обра­зования яйцеклетки); у покрытосеменных в пыль­никах формируются мужские гаметы, а в семяза-чатке - яйцеклетка; у позвоночных животных и человека в семенниках образуются сперматозоиды, а в яичниках - яйцеклетки.

2. 1. Наследственность - свойство организмов пе­редавать особенности строения и жизнедеятельно­сти от родителей потомству. Наследственность - основа сходства родителей и потомства, особей од­ного вида, сорта, породы.

2. Размножение организмов - основа передачи наследственной информации от родителей потомст­ву. Роль половых клеток и оплодотворения в насле­довании признаков.

3. Хромосомы и гены - материальные основы наследственности, хранения и передачи наследст­венной информации. Постоянство формы, размеров и числа хромосом, хромосомный набор - главный признак вида.

4. Диплоидный набор хромосом в соматических и гаплоидный в половых клетках. Митоз - деле­ние клетки, обеспечивающее постоянство числа хромосом и диплоидный набор в клетках тела, пе­редачу генов от материнской клетки к дочерним. Мейоз - процесс уменьшения вдвое числа хромо­сом в половых клетках; оплодотворение - основа восстановления диплоидного набора хромосом, пе­редачи генов, наследственной информации от роди­телей потомству.

5. Строение хромосомы - комплекс молекулы ДНК с молекулами белка. Расположение хромосом в ядре, в интерфазе в виде тонких деспирализован-ных нитей, а в процессе митоза в виде компактных спирализованных телец. Активность хромосом в деспирализованном виде, образование в этот период хроматид на основе удвоения молекул ДНК, синте­за иРНК, белка. Спирализация хромосом - при­способленность к равномерному распределению их между дочерними клетками в процессе деления.

6. Ген - участок молекулы ДНК, содержащий информацию о первичной структуре одной молеку­лы белка. Линейное расположение сотен и тысяч генов в каждой молекуле ДНК.

7. Гибридологический метод изучения наследст­венности. Его сущность: скрещивание родитель­ских форм, различающихся по определенным при­знакам, изучение наследования признаков в ряду поколений и их точный количественный учет.

8. Скрещивание родительских форм, наследст­венно различающихся по одной паре признаков, - моногибридное, по двум - дигибридное скрещива­ние. Открытие с помощью этих методов правила единообразия гибридов первого поколения, законов расщепления признаков во втором поколении, не­зависимого и сцепленнрго наследования.

3. Надо приготовить микроскоп к работе: положить микропрепарат, осветить поле зрения микроскопа, найти клетку, ее оболочку, цитоплазму, ядро, вакуо­ли, хлоропласты. Оболочка придает клетке форму и защищает ее от внешнего воздействия. Цитоплазма обеспечивает связь между ядром и органоидами, ко­торые в ней располагаются. В хлоропластах на мем­бранах гран расположены молекулы хлорофилла, который поглощает и использует энергию солнечно­го света в процессе фотосинтеза. В ядре находятся хромосомы, с помощью которых осуществляется пе­редача наследственной информации от клетки к клетке. Вакуоли содержат клеточный сок, продукты обмена, способствуют поступлению воды и клетку.


Билет № 14

1. 1. Образование зиготы, ее первые деления - начало индивидуального развития организма при половом размножении. Эмбриональный и постэмб­риональный периоды развития организмов.

2. Эмбриональное развитие - период жизни ор­ганизма с момента образования зиготы до рожде­ния или выхода зародыша из яйца.

3. Стадии эмбрионального развития (на приме­ре ланцетника): 1) дробление - многократное деле­ние зиготы путем митоза. Образование множества мелких клеток (при этом они не растут), а затем шара с полостью внутри - бластулы, равной по размерам зиготе; 2) образование гаструлы - двух­слойного зародыша с наружным слоем клеток (эк­тодермой) и внутренним, выстилающим полость (энтодермой). Кишечнополостные, губки - приме­ры животных, которые в процессе эволюции оста­новились на двухслойной стадии; 3) образование трехслойного зародыша, появление третьего, сред­него слоя клеток - мезодермы, завершение образо­вания трех зародышевых листков; 4) закладка из зародышевых листков различных органов, специ­ализация клеток.

4. Органы, формирующиеся из зародышевых

5. Взаимодействие частей зародыша в процессе эмбрионального развития - основа его целостности. Сходство начальных стадий развития зародышей по­звоночных животных - доказательство их родства.

6. Высокая чувствительность зародыша к воз­действию факторов среды. Вредное влияние алко­голя, наркотиков, курения на развитие зародыша, на подростка и взрослого человека.

2. 1. Г. Мендель - основоположник генетики.

Открытие им законов наследственности на основе применения методов скрещивания и анализа по­томства.

2. Изучение Г. Менделем генотипов и феноти­пов исследуемых организмов. Фенотип - совокуп­ность внешних и внутренних признаков, особенно­стей процессов жизнедеятельности. Генотип - совокупность генов в организме. Доминантный признак - преобладающий, господствующий; ре­цессивный - исчезающий, подавляемый признак. Гомозиготный организм содержит аллельные толь­ко доминантные (АА) или только рецессивные (аа) гены, которые контролируют формирование опре­деленного признака. Гетерозиготный организм со­держит в клетках доминантный и рецессивный ге­ны (Аа). Они контролируют формирование альтер­нативных признаков.

3. Правило единообразия (доминирования) при­знаков у гибридов первого поколения - при скре­щивании двух гомозиготных организмов, различаю­щихся по одной паре признаков (например, желтая и зеленая окраска семян гороха), все потомство гиб­ридов первого поколения будет единообразным, по­хожим на одного из родителей (желтые семена).


Для роста, развития и размножения, а также воссоздание среды (Питания живыми организмами - условия самовоспроязводства биогеоценозов (экосистем). БИЛЕТ№19 ВОПОС 1. Моногибридное скрещивание. Одна из особенностей метода Менделя состояла в том, что он использовал для экспериментов чистые линии, то есть растения, в потомстве которых при самоопылении не наблюдалось разнообразия по изучаемому...

Од­нако эти модификации не наследуются, потому что гены, отве­чающие за развитие растений, не меняются в ответ на измене­ния температуры, влажности, характера питания. Вывод, что признаки, приобретенные в течение жизни организмов, не на­следуются, сделал крупный немецкий биолог А. Вейсман. Иногда модификационная изменчивость называется ненаслед­ственной. Это верно в том смысле, что модификации...

У одних это могут быть тысячи у других менее десяти. Чтобы установить причины колебания необходимо изучать биологию каждого вида и его врагов. Все виды приспособлены к обитанию с другими и контактами с ними. Эта возможность приобреталась на протяжении многих лет за счет эволюции. Билет №6 1. агроценоз. Его отличия от о природного биогеоценоза. Круговорот веществ в агроценозе, пути...

Гигиена кровеносной системы. Бактерии. Особенности их строения и жизнедеятельности, роль в природе человека. Среди нескольких комнатных растений найти двудольное и описать признаки растений этого класса. Билет №9Пищеварение, роль пищеварительных желез в нем. Значение всасывания питательных веществ. Основные систематические категории растений и животных. Признаки вида. Среди микропрепаратов клеток...

Все клетки возникают путем деления ранее существовавших клеток. Различают несколько способов деления клеток.

Амитоз - прямое деление клетки, при котором сохраняется интерфазное состояние ядра. Ядро делится путем перетяжки на две примерно равные части без спирализации хромосом. Амитоз встречается в клетках эпителия, скелетной мускулатуре, а также в других клетках при некоторых заболеваниях (например, в клетках злокачественных опухолей).

Митоз - непрямое деление клеток, при котором происходит точное распределение хромосом, содержащих ДНК, между дочерними клетками.

Мейоз - разновидность митоза - особый способ деления клеток, в результате которого уменьшается число хромосом вдвое, и клетки переходят из диплоидного состояния в гаплоидное.

Клеточный (жизненный) цикл - период существования клетки от момента ее образования в результате деления материнской клетки до собственного деления или смерти.

Митотический цикл - это совокупность процессов, происходящих в клетке в период подготовки клетки к делению и во время деления. В непрерывно размножающихся клетках клеточный цикл совпадает с митотическим.

Митотический цикл включает:

1. интерфазу, состоящую из пресинтетического, синтетического и постсинтетического периодов.

2. само деление (митоз).

Пресинтетический (G 1) период идет сразу за делением. В этот период синтезируются РНК, различные белки, АТФ, увеличивается число органоидов. Клетка растет и выполняет свои функции. Она содержит диплоидный набор деспирализованных хромосом, каждая хромосома состоит из одной хроматиды. Содержание генетического материала будет 2n2с (n - количество хромосом в гаплоидном наборе, с - содержание ДНК в гаплоидном наборе хромосом).

В синтетический период (S) происходит репликация (удвоение) молекул ДНК под действием фермента ДНК-полимеразы, а также синтез РНК и белков. К концу периода хромосомы из однохроматидных становятся двухроматидными и содержание генетического материала будет 2n4с. В постсинтетический период (G 2) клетка запасается энергией, продолжается синтез РНК и белков (синтезируются белки веретена деления), содержание генетического материала остается прежним –2n4с.

Митотический цикл: А – интерфаза; Б-В – профаза; Г-Д – метафаза;

Е – анафаза; Ж-З – телофаза.

Митоз - непрямое деление клеток. Митозом делятся соматические клетки, в результате чего дочерние клетки получают такой же набор хромосом, какой имела материнская клетка. В митозе выделяют несколько фаз: профазу, метафазу, анафазу, телофазу.

В профазе происходит спирализация хромосом, к концу профазы они становятся видимыми; исчезает ядрышко; растворяется ядерная оболочка, а хромосомы оказываются в цитоплазме; центриоли расходятся к полюсам клетки, формируется веретено деления (2n4с).

В метафазе хромосомы максимально спирализованы и располагаются в плоскости экватора; каждая хромосома состоит из двух хроматид, которые соединены в области центромеры. К центромерам прикрепляются нити веретена деления. В этой фазе проводят изучение и подсчет хромосом (2n4с).

В анафазе каждая хромосома делится в области центромеры на две хроматиды (дочерние хромосомы). Сокращаясь нити веретена деления растягивают хроматиды к полюсам клетки. Генетический материал в клетке - 4n4с (по 2n2с у каждого полюса).

В телофазе происходят события обратные профазе: хромосомы деспирализуются и становятся невидимыми в световой микроскоп; формируются ядерная оболочка и ядрышко; исчезает веретено деления. В это же время идет деление цитоплазмы (цитокинез): путем перетяжки в животных клетках или путем построения из мембраны перегородки в клетках растений. Органоиды при этом распределяются между клетками относительно равномерно. Содержание генетического материала в каждой образовавшейся клетке - 2n2с, (до цитокинеза - 4n4с).

Профаза 2n4с. Метафаза 2n4с. Анафаза 4n4с. Телофаза 2n2с.

Биологическое значение митоза.

1. В результате митоза дочерние клетки получают такой же набор хромосом, какой был у материнской клетки, что обеспечивает поддержание постоянного числа хромосом и сохранение
одинакового набора генетического материала во всех клеточных поколениях.

2. Митоз обеспечивает эмбриональное развитие, рост организма, процессы регенерации тканей и органов.

3. У одноклеточных митоз приводит к увеличению числа особей.

Цель: актуализировать личностную значимость для учащихся значимость для учащихся вопросов изучаемой темы, показав биологическое значение митоза и мейоза

Задачи:

Создать организационные условия для воспитания настойчивости в достижении цели;

Развивать коммуникативные способности через посредство работы в малых группах.

Оборудование: учебник, компьютер (с выходом в Интернет), мультимедиапроектор, диск «Открытая биология», справочная литература по биологии.

Ход урока:

1. Определение темы урока.

Актуализация знаний

Учащимся выданы карточки с заданием: каждому термину, указанному в левой колонке, подберите соответствующее ему определение, приведённое в правой колонке.

1. Дифференцировка

2. Жизненный цикл клетки

3. Митотический цикл клетки

4. Интерфаза

А. Период подготовки клетки к делению, важнейшим событием которого является редупликация ДНК.

Б. Совокупность процессов, протекающих в клетке в период её подготовки к делению на протяжении митоза.

В. Совокупность процессов, протекающих в клетке с момента её возникновения до гибели или последующего деления.

Г. Процесс специализации клетки на выполнение определённых функций, который заключается в приобретении соответствующего строения и синтезе конкретных белков.

Д. Клетки необратимо дифференцируются в эмбриональном и раннем постэмбриональном периоде и функционируют в течение всей жизни организма.

Е. Форма клеточного размножения, при которой происходит точное и равномерное распределения набора хромосом между дочерними клетками.

Ответ: 1 – Д, Г; 2 – В; 3 – Б; 4 – А; 5 – Е

3. Изучение нового материала

3.1 Рассказ учителя о митозе (можно использовать модель митоза, которая имеется на диске «Открытая биология»).

3.2 Самостоятельная работа учащихся.

Подготовьте рассказ о мейозе, используя любые источники информации (учебник, справочную литературу, Интернет). Выполняя работу, помните! Древнеримский оратор Цицерон считал, что правильно поостренная речь содержит ответы на семь вопросов: Что? Где, Как?, Когда (при каких условиях), Чем?, Почему?, Зачем? Конечно, не всегда можно подобрать ответ на все вопросы алгоритма, но надо постараться ответить на бОльшую часть вопросов, при этом нужно постараться, чтобы получился относительно связанный текст (учащиеся работают в группах, так как количество компьютеров в кабинете ограничено).

Возможные источники информации:

К. Вили Биология. – М.: Мир, 1966, перевод с английского, - 685 с.: ил.

Биология: Большой справочник для школьников и поступающих в вузы /, и др. – 3-е изд., стереотип. – М.: Дрофа,2000. – 668 с.: ил. – (Большие справочники для школьников и поступающих в вузы).

Биология. Большой энциклопедический словарь / Гл. ред. . – 3-е изд. – М.: Большая Российская энциклопедия, 1999. – 864 с. – ил., 30 л. цв. ил.

Энциклопедия для детей. Т. 2. Биология/Сост. – 3-е изд. Перераб. И доп. – М.: Аванта+, 1996. – 704 с.: ил.

Web – сайты:

http://ru. wikipedia. org/wiki/%D0%9C%D0%B5%D0%B9%D0%BE%D0%B7

http://ru. wikipedia. org/wiki/%D0%9A%D0%BE%D0%BD%D1%8A%D1%8E%D0%B3%D0%B0%D1%86%D0%B8%D1%8F

http://ru. wikipedia. org/wiki/%D0%9C%D0%B8%D1%82%D0%BE%D0%B7

http://ru. wikipedia. org/wiki/%D0%96%D0%B8%D0%B7%D0%BD%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D1%86%D0%B8%D0%BA%D0%BB

http://ru. wikipedia. org/wiki/%D0%9A%D1%80%D0%BE%D1%81%D1%81%D0%B8%D0%BD%D0%B3%D0%BE%D0%B2%D0%B5%D1%80

«Открытая биология»

3.3 Взаимопроверка заданий.

4. Рефлексия

Учащимся выданы карточки. Заполните таблицу1

Используя результаты работы, сравните митоз и мейоз

Подумайте, могут ли условия окружающейся среды повлиять на процессы митоза и мейоза? К каким последствиям для организма это может привести?

Способность клетки к репродукции – одно из фундаментальных свойств живого. Деление клеток лежит в основе эмбриогенеза и регенерации.

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл - это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл - комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении.

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Величина его значительно варьирует: для бактерий это 20-30 минут, для туфельки 1-2 раза в сутки, для амебы около 1,5 суток. Длительность цикла регулируется путем изменения продолжительности всех его периодов. Клетки многоклеточных обладают также разной способностью к делению. В раннем эмбриогенезе они делятся часто, а во взрослом организме большей частью утрачивают эту способность, так как становятся специализированными. Но даже в организме, достигшем полного развития, многие клетки должны делиться, чтобы замещать изношенные клетки, которые постоянно слущиваются и, наконец, нужны новые клетки для заживления ран.

Следовательно, у некоторых популяций клеток деления должны происходить в течение всей жизни. Учитывая это, все клетки можно разделить на три категории:

1. В организме высших позвоночных не все клетки постоянно делятся. Есть специализированные клетки, потерявшие способность к делению (нейтрофилы, базофилы, эозинофилы, нервные клетки). К моменту рождения ребенка нервные клетки достигают высокоспециализированного состояния, утрачивая способность к делению, В процессе онтогенеза количество их непрерывно уменьшается. Это обстоятельство имеет и одну хорошую сторону; если бы нервные клетки делились, то высшие нервные функции (память, мышление) нарушились бы.

2. Другая категория клеток тоже высокоспециализированная, но в силу их постоянного слущивания замещаются новыми и эту функцию выполняют клетки этой же линии, но еще не специализированные и не утратившие способность делиться. Эти клетки называют обновляющимися. Примером являются постоянно обновляющиеся клетки кишечного эпителия, кроветворные клетки. Даже клетки костной ткани способны образовываться из неспециализированных (это можно наблюдать при репаративной регенерации костных переломов). Популяции неспециализированных клеток, сохраняющие способность к делению называются, как правило, стволовыми.

3. Третья категория клеток - исключение, когда высокоспециализированные клетки при определенных условиях могут вступить в митотический цикл. Речь идет о клетках, отличающихся большой продолжительностью жизни и где после полного завершения роста деление клеток происходит редко. Примером являются гепатоциты. Но если у экспериментального животного удалить 2/3 печени, то менее чем за две недели она восстанавливается до прежних размеров. Такими же являются и клетки желез, вырабатывающих гормоны: в нормальных условиях лишь немногие из них способны воспроизводиться, а при измененных условиях большинство из них могут начать делиться.

По двум главным событиям митотического цикла в нем выделяют репродуктивную и разделительную фазы, соответствующие интерфазе и митозу классической цитологии.

В начальный отрезок интерфазы (у эукариот 8-10 часов ) (постмитотический, пресинтетический, или G 1 -период) восстанавливаются черты организации интерфазной клетки, завершается формирование ядрышка, начавшееся еще в телофазе. Из цитоплазмы в ядро поступает значительное (до 90%) количество белка. В цитоплазме параллельно реорганизации ультраструктуры интенсифицируется синтез белка. Это способствует росту массы клетки. Если дочерней клетке предстоит вступить в следующий митотический цикл, синтезы приобретают направленный характер: образуются химические предшественники ДНК, ферменты, катализирующие реакцию редупликации ДНК, синтезируется белок, начинающий эту реакцию. Таким образом, осуществляются процессы подготовки следующего периода интерфазы - синтетического. Клетки имеют диплоидный набор хромосом 2n и 2c генетического материала ДНК (генетическая формула клетки).

В синтетическом или S-периоде (6-10 ч) удваивается количество наследственного материала клетки. За малыми исключениями редупликация (иногда удвоение ДНК обозначают термином репликация, оставляя термин редупликация для обозначения удвоения хромосом.) ДНК осуществляется полуконсервативным способом. Он заключается в расхождении биспирали ДНК на две цепи с последующим синтезом возле каждой из них комплементарной цепочки. В результате возникают две идентичные биспирали. Молекулы ДНК, комплементарные материнским, образуются отдельными фрагментами по длине хромосомы, причем неодномоментно (асинхронно) в разных участках одной хромосомы, а также в разных хромосомах. Затем участки (единицы репликации - репликоны ) новообразованной ДНК «сшиваются» в одну макромолекулу. В клетке человека содержится более 50 000 репликонов. Длина каждого из них около 30 мкм. Число их меняется в онтогенезе. Смысл редупликации ДНК репликонами становится понятным из следующих сопоставлений. Скорость синтеза ДНК составляет 0,5 мкм/мин. В этом случае редупликация нити ДНК одной хромосомы человека длиной около 7 см должна была бы занять около трех месяцев. Участки хромосом, в которых начинается синтез, называют точками инициации . Возможно, ими являются места прикрепления интерфазных хромосом к внутренней мембране ядерной оболочки. Можно думать, что ДНК отдельных фракций, о которых речь пойдет ниже, редуплицируется в строго определенной фазе S-периода. Так, большая часть генов рРНК удваивает ДНК в начале периода. Редупликация запускается поступающим в ядро из цитоплазмы сигналом, природа которого не выяснена. Синтезу ДНК в репликоне предшествует синтез РНК. В клетке, прошедшей S-период интерфазы, хромосомы содержат удвоенное количество генетического материала. Наряду с ДНК в синтетическом периоде интенсивно образуются РНК и белок, а количество гистонов строго удваивается.

Примерно 1% ДНК животной клетки находится в митохондриях. Незначительная часть митохондриальной ДНК редуплицируется в синтетическом, тогда как основная - в постсинтетическом периоде интерфазы. Вместе с тем известно, что продолжительность жизни митохондрий печеночных клеток, например, составляет 10 сут. Учитывая, что в обычных условиях гепатоциты делятся редко, следует допустить, что редупликация ДНК митохондрий может происходить независимо от стадий митотического цикла. Каждая хромосома состоит из двух сестринских хроматид (2n) , содержит ДНК 4c.

Отрезок времени от окончания синтетического периода до начала митоза занимает постсинтетический (предмитотический), или G 2 -neриод интерфазы (2n и 4c ) (3-6 ч). Он характеризуется интенсивным синтезом РНК и особенно белка. Завершается удвоение массы цитоплазмы по сравнению с началом интерфазы. Это необходимо для вступления клетки в митоз. Часть образуемых белков (тубулины) используется в дальнейшем для построения микротрубочек веретена деления. Синтетический и постсинтетический периоды связаны с митозом непосредственно. Это позволяет выделить их в особый период интерфазы - препрофазу .

Существуюттри способа деления клетки: митоз, амитоз, мейоз.

Вспомните!

Как, согласно клеточной теории, происходит увеличение числа клеток?

Новые дочерние клетки образуются путем деления материнской клетки, поэтому процесс размножения организма имеет клеточную природу.

Как вы считаете, одинакова ли продолжительность жизни разных типов клеток в многоклеточном организме? Обоснуйте своё мнение.

Нет, продолжительность зависит от строения и выполняемых функций

Вопросы для повторения и задания

1. Что такое жизненный цикл клетки?

Клеточный или жизненный цикл клетки – это жизнь клетки с момента ее появления до деления или гибели. Клеточный цикл условно делят на два периода: длительный – интерфаза, и сравнительно короткий – само деление.

2. Каким образом в митотическом цикле происходит удвоение ДНК? Объясните, в чём заключается биологический смысл этого процесса.

Удвоение ДНК происходит в синтетической фазе интерфазы. Каждая молекула ДНК превращается в две одинаковые дочерние молекулы ДНК. Это нужно для того, чтобы во время деления клетки каждая дочерняя клетка получила свою копию ДНК. Фермент ДНК-хеликаза разрывает водородные связи между азотистыми основаниями, двойная цепочка ДНК расплетается на две одинарных. Затем фермент ДНК-полимераза достраивает каждую одинарную цепочку до двойной по принципу комплементарности. Каждая дочерняя ДНК содержит одну цепочку из материнской ДНК и одну новосинтезированную – это принцип полуконсервативности. Согласно принципу антипараллельности цепочки ДНК лежат друг к другу противоположными концами. ДНК может удлиняться только 3"-концом, поэтому в каждой репликационной вилке только одна из двух цепочек синтезируется непрерывно. Вторая цепочка (отстающая) растет в 5"-направлении с помощью коротких (100-200 нуклеотидов) фрагментов Оказаки, каждый из которых растет в 3"-направлении, а затем с помощью фермента ДНК-лигазы присоединяется к предыдущей цепочке. Скорость репликации у эукариот – 50-100 нуклеотидов в секунду. В каждой хромосоме имеется множество точек начала репликации, от каждой из которых расходятся 2 репликационные вилки; за счет этого вся репликация занимает около часа. Удвоением ДНК называется сложный процесс её самовоспроизведения. Благодаря свойству молекул ДНК самоудваиваться возможно размножение, а также передача наследственности организмом своему потомству, ведь полные данные о строении и функционировании находятся в закодированном виде в генной информации организмов. ДНК – является основой наследственных материалов большинства микро- и макроорганизмов. Правильное название процесса удвоения ДНК - репликация (редупликация).

3. В чём состоит подготовка клетки к митозу?

Стадия подготовки клетки к делению называется интерфаза. Она подразделяется на несколько периодов. Пресинтетический период (G1) - это наиболее продолжительный период клеточного цикла, наступающий после деления (митоза) клеток. Число хромосом и

содержание ДНК - 2n2с. У разных видов клеток период G1 может продолжаться от нескольких часов до нескольких суток. В этот период в клетке активно синтезируются белки, нуклеотиды и все виды РНК, делятся митохондрии и пропластиды (у растений), образуются рибосомы и все одномембранные органоиды, увеличивается объём клетки, накапливается энергия, идёт подготовка к редупликации ДНК. Синтетический период (S) - это важнейший период в жизни клетки, во время которого происходит удвоение ДНК (редупликация). Длительность S -периода - от 6 до 10 часов. В это же время идёт активный синтез белков-гистонов, входящих в состав хромосом, и их миграция в ядро. К концу периода каждая хромосома состоит из двух сестринских хроматид, соединённых друг с другом в области центромеры. Тем самым число хромосом не меняется (2n), а количество ДНК удваивается (4с). Постсинтетический период (G2) наступает после завершения удвоения хромосом. Это период подготовки клетки к делению. Он длится 2-6 часов. В это время активно накапливается энергия для предстоящего деления, синтезируются белки микротрубочек (тубулины) и регуляторные белки, запускающие митоз.

4. Опишите последовательно фазы митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую. В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c). В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c). В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c). В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы. Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Подумайте! Вспомните!

1. Объясните, почему завершение митоза - деление цитоплазмы происходит по-разному в животных и растительных клетках.

Так как в растительных и животных организмах разные клетки и ткани. Например, клетки специализированных растительных тканей (покровных, механических, проводящих) не способны к делению. Следовательно, в растении должны быть ткани, единственная функция которых заключается в новообразовании клеток. Только от них зависит возможность роста растения. Это образовательные ткани, или меристемы (от греч. meristos - делимый).

2. Клетки, каких растительных тканей активно делятся и дают начало всем остальным тканям растения?

Образовательные ткани, или меристемы, состоят из мелких тонкостенных крупноядерных клеток, содержащих пропластиды, митохондрии и мелкие, практически неразличимые под световым микроскопом вакуоли. Меристемы обеспечивают рост растения и образование всех остальных типов тканей. Их клетки делятся путём митоза. После каждого деления одна из сестринских клеток сохраняет свойство материнской, а другая вскоре прекращает деление и приступает к начальным этапам дифференциации, в дальнейшем образуя клетки определённой ткани.




Top