Что означает ide. Редактор или IDE? Очередная попытка анализа. Так что из этого выбрать

Хотелось бы в очередной раз поднять эту довольно спорную тему.

С тех пор, как я начал заниматься программированием, этот вопрос не даёт мне покоя, а многочисленные темы на форумах и хабре ясности не внесли. Плюс к этому, мне кажется, некоторые аргументы как за одну, так и за другую сторону не были приведены. А у тех, что приведены, неверно расставлены приоритеты и упущен контекст.

В статье я постараюсь исправить это упущение и расставить ещё немного точек над «ё».

Приглашаю всех поучавствовать в поисках идеального инструмента.

О моём опыте

Программировать я начинал ещё в ДОС. на Turbo Pascal-е. Причём, почему-то, IDE мы тогда использовали только для отладки, и то достаточно редко. Для писания кода предпочитали использовать некий безымянный edit.exe без всякой подсветки синтаксиса в связке с Volkov Commander. И этого хватало. Этим же способом я позже занимался ассемблером и, частично, C++.

Продолжая изучать C++ я перешел на Windows и, соответственно, Visual Studio - куда же без него. Застал версии, если не ошибаюсь, с 5 до 7. После простенького редактора это было нечто - кодогенерация и автодополнение вызывали восторг. Правда, во всём этом сгенерированном добре разобраться было практически невозможно, но это казалось неважным.

Через некоторое время я пересел на Linux и занялся веб-разработкой на php. Здесь параллельно изучал vim и для разработки использовал ZendStudio. В какой-то момент начал использовать только Vim для всего - превратил его, в соответствии с многочисленными руководствами в маленькую ide. В нём же написал свою первую велосипедную CMS на php.

Замечу, что до этого программирование не было основным видом моей деятельности. Да, я и для работы писал различные мелкие утилитки, делал темы для для WordPress, но основным родом деятельности было администрирование.

Как только я занялся разработкой профессионально - возможностей vim мне перестало хватать. Был сначала eclipse, потом netbeans, сейчас - phpstorm.

Последние пол-года героически пытаюсь освоить emacs, в т.ч. в качестве основной рабочей среды.

Так что у меня есть с чем сравнивать и, надеюсь, моё мнение будет достаточно обоснованным и агрументированным.

IDE? IDE...

Я долго думал, в какой форме привести сравнение преимуществ и недостаков сторон. Список для этого не очень подходит, т.к. простое перечисление не вполне отражает суть вопроса. Редактор и IDE не противоположности, а инструменты, чья область применения перекрывается в некоторой области. Преимущества редактора далеко не всегда является недостатками среды и наоборот. По этой причине дальше идут более-менее структурированные рассуждения на тему.

Начну, пожалуй, с одного из бесспорных преимуществ редактора - его богатых возможностей по работе с текстом и возможности всё делать не отрывая рук от клавиатуры. Cреды в большинстве своём так не умеют. Только вот нужны ли такие возможности при написании кода? При написании статьи или письма, думаю, удобно одним нажатием клавиши поменять местами 2 слова или передвинуть абзац вверх страницы. Но в тексте программы это, в большинстве случаев бессмысленно и требует рефакторинга. А платить за это приходится либо пальцедробительными сочетаниями клавиш emacs, либо не менее мозгодробительными командами в vim. А ведь это всё нужно поминать! То, что просто решается одним движением мыши, вроде перемещения окна или изменения их размеров, превращается в целый квест. Да даже выделить текст проще мышкой - точнее, быстрее, и на надо считать сколько там слов до нужнго места в тексте. Нет, программисту тоже могут быть полезны эти функции, но дело в том, что его временные затраты на собственно редактирование кода ничтожны, так что выгоды во времени не будет практически никакой. А вот значительное усложнение инструмента - налицо.

Программист 80% своего времени тратит на понимание написанного кода и перемещению по нему. Причём перемещению именно по коду, а не по тексту! И здесь ему редактор не может помочь абсолютно ничем. Список параметров метода во всплывающей подсказке не покажет, перейти к определению метода не позволит, синтаксис не проконтролирует. А IDE, даже самые простые, с этим справляются просто и элегантно. Я недавно потратил минут 10 на поиск определения одного метода в проекте при помощи silversearcher из emacs. Оказалось, класс был определён в другом модуле и т.п. 10 минут, вместо одного клика мышкой! Я в emacs, конечно, недостаточно опытен, поэтому пусть будет 5 минут, даже минута. Но всё равно соотношение впечатляет.

И вот здесь IDE показывает свой, пожалуй, единственный, но очень жирный плюс - это наличие синтаксического анализатор языка программирования. Среда «понимает» что она редактирует код. Редактор - нет. А это и автодополнение, и навигация, и подсветка синтаксических, а, иногда, и семантических ошибок. Кажется, излишество, приятная мелочь, баловство. Но оно, превращается в необходимость после того, как размер проекта привысит некоторый предел. А с учётом объемных современных фреймворков - этот предел наступает практически сразу.

Да, на проекте из десятка файлов и пары тысяч строк, этот плюс не проявляет себя во всей красе. Редактор тоже может выполнять то же самое автодополнение, но он никогда не отсеет бессмысленные, варианты. И если размер проекта приближается к 100 тыс строк и состоит из тысяч файлов не считая библиотек, то становится проблемно выбирать нужное название из мешанины из названий переменных, методов других классов, да и просто слов из комментариев (было такое в vim-е у меня, не знаю, может, исправили). Интеллектуальные подсказки избавляют от необходимости помнить названия нужных функций и их параметры. Часто это просто физически невозможно.

Кстати о проектах. Во всех IDE есть такое понятие. К нему привязываются настройки, ресурсы, можно осуществлять поиск и т.п. В редакторах это в лучшем случае открытый каталог файловой системы. Иногда чуть больше.

Интеграция с отладчиком в редакторах тоже оставляет желать много лучшего. Юнит-тестирование, логирование в какой-то мере спасают ситуацию, но, иногда без отладчика никуда.

Кто-то может возразить, что в современных редакторах многие из этих функций уже реализованы и ничем не уступают самым навороченным IDE. Не соглашусь. Во-первых, полноценных реализаций нет. Не работают они, как должны. Во-вторых, установка всего этого уже достаточно сложная задача. Да даже конфигурация внутренних функций редактора уже нетривиальна. Попробуйте, скажем, включить нумерацию строк в том же emacs! Плюс ко всему, часто нужный функционал реализуется десятком плагинов непонятно как между собой взаимодействующих. А часто ещё и имеющих десяток версий и веток, не всегда совместимых, странно настраиваюхся и т.п. Можно, конечно, потратить месяц, всё настроить и установить (что тоже удел энтузиастов), но это всего лишь приблизит редактор к уровню IDE. К примеру, вернёмся к тем же проектам - я пробовал и Project под vim и projectile под emacs и ещё некоторые плагины. Если Project ещё более-менее отвечает моим требованиям (хотя в последней версии мне вообще не удалось создать проект из-за багов), то projectile оставил исключительно негативные впечатления.

И тем не менее, у редакторов есть несколько областей применения, где они, как минимум, составляют достойную конкуренцию средам разработки.

Во-первых, они себя лучше показывают на мелких проектах. Нет смысла загружать IDE-комбайн для работы с проектом в 10-20 файлов. Проще в редакторе подправить 3-4 строки.

Во-вторых, в некоторых специфических областях все преимущества IDE нивелируются. Например, низкоуровневая разработка для linux. Я этим не занимался, но, судя по структуре кода и предпочтениям разрабочиков (около 70% - emacs и клоны, 25% - vim, 5% - какая-то экзотика вроде jed), IDE там делать нечего. Весь нужный код, с которым происходит работа, собран, как правило в одном-двух файлах, и не нужно прыгать в пределах всего проекта. Да и не сильно поможет автодополнение при выборе из десятка-двух функций с почти одинаковыми названиями.

В-третьих, редакторы могут работать не только с кодом. Всю их мощь можно задействовать при работе с csv или xml файлами. Либо чего-то другого, в чём иногда возникает необходимость, вроде статьи или письма. И не нужно переучиваться, искать удобную программу или запоминать горячие клавиши - всё под рукой, всё одинаковое.

В-четвёртых, возможность работы с языками, для которых нет вменяемой IDE. Скажем, с тем же ruby мне среда не сильно помогла. SublimeText-а оказалось достаточно. Хотя с большим ruby проектом я не работал, возможно, там бы IDE себя показала.

И в-пятых, пресловутая возможность расширения. При наличии хороших плагинов редактор становится очень удобным! Плюс специфическое удовольствие непрерывного тюнига своего основного инструмента и ощущение полного контроля над ним - дорогого стоит.

Итого

Я не очень люблю IDE, хотя так могло показаться по предыдущему тексту. Считаю их довольно монструозными, с кучей ненужных функций, медленными и требовательными к ресурсам. Да и лучшие из них довольно дорогие. Кроме того, я считаю, использование IDE расслабляет, и привязывает к себе. У редакторов, соответственно, всё наоборот. Плюс доступность и возможности тонкой доводки под себя. По крайней мере vim и emacs. В конце концов, они мне просто нравятся. Эту статью, например, я пишу в Emacs.

Но индустрия (и начальство) диктует свои требования. Если не использовать IDE, производительность значительно упадёт. Но никто не даст вам пол-часа на поиск пропущенной запятой в 10 тыс строках кода. Это всё должно выполняться автоматически и автоматически же исправляться. Мне тоже иногда нравится покопаться в коде без всяких инструментов - но на работе это непозволительная трата времени.

После всех своих проб и ошибок я сделал такой вывод - редактор можно использовать для разработки, но с IDE, после определённого предела он не сравнится и использование редактора для чего-то, за что вам платят - непозволительная роскошь. Да, если использовать правильные практики разработки, правильно проектировать/документировать код, следовать стандартам - можно сгладить врождённые недостатки редакторов. Но мы живём далеко не в идеальном мире, поэтому использование IDE - необходимость, независимо от нашего желания.

Привет всем, хотел бы рассказать какой выбрать правильно режим для жесткого диска, чтобы он работал как нужно.

Скорее всего эта статья подойдет для средних компьютеров, у которых может быть выбран не тот параметр. Но на всякий случай проверьте. Я до этого тоже как-то и не задумывался об этом пока мой директор не рассказал.

Вообщем ближе к делу) Для начала необходимо зайти в биос компьютере. На разных версиях биоса разные кнопки входа, обычно это del на компьютерах и F2 на ноутбуках. При загрузке компьютера обычно написано press F2 (Del) for bios. На всякий случай вот подсказка:

Как зайти в биос в различных версиях:

На компьютере:

На ноутбуке:

После того как вы зашли необходимо искать параметр Sata Configuration. В нем необходимо выбрать режим AHCI.

Заодно расскажу что это за режимы:

Существуют способы подключения IDE и SATA:

Режим IDE

Разъем IDE (Integrated Development Environment) это уже устаревший разъем (разработанный в 80-х годах), как видно на картинке, раньше использовался для подключения жестких дисков, дисководов, сидиромов и т.д. что поддерживало такие разъемы. В те времена это конечно была сумасшедшая популярность этого разъема, сейчас же конечно остается его только вспоминать и менять на старых компьютерах.

По мимо всего этого даже сами шнуры удобнее и занимаю меньше места. Разъемы сата поддерживают HotSwap и HotPlug т.е. горячую замену, что удобно в серверах. Не нужно перезагружать или выключать.

AHCI — это режим подключения SATA устройств, вот я и пришел к разгадке все статьи. Благодаря этому режиму sata устройства работают должным образом.

Чтобы и у вас все устройства работали хорошо необходимо его выбрать (конечно если у вас уже он не выбран).

Но для начала нужно выбрать в windows режим achi иначе винда у вас не запуститься! Можете конечно попробовать, но скорее всего . По этому я покажу как поставить режим achi на вндовс 7.

Как включить режим ACHI?

Это делается с помощью реестра.

Нажимаем пуск — выполнить (или WIN+R).

Вводим regedit и нажимаем enter.

Появится редактор реестра. В нем идем по пути:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\msahci


Здравствуйте! В мы с вами в подробностях рассмотрели устройство жесткого диска, но я специально ничего не сказал про интерфейсы - то есть способы взаимодействия жесткого диска и остальных устройств компьютера, или если еще конкретней, способы взаимодействия (соединения) жесткого диска и компьютера.

А почему не сказал? А потому что эта тема - достойна объема никак не меньшего целой статьи. Поэтому сегодня разберем во всех подробностях наиболее популярные на данный момент интерфейсы жесткого диска. Сразу оговорюсь, что статья или пост (кому как удобнее) в этот раз будет иметь внушительные размеры, но куда деваться, без этого к сожалению никак, потому как если написать кратко, получится совсем уж непонятно.

Понятие интерфейса жесткого диска компьютера

Для начала давайте дадим определение понятию "интерфейс". Говоря простым языком (а именно им я и буду по-возможности выражаться, ибо блог то на обычных людей рассчитан, таких как мы с Вами), интерфейс - способ взаимодействия устройств друг с другом и не только устройств. Например, многие из вас наверняка слышали про так называемый "дружественный" интерфейс какой-либо программы. Что это значит? Это значит, что взаимодействие человека и программы более легкое, не требующее со стороны пользователя большИх усилий, по сравнению с интерфейсом "не дружественным". В нашем же случае, интерфейс - это просто способ взаимодействия конкретно жесткого диска и материнской платы компьютера. Он представляет собой набор специальных линий и специального протокола (набора правил передачи данных). То есть чисто физически - это шлейф (кабель, провод), с двух сторон которого находятся входы, а на жестком диске и материнской плате есть специальные порты (места, куда присоединяется кабель). Таким образом, понятие интерфейс - включает в себя соединительный кабель и порты, находящиеся на соединяемых им устройствах.

Ну а теперь самый "сок" сегодняшней статьи, поехали!

Виды взаимодействия жестких дисков и материнской платы компьютера (виды интерфейсов)

Итак, первым на очереди у нас будет самый "древний" (80-е года) из всех, в современных HDD его уже не встретить, это интерфейс IDE (он же ATA, PATA).

IDE - в переводе с английского "Integrated Drive Electronics", что буквально означает - "встроенный контроллер". Это уже потом IDE стали называть интерфейсом для передачи данных, поскольку контроллер (находящийся в устройстве, обычно в жестких дисках и оптических приводах) и материнскую плату нужно было чем-то соединять. Его (IDE) еще называют ATA (Advanced Technology Attachment), получается что то вроде "Усовершенствованная технология подсоединения". Дело в том, что ATA - параллельный интерфейс передачи данных , за что вскоре (буквально сразу после выхода SATA, о котором речь пойдет чуть ниже) он был переименован в PATA (Parallel ATA).

Что тут сказать, IDE хоть и был очень медленный (пропускная способность канала передачи данных составляла от 100 до 133 мегабайта в секунду в разных версиях IDE - и то чисто теоретически, на практике гораздо меньше), однако позволял присоединять одновременно сразу два устройства к материнской плате, используя при этом один шлейф.

Причем в случае подключения сразу двух устройств, пропускная способность линии делилась пополам. Однако, это далеко не единственный недостаток IDE. Сам провод, как видно из рисунка, достаточно широкий и при подключении займет львиную долю свободного пространства в системном блоке, что негативно скажется на охлаждении всей системы в целом. В общем IDE уже устарел морально и физически, по этой причине разъем IDE уже не встретить на многих современных материнских платах, хотя до недавнего времени их еще ставили (в количестве 1 шт.) на бюджетные платы и на некоторые платы среднего ценового сегмента.

Следующим, не менее популярным, чем IDE в свое время, интерфейсом является SATA (Serial ATA) , характерной особенностью которого является последовательная передача данных. Стоит отметить, что на момент написания статьи - является самым массовым для применения в ПК.

Существуют 3 основных варианта (ревизии) SATA, отличающиеся друг от друга пропускной способностью: rev. 1 (SATA I) - 150 Мб/с, rev. 2 (SATA II) - 300 Мб/с, rev. 3 (SATA III) - 600 Мб/с. Но это только в теории. На практике же, скорость записи/чтения жестких дисков обычно не превышает 100-150 Мб/с, а оставшаяся скорость пока не востребована и влияет разве что на скорость взаимодействия контроллера и кэш-памяти HDD (повышает скорость доступа к диску).

Из нововведений можно отметить - обратную совместимость всех версий SATA (диск с разъемом SATA rev. 2 можно подключить к мат. плате с разъемом SATA rev. 3 и т.п.), улучшенный внешний вид и удобство подключения/отключения кабеля, увеличенная по сравнению с IDE длина кабеля (1 метр максимально, против 46 см на IDE интерфейсе), поддержка функции NCQ начиная уже с первой ревизии. Спешу обрадовать обладателей старых устройств, не поддерживающих SATA - существуют переходники с PATA на SATA , это реальный выход из ситуации, позволяющий избежать траты денег на покупку новой материнской платы или нового жесткого диска.

Так же, в отличии от PATA, интерфейсом SATA предусмотрена "горячая замена" жестких дисков, это значит, что при включенном питании системного блока компьютера, можно присоединять/отсоединять жесткие диски. Правда для ее реализации необходимо будет немного покопаться в настройках BIOS и включить режим AHCI.

Следующий на очереди - eSATA (External SATA) - был создан в 2004 году, слово "external" говорит о том, что он используется для подключения внешних жестких дисков. Поддерживает "горячую замену " дисков. Длина интерфейсного кабеля увеличена по сравнению с SATA - максимальная длина составляет теперь аж два метра. eSATA физически не совместим с SATA, но обладает той же пропускной способностью.

Но eSATA - далеко не единственный способ подключить внешние устройства к компьютеру. Например FireWire - последовательный высокоскоростной интерфейс для подключения внешних устройств, в том числе HDD.

Поддерживает "горячу замену" винчестеров. По пропускной способности сравним с USB 2.0, а с появлением USB 3.0 - даже проигрывает в скорости. Однако у него все же есть преимущество - FireWire способен обеспечить изохронную передачу данных, что способствует его применению в цифровом видео, так как он позволяет передавать данные в режиме реального времени. Несомненно, FireWire популярен, но не настолько, как например USB или eSATA. Для подключения жестких дисков он используется довольно редко, в большинстве случаев с помощью FireWire подключают различные мультимедийные устройства.

USB (Universal Serial Bus) , пожалуй самый распространенный интерфейс, используемый для подключения внешних жестких дисков, флешек и твердотельных накопителей (SSD). Как и в предыдущем случае - есть поддержка "горячей замены", довольно большая максимальная длина соединительного кабеля - до 5 метров в случае использования USB 2.0, и до 3 метров - если используется USB 3.0. Наверное можно сделать и бОльшую длину кабеля, но в этом случае стабильная работа устройств будет под вопросом.

Скорость передачи данных USB 2.0 составляет порядка 40 Мб/с, что в общем-то является низким показателем. Да, конечно, для обыкновенной повседневной работы с файлами пропускной способности канала в 40 Мб/с хватит за глаза, но как только речь пойдет о работе с большими файлами, поневоле начнешь смотреть в сторону чего-то более скоростного. Но оказывается выход есть, и имя ему - USB 3.0, пропускная способность которого, по сравнению с предшественником, возросла в 10 раз и составляет порядка 380 Мб/с, то есть практически как у SATA II, даже чуть больше.

Есть две разновидности контактов кабеля USB, это тип "A" и тип "B", расположенные на противоположных концах кабеля. Тип "A" - контроллер (материнская плата), тип "B" - подключаемое устройство.

USB 3.0 (тип "A") совместим с USB 2.0 (тип "A"). Типы "B" не совместимы между собой, как видно из рисунка.

Thunderbolt (Light Peak). В 2010 году компанией Intel был продемонстрирован первый компьютер с данным интерфейсом, а чуть позже в поддержку Thunderbolt к Intel присоединилась не менее известная компания Apple. Thunderbolt достаточно крут (ну а как иначе то, Apple знает во что стоит вкладывать деньги), стоит ли говорить о поддержке им таких фич, как: пресловутая "горячая замена", одновременное соединение сразу с несколькими устройствами, действительно "огромная" скорость передачи данных (в 20 раз быстрее USB 2.0).

Максимальная длина кабеля составляет только 3 метра (видимо больше и не надо). Тем не менее, несмотря на все перечисленные преимущества, Thunderbolt пока что не является "массовым" и применяется преимущественно в дорогих устройствах.

Идем дальше. На очереди у нас пара из очень похожих друг на друга интерфейсов - это SAS и SCSI. Похожесть их заключается в том, что они оба применяются преимущественно в серверах, где требуется высокая производительность и как можно меньшее время доступа к жесткому диску. Однако, существует и обратная сторона медали - все преимущества данных интерфейсов компенсируются ценой устройств, поддерживающих их. Жесткие диски, поддерживающие SCSI или SAS стоят на порядок дороже.

SCSI (Small Computer System Interface) - параллельный интерфейс для подключения различных внешних устройств (не только жестких дисков).

Был разработан и стандартизирован даже несколько раньше, чем первая версия SATA. В свежих версия SCSI есть поддержка "горячей замены".

SAS (Serial Attached SCSI) пришедший на смену SCSI, должен был решить ряд недостатков последнего. И надо сказать - ему это удалось. Дело в том, что из-за своей "параллельности" SCSI использовал общую шину, поэтому с контроллером одновременно могло работать только лишь одно из устройств, SAS - лишен этого недостатка.

Кроме того, он обратно совместим с SATA, что несомненно является большим плюсом. К сожалению стоимость винчестеров с интерфейсом SAS близка к стоимости SCSI-винчестеров, но от этого никак не избавиться, за скорость приходится платить.

Если вы еще не устали, предлагаю рассмотреть еще один интересный способ подключения HDD - NAS (Network Attached Storage). В настоящее время сетевые системы хранения данных (NAS) имеют большую популярность. По сути, это отдельный компьютер, этакий мини-сервер, отвечающий за хранение данных. Он подключается к другому компьютеру через сетевой кабель и управляется с другого компьютера через обычный браузер. Это все нужно в тех случаях, когда требуется большое дисковое пространство, которым пользуются сразу несколько людей (в семье, на работе). Данные от сетевого хранилища передаются к компьютерам пользователей либо по обычному кабелю (Ethernet), либо при помощи Wi-Fi. На мой взгляд, очень удобная штука.

Думаю, это все на сегодня. Надеюсь вам понравился материал, предлагаю подписаться на обновления блога, чтобы ничего не пропустить (форма в верхнем правом углу) и встретимся с вами уже в следующих статьях блога.

И с его появлением получил название PATA (Parallel ATA).

История

Шлейфы ATA (IDE): 40-проводной сверху, 80-проводной с кабельной выборкой снизу

Предварительное название интерфейса было PC/AT Attachment («Соединение с PC/AT »), так как он предназначался для подсоединения к 16-битной шине ISA , известной тогда как шина AT . В окончательной версии название переделали в «AT Attachment» для избежания проблем с торговыми марками.

Первоначальная версия стандарта была разработана в 1986 году фирмой Western Digital и по маркетинговым соображениям получила название IDE (англ. Integrated Drive Electronics - «электроника, встроенная в привод»). Оно подчеркивало важное нововведение: контроллер привода располагается в нём самом, а не в виде отдельной платы расширения , как в предшествующем стандарте ST-506 и существовавших тогда интерфейсах SCSI и ST-412 . Это позволило улучшить характеристики накопителей (за счёт меньшего расстояния до контроллера), упростить управление им (так как контроллер канала IDE абстрагировался от деталей работы привода) и удешевить производство (контроллер привода мог быть рассчитан только на «свой» привод, а не на все возможные; контроллер канала же вообще становился стандартным). Следует отметить, что контроллер канала IDE правильнее называть хост-адаптером , поскольку он перешёл от прямого управления приводом к обмену данными с ним по протоколу.

В стандарте АТА определён интерфейс между контроллером и накопителем, а также передаваемые по нему команды.

Интерфейс имеет 8 регистров, занимающих 8 адресов в пространстве ввода-вывода. Ширина шины данных составляет 16 бит. Количество каналов, присутствующих в системе, может быть больше 2. Главное, чтобы адреса каналов не пересекались с адресами других устройств ввода-вывода. К каждому каналу можно подключить 2 устройства (master и slave), но в каждый момент времени может работать лишь одно устройство.

Принцип адресации CHS заложен в названии. Сперва блок головок устанавливается позиционером на требуемую дорожку (Cylinder), после этого выбирается требуемая головка (Head), а затем считывается информация из требуемого сектора (Sector).

Стандарт EIDE (англ. Enhanced IDE - «расширенный IDE»), появившийся вслед за IDE, позволял использование приводов ёмкостью, превышающей 528 Мб (504 МиБ), вплоть до 8,4 Гб. Хотя эти аббревиатуры возникли как торговые, а не официальные названия стандарта, термины IDE и EIDE часто употребляются вместо термина ATA . После введения в 2003 году стандарта Serial ATA («последовательный ATA») традиционный ATA стали именовать Parallel ATA , имея в виду способ передачи данных по параллельному 40- или 80-жильному кабелю.

Поначалу этот интерфейс использовался с жёсткими дисками, но затем стандарт был расширен для работы и с другими устройствами, в основном - использующими сменные носители. К числу таких устройств относятся приводы CD-ROM и DVD-ROM , ленточные накопители, а также дискеты большой ёмкости, такие, как ZIP и флоптические (используют магнитные головки с лазерным наведением ) диски (LS-120 /240). Кроме того, из файла конфигурации ядра FreeBSD можно сделать вывод, что на шину ATAPI подключали даже накопители на гибких магнитных дисках (дискета). Этот расширенный стандарт получил название Advanced Technology Attachment Packet Interface (ATAPI), в связи с чем полное наименование стандарта выглядит как ATA/ATAPI . ATAPI практически полностью совпадает со SCSI на уровне команд и, по сути, есть «SCSI по ATA-кабелю».

Первоначально интерфейсы для подключения приводов CD-ROM не были стандартизованы и являлись проприетарными разработками производителей приводов. В результате для подключения CD-ROM было необходимо устанавливать отдельную плату расширения, специфичную для конкретного производителя, например, для Panasonic (существовало не менее 5 специфичных вариантов интерфейсов, предназначенных для подключения CD-ROM). Некоторые варианты звуковых карт, например, Sound Blaster , оснащались именно такими портами (часто привод CD-ROM и звуковая плата поставлялись в виде мультимедиа-комплекта). Появление ATAPI позволило стандартизировать всю эту периферию и дать возможность подключать её к любому контроллеру, к которому можно подключить жесткий диск.

Другим важным этапом в развитии ATA стал переход от PIO (англ. Programmed input/output - программный ввод-вывод) к DMA (англ. Direct memory access - прямой доступ к памяти). При использовании PIO считыванием данных с диска управлял центральный процессор компьютера, что приводило к повышенной нагрузке на процессор и замедлению работы в целом. По причине этого компьютеры, использовавшие интерфейс ATA, обычно выполняли операции, связанные с диском, медленнее, чем компьютеры, использовавшие SCSI и другие интерфейсы. Введение DMA существенно снизило затраты процессорного времени на операции с диском.

В данной технологии потоком данных управляет сам накопитель, считывая данные в память или из памяти почти без участия процессора, который выдаёт лишь команды на выполнение того или иного действия. При этом жёсткий диск выдаёт сигнал запроса DMARQ на операцию DMA контроллеру. Если операция DMA возможна, контроллер выдаёт сигнал DMACK, и жёсткий диск начинает выдавать данные в 1-й регистр (DATA), с которого контроллер считывает данные в память без участия процессора.

Операция DMA возможна, если режим поддерживается одновременно BIOS , контроллером и операционной системой, в противном случае возможен лишь режим PIO.

В дальнейшем развитии стандарта (АТА-3) был введён дополнительный режим UltraDMA 2 (UDMA 33).

Этот режим имеет временные характеристики DMA Mode 2, однако данные передаются и по переднему, и по заднему фронту сигнала DIOR/DIOW. Это вдвое увеличивает скорость передачи данных по интерфейсу. Также введена проверка на чётность CRC, что повышает надёжность передачи информации.

В истории развития ATA был ряд барьеров , связанных с организацией доступа к данным. Большинство из этих барьеров, благодаря современным системам адресации и технике программирования, были преодолены. К их числу относятся ограничения на максимальный размер диска в 504 МиБ , около 8 ГиБ , около 32 ГиБ, и 128 ГиБ. Существовали и другие барьеры, в основном связанные с драйверами устройств, и организацией ввода-вывода в операционных системах, не соответствующих стандартам ATA.

Оригинальная спецификация АТА предусматривала 28-битный режим адресации. Это позволяло адресовать 2 28 (268 435 456) секторов по 512 байт каждый, что давало максимальную ёмкость в 137 Гб (128 ГиБ). В стандартных PC BIOS поддерживал до 7,88 ГиБ (8,46 Гб), допуская максимум 1024 цилиндра, 256 головок и 63 сектора. Это ограничение на число цилиндров/головок/секторов CHS (Cyllinder-Head-Sector) в сочетании со стандартом IDE привело к ограничению адресуемого пространства в 504 МиБ (528 Мб). Для преодоления этого ограничения была введена схема адресации LBA (Logical Block Address), что позволило адресовать до 7,88 ГиБ. Со временем и это ограничение было снято, что позволило адресовать сначала 32 ГиБ, а затем и все 128 ГиБ, используя все 28 разрядов (в АТА-4) для адресации сектора. Запись 28-битного числа организована путём записи его частей в соответствующие регистры накопителя (с 1 по 8 бит в 4-й регистр, 9-16 в 5-й, 17-24 в 6-й и 25-28 в 7-й).

Адресация регистров организована при помощи трёх адресных линий DA0-DA2. Первый регистр с адресом 0 является 16-разрядным и используется для передачи данных между диском и контроллером. Остальные регистры 8-битные и используются для управления.

Новейшие спецификации ATA предполагают 48-битную адресацию, расширяя таким образом возможный предел до 128 ПиБ (144 петабайт).

Эти ограничения на размер могут проявляться в том, что система думает, что объём диска меньше его реального значения, или вовсе отказывается загружаться и виснет на стадии инициализации жёстких дисков. В некоторых случаях проблему удаётся решить обновлением BIOS. Другим возможным решением является использование специальных программ, таких, как Ontrack DiskManager, загружающих в память свой драйвер до загрузки операционной системы. Недостатком таких решений является то, что используется нестандартная разбивка диска, при которой разделы диска оказываются недоступны, в случае загрузки, например, с обычной DOS-овской загрузочной дискеты. Впрочем, многие современные операционные системы (начиная от Windows NT4 SP3) могут работать с дисками большего размера, даже если BIOS компьютера этот размер корректно не определяет.

Интерфейс ATA

Для подключения жёстких дисков с интерфейсом PATA обычно используется 40-проводный кабель (именуемый также шлейфом). Каждый шлейф обычно имеет два или три разъёма, один из которых подключается к разъёму контроллера на материнской плате (в более старых компьютерах этот контроллер размещался на отдельной плате расширения), а один или два других подключаются к дискам. В один момент времени шлейф P-ATA передаёт 16 бит данных. Иногда встречаются шлейфы IDE, позволяющие подключение трёх дисков к одному IDE каналу, но в этом случае один из дисков работает в режиме read-only.

Разводка Parallel ATA
Контакт Назначение Контакт Назначение
1 Reset 2 Ground
3 Data 7 4 Data 8
5 Data 6 6 Data 9
7 Data 5 8 Data 10
9 Data 4 10 Data 11
11 Data 3 12 Data 12
13 Data 2 14 Data 13
15 Data 1 16 Data 14
17 Data 0 18 Data 15
19 Ground 20 Key
21 DDRQ 22 Ground
23 I/O Write 24 Ground
25 I/O Read 26 Ground
27 IOC HRDY 28 Cable Select
29 DDACK 30 Ground
31 IRQ 32 No Connect
33 Addr 1 34 GPIO_DMA66_Detect
35 Addr 0 36 Addr 2
37 Chip Select 1P 38 Chip Select 3P
39 Activity 40 Ground

Долгое время шлейф ATA содержал 40 проводников, но с введением режима Ultra DMA/66 (UDMA4 ) появилась его 80-проводная версия. Все дополнительные проводники - это проводники заземления, чередующиеся с информационными проводниками. Таким образом вместо семи проводников заземления их стало 47. Такое чередование проводников уменьшает ёмкостную связь между ними, тем самым сокращая взаимные наводки. Ёмкостная связь является проблемой при высоких скоростях передачи, поэтому данное нововведение было необходимо для обеспечения нормальной работы установленной спецификацией UDMA4 скорости передачи 66 МБ/с (мегабайт в секунду). Более быстрые режимы UDMA5 и UDMA6 также требуют 80-проводного кабеля.

Хотя число проводников удвоилось, число контактов осталось прежним, как и внешний вид разъёмов. Внутренняя же разводка, конечно, другая. Разъёмы для 80-проводного кабеля должны присоединять большое число проводников заземления к небольшому числу контактов заземления, в то время как в 40-проводном кабеле проводники присоединяются каждый к своему контакту. У 80-проводных кабелей разъёмы обычно имеют различную расцветку (синий, серый и чёрный), в отличие от 40-проводных, где обычно все разъёмы одного цвета (чаще чёрные).

Стандарт ATA всегда устанавливал максимальную длину кабеля равной 45,7 см (18 дюймов). Это ограничение затрудняет присоединение устройств в больших корпусах, или подключение нескольких приводов к одному компьютеру, и почти полностью исключает возможность использования дисков PATA в качестве внешних дисков. Хотя в продаже широко распространены кабели большей длины, следует иметь в виду, что они не соответствуют стандарту. То же самое можно сказать и по поводу «круглых» кабелей, которые также широко распространены. Стандарт ATA описывает только плоские кабели с конкретными характеристиками полного и ёмкостного сопротивлений. Это, конечно, не означает, что другие кабели не будут работать, но, в любом случае, к использованию нестандартных кабелей следует относиться с осторожностью.

Если к одному шлейфу подключены два устройства, одно из них обычно называется ведущим (англ. master ), а другое - ведомым (англ. slave ). Обычно ведущее устройство идёт перед ведомым в списке дисков, перечисляемых BIOS’ом компьютера или операционной системы . В старых BIOS’ах (486 и раньше) диски часто неверно обозначались буквами: «C» для ведущего диска и «D» для ведомого.

Если на шлейфе только один привод, он в большинстве случаев должен быть сконфигурирован как ведущий. Некоторые диски (в частности, производства Western Digital) имеют специальную настройку, именуемую single (то есть «один диск на кабеле»). Впрочем, в большинстве случаев единственный привод на кабеле может работать и как ведомый (такое часто встречается при подключении CD-ROM’а на отдельный канал).

Настройка, именуемая cable select (то есть «выбор, определяемый кабелем», кабельная выборка), была описана как опциональная в спецификации ATA-1 и стала широко распространена начиная с ATA-5, поскольку исключает необходимость переставлять перемычки на дисках при любых переподключениях. Если привод установлен в режим cable select, он автоматически устанавливается как ведущий или ведомый в зависимости от своего местоположения на шлейфе. Для обеспечения возможности определения этого местоположения шлейф должен быть с кабельной выборкой . У такого шлейфа контакт 28 (CSEL) не подключен к одному из разъёмов (серого цвета, обычно средний). Контроллер заземляет этот контакт. Если привод видит, что контакт заземлён (то есть на нём логический 0), он устанавливается как ведущий, в противном случае (высокоимпедансное состояние) - как ведомый.

Во времена использования 40-проводных кабелей широко распространилась практика осуществлять установку cable select путём простого перерезания проводника 28 между двумя разъёмами, подключавшимися к дискам. При этом ведомый привод оказывался на конце кабеля, а ведущий - в середине. Такое размещение в поздних версиях спецификации было даже стандартизировано. Когда на кабеле размещается только одно устройство, такое размещение приводит к появлению ненужного куска кабеля на конце, что нежелательно - как из соображений удобства, так и по физическим параметрам: этот кусок приводит к отражению сигнала, особенно на высоких частотах.

80-проводные кабели, введённые для UDMA4, лишены указанных недостатков. Теперь ведущее устройство всегда находится в конце шлейфа, так что, если подключено только одно устройство, не получается этого ненужного куска кабеля. Кабельная же выборка у них «заводская» - сделанная в самом разъёме просто путём исключения данного контакта. Поскольку для 80-проводных шлейфов в любом случае требовались собственные разъёмы, повсеместное внедрение этого не составило больших проблем. Стандарт также требует использования разъёмов разных цветов, для более простой идентификации их как производителем, так и сборщиком. Синий разъём предназначен для подключения к контроллеру, чёрный - к ведущему устройству, серый - к ведомому.

Термины «ведущий» и «ведомый» были заимствованы из промышленной электроники (где указанный принцип широко используется при взаимодействии узлов и устройств), но в данном случае являются некорректными, и потому не используются в текущей версии стандарта ATA. Более правильно называть ведущий и ведомый диски соответственно device 0 (устройство 0 ) и device 1 (устройство 1 ). Существует распространённый миф, что ведущий диск руководит доступом дисков к каналу. На самом деле управление доступом дисков и очерёдностью выполнения команд осуществляет контроллер (которым, в свою очередь, управляет драйвер операционной системы). То есть фактически оба устройства являются ведомыми по отношению к контроллеру.

23.04.17 28.9K

Независимо от того, являетесь ли вы опытным разработчиком или только учитесь программировать, важно знать обо всех новых и уже существующих интегрированных средах разработки . Ниже приведен список 10 наиболее популярных IDE .

Чем IDE отличается от текстового редактора?

IDE — это не просто текстовый редактор. В то время как текстовые редакторы для кода, такие как Sublime или Atom , предлагают множество удобных функций, таких как подсветка синтаксиса, настраиваемый интерфейс и расширенные средства навигации, они позволяют только писать код. Для создания функционирующих приложений как минимум нужен компилятор и отладчик.

IDE включает в себя эти компоненты, как и ряд других. Некоторые из них поставляются с дополнительными инструментами для автоматизации, тестирования и визуализации процесса разработки. Термин «интегрированная среда разработки» означает, что предоставляется все необходимое для превращения кода в функционирующие приложения.

Ознакомьтесь с приведенным ниже списком функций и недостатков каждой из 10 лучших IDE .

1. Microsoft Visual Studio


Microsoft Visual Studio — это интегрированная среда разработки , цена которой варьируется от $699 до $2900 . Множество версий этой IDE способны создавать все типы программ, начиная от веб-приложений и заканчивая мобильными приложениями, видеоиграми. Эта линейка программного обеспечения включает в себя множество инструментов для тестирования совместимости. Благодаря своей гибкости Visual Studio является отличным инструментом для студентов и профессионалов.

Поддерживаемые языки: Ajax, ASP.NET, DHTML, JavaScript, JScript, Visual Basic, Visual C#, Visual C++, Visual F#, XAML и другие .

Особенности:

  • Огромная библиотека расширений, которая постоянно увеличивается;
  • IntelliSense ;
  • Настраиваемая панель и закрепляемые окна;
  • Простой рабочий процесс и файловая иерархия;
  • Статистика мониторинга производительности в режиме реального времени;
  • Инструменты автоматизации;
  • Легкий рефакторинг и вставка фрагментов кода;
  • Поддержка разделенного экрана;
  • Список ошибок, который упрощает отладку;
  • Проверка утверждения при развертывании приложений с помощью ClickOnce , Windows Installer или Publish Wizard.

Недостатки : поскольку Visual Studio является супертяжелой IDE , для открытия и запуска приложений требуются значительные ресурсы. Поэтому на некоторых устройствах внесение простых изменений может занять много времени. Для простых задач целесообразно использовать компактный редактор или средство разработки PHP .

2. NetBeans


Бесплатная среда разработки с открытым исходным кодом. Подходит для редактирования существующих проектов или создания новых. NetBeans предлагает простой drag-and-drop интерфейс, который поставляется с большим количеством удобных шаблонов проектов. Среда в основном используется для разработки Java приложений, но можно устанавливать пакеты, поддерживающие другие языки.

Поддерживаемые языки программирования: C, C++, C++ 11, Fortan, HTML 5, Java, PHP и другие .

Особенности:

  • Интуитивный drag-and-drop интерфейс;
  • Динамические и статические библиотеки;
  • Интеграция нескольких сессий GNU-отладчика с поддержкой кода;
  • Возможность осуществлять удаленное развертывание;
  • Совместимость с платформами Windows, Linux, OS X и Solaris;
  • Поддержка Qt Toolkit;
  • Поддержка Fortan и Assembler;
  • Поддержка целого ряда компиляторов, включая CLang / LLVM, Cygwin, GNU, MinGW и Oracle Solaris Studio.

Недостатки: эта бесплатная среда разработки потребляет много памяти, поэтому может работать медленно на некоторых ПК.

3. PyCharm


PyCharm разработан командой Jet Brains . Пользователям предоставляется бесплатная версия Community Edition , 30-дневная бесплатная ознакомительная версия Professional Edition и годовая подписка за $213 — $690 на версию Professional Edition . Комплексная поддержка кода и анализ делают PyCharm лучшей IDE для Python-программистов .

Поддерживаемые языки: AngularJS, Coffee Script, CSS, Cython, HTML, JavaScript, Node.js, Python, TypeScript.

Особенности:

  • Совместимость с операционными системами Windows, Linux и Mac OS;
  • Поставляется с Django IDE;
  • Легко интегрируется с Git, Mercurial и SVN;
  • Настраиваемый интерфейс с эмуляцией VIM;
  • Отладчики JavaScript, Python и Django;
  • Поддержка Google App Engine.

Недостатки: пользователи жалуются, что эта среда разработки Python содержит некоторые ошибки, такие как периодически не работающая функция автоматического заполнения, что может доставить определенные неудобства.

4. IntelliJ IDEA


Еще одна IDE , разработанная Jet Brains . Она предлагает пользователям бесплатную версию Community Edition , 30-дневную бесплатную ознакомительную версию Ultimate Edition и годовую подписку на версию Ultimate Edition за $533 — $693 . IntelliJ IDEA поддерживает Java 8 и Java EE 7 , обладает обширным инструментарием для разработки мобильных приложений и корпоративных технологий для различных платформ. Если говорить о цене, IntelliJ является прекрасным вариантом из-за огромного списка функций.

Поддерживаемые языки программирования: AngularJS, CoffeeScript, HTML, JavaScript, LESS, Node JS, PHP, Python, Ruby, Sass, TypeScript и другие.

Особенности:

  • Расширенный редактор баз данных и дизайнер UML ;
  • Поддержка нескольких систем сборки;
  • Пользовательский интерфейс тестового запуска приложений;
  • Интеграция с Git ;
  • Поддержка Google App Engine , Grails , GWT , Hibernate , Java EE , OSGi , Play , Spring , Struts и других;
  • Встроенные средства развертывания и отладки для большинства серверов приложений;
  • Интеллектуальные текстовые редакторы для HTML , CSS и Java ;
  • Интегрированный контроль версий;
  • AIR Mobile с поддержкой Android и iOS .

Недостатки: эта среда разработки JavaScript требует времени и усилий на изучение, поэтому может оказаться не лучшим вариантом для начинающих. В ней есть много сочетаний горячих клавиш, которые нужно просто запомнить. Некоторые пользователи жалуются на неуклюжий интерфейс.

5. Eclipse


Бесплатный и гибкий редактор с открытым исходным кодом. Он может оказаться полезен, как для новичков, так и для профессионалов. Первоначально создаваемый как среда для Java-разработки сегодня Eclipse имеет широкий диапазон возможностей благодаря большому количеству плагинов и расширений. Помимо средств отладки и поддержки Git / CVS , стандартная версия Eclipse поставляется с инструментами Java и Plugin Development Tooling . Если вам этого недостаточно, доступно много других пакетов: инструменты для построения диаграмм, моделирования, составления отчетов, тестирования и создания графических интерфейсов. Клиент Marketplace Eclipse открывает пользователям доступ к хранилищу плагинов и информации.

Поддерживаемые языки: C, C++, Java, Perl, PHP, Python, Ruby и другие.

Особенности:

  • Множество пакетных решений, обеспечивающих многоязычную поддержку;
  • Улучшения Java IDE , такие как иерархические представления вложенных проектов;
  • Интерфейс, ориентированный на задачи, включая уведомления в системном трее;
  • Автоматическое создание отчетов об ошибках;
  • Параметры инструментария для проектов JEE ;
  • Интеграция с JUnit .

Недостатки: многие параметры этой среды разработки могут запугать новичков. Eclipse не обладает всеми теми функциями, что и IntelliJ IDEA , но является IDE с открытым исходным кодом.

6. Code::Blocks


Еще один популярный инструмент с открытым исходным кодом. Гибкая IDE , которая стабильно работает на всех платформах, поэтому она отлично подходит для разработчиков, которые часто переключаются между рабочими пространствами. Встроенный фреймворк позволяет настраивать эту IDE под свои потребности.

Поддерживаемые языки: C, C++, Fortran .

Особенности:

  • Простой интерфейс с вкладками открытых файлов;
  • Совместимость с Linux , Mac и Windows ;
  • Написана на C++ ;
  • Не требует интерпретируемых или проприетарных языков программирования;
  • Множество встроенных и настраиваемых плагинов;
  • Поддерживает несколько компиляторов, включая GCC, MSVC ++ , clang и другие;
  • Отладчик с поддержкой контрольных точек;
  • Текстовый редактор с подсветкой синтаксиса и функцией автоматического заполнения;
  • Настраиваемые внешние инструменты;
  • Простые средства управления задачами, идеально подходящие для совместной работы.

Недостатки: относительно компактная среда разработки Си , поэтому она не подходит для крупных проектов. Это отличный инструмент для новичков, но продвинутые программисты могут быть разочарованы ее ограничениями.

7. Aptana Studio 3


Самая мощная из IDE с открытым исходным кодом. Aptana Studio 3 значительно улучшена по сравнению с предыдущими версиями. Поддерживает большинство спецификаций браузеров. Поэтому пользователи этой IDE могут с ее помощью быстро разрабатывать, тестировать и развертывать веб-приложения.

Поддерживаемые языки: HTML5, CSS3, JavaScript, Ruby, Rails, PHP и Python .

Особенности:

  • Подсказки для CSS , HTML , JavaScript , PHP и Ruby ;
  • Мастер развертывания с простой настройкой и несколькими протоколами, включая Capistrano , FTP , FTPS и SFTP ;
  • Возможность автоматической установки созданных приложений Ruby и Rails на серверы хостинга;
  • Интегрированные отладчики для Ruby и Rails и JavaScript ;
  • Интеграция с Git ;
  • Простой доступ к терминалу командной строки с сотнями команд;
  • Строковые пользовательские команды для расширения возможностей.

Недостатки: есть проблемы со стабильностью, и она работает медленно. Поэтому профессиональные разработчики могут предпочесть более мощную HTML среду разработки.

8. Komodo


Предлагает бесплатную 21-дневную ознакомительную версию, полная версия стоит $99 – $1615 в зависимости от редакции и лицензии. Komodo поддерживает большинство основных языков программирования. Удобный интерфейс позволяет осуществлять расширенное редактирование, а небольшие полезные функции, такие как проверка синтаксиса и одноступенчатая отладка, делают Komodo одной из самых популярных IDE для веб и мобильной разработки.

Поддерживаемые языки: CSS, Go, JavaScript, HTML, NodeJS, Perl, PHP, Python, Ruby, Tcl и другие.

Особенности:

  • Настраиваемый многооконный интерфейс;
  • Интеграция контроля версий для Bazaar , CVS , Git , Mercurial , Perforce и Subversion ;
  • Профилирование кода Python и PHP ;
  • Возможность развертывания в облаке благодаря Stackato PaaS ;
  • Графическая отладка для NodeJS , Perl , PHP , Python , Ruby и Tcl ;
  • Автоматическое заполнение и рефакторинг;
  • Стабильная производительность на платформах Mac , Linux и Windows

Недостатки: бесплатная версия среды разработки программного обеспечения не включает в себя все функции. В то же время премиум версия явно стоит своих денег.

9. RubyMine


Еще одна премиум IDE , разработанная компанией Jet Brains . Предлагается 30-дневная бесплатная ознакомительная версия, полная версия стоит $210 — $687 в год. Удобная навигация, логичная организация рабочего процесса и совместимость с большинством платформ делают RubyMine одним из популярных инструментов для разработчиков.

Поддерживаемые языки: CoffeeScript, CSS, HAML, HTML, JavaScript, LESS, Ruby и Rails, Ruby и SASS.

Особенности:

  • Сниппеты кода, автоматическое заполнение и автоматический рефакторинг;
  • Дерево проектов, которое позволяет быстро анализировать код;
  • Схема модели Rails ;
  • Просмотр проекта Rails ;
  • RubyMotion поддерживает разработку под iOS ;
  • Поддержка стека включает в себя Bundler , pik , rbenv , RVM и другие;
  • Отладчики JavaScript , CoffeeScript и Ruby ;
  • Интеграция с CVS , Git , Mercurial , Perforce и Subversion .

Недостатки среды разработки: чтобы RubyMine работала бесперебойно, компьютеру требуется не менее 4 ГБ оперативной памяти. Некоторые пользователи также жалуются на отсутствие опций настройки GUI .

10. Xcode


Набор инструментов для создания приложений под iPad , iPhone и Mac . Интеграция с Cocoa Touch делает работу в среде Apple простой, вы можете включать такие сервисы, как Game Center или Passbook , одним кликом мыши. Встроенная интеграция с сайтом разработчика помогает создавать полнофункциональные приложения «на лету ».

Поддерживаемые языки: AppleScript, C, C++, Java, Objective-C.

Особенности:

  • Элементы пользовательского интерфейса можно легко связать с кодом реализации;
  • Компилятор Apple LLVM сканирует код и предоставляет рекомендации по решению проблем производительности;
  • Панель навигации обеспечивает быстрое перемещение между разделами;
  • Interface Builder позволяет создавать прототипы без написания кода;
  • Пользовательский интерфейс и исходный код можно подключить к сложным прототипам интерфейсов всего за несколько минут;
  • Редактор версий включает в себя файлы журнала и хронологии;
  • Распределение и объединение процессов удобно при командной работе;
  • Test Navigator позволяет быстро тестировать приложения в любой момент разработки;
  • Автоматически создает, анализирует, тестирует и архивирует проекты благодаря интеграции с сервером OX X ;
  • Рабочий процесс настраивается с помощью вкладок, поведения и фрагментов;
  • Библиотека инструментов и каталог ресурсов.

Недостатки инструментальной среды разработки: для запуска Xcode нужен компьютер от компании Apple . А для загрузки создаваемых приложений в Apple Store — лицензия разработчика.




Top