Малый фокус рентгеновской трубки. Рентгеновская трубка устройство. Как работает рентгеновский аппарат

Генератором рентгеновых лучей является рентгеновская трубка. Современная электронная трубка конструируется по единому принципу и имеет следующее устройство. Основой является стеклянная колба в виде шара или цилиндра, в концевые отделы которой впаяны электроды: анод и катод. В трубке создается вакуум, что способствует вылету электронов из катода и быстрейшему их перемещению.

Катод представляет собой спираль из вольфрамовой (тугоплавкой) нити, которая укрепляется на молибденовых стержнях и помещается в металлический колпак, направляющий поток электронов в виде узкого пучка в сторону анода.

Анод делается из меди (быстрее отдает тепло и сравнительно легко охлаждается), имеет массивные размеры. Конец, обращенный к катоду, косо срезается под углом 45-70°. В центральной части скошенного анода имеется вольфрамовая пластинка, на которой находится фокус анода - участок 10-15 мм2, где в основном и образуются рентгеновы лучи.

Процесс образования рентгеновых лучей. Нить накала рентгеновской трубки - вольфрамовая спираль катода при подведении к ней тока низкого напряжения (4-15 В, 3-5А) накаливается, образуя свободные электроны вокруг нити. Включение тока высокого напряжения создает на полюсах рентгеновской трубки разность потенциалов, в результате чего свободные электроны с большой скоростью устремляются к аноду в виде потока электронов - катодных лучей, которые, попав на фокус анода, резко тормозятся, вследствие чего часть кинетической энергии электронов превращается в энергию электромагнитных колебаний с очень малой длиной волны. Это и будет рентгеновское излучение (лучи торможения).

Основные принципы защиты персонала рентгеновских кабинетов.

1. Защита экранированием:

Стационарные средства - баритовая штукатурка стен кабинета, двери с листовым свинцовым покрытием, просвинцованное стекло в смотровых окнах;

Передвижные: защитные ширмы, так же с листовым свинцовым покрытием;

Индивидуальные средства: фартуки, перчатки, колпаки и бахилы из просвинцованной резины для персонала, и покрытие из просвинцованной резины для защиты наиболее чувствительных тканей пациента (перечислены выше) во время проведения различных методов рентгенодиагностики.

2. Защита расстоянием - расположение рабочих мест персонала с максимальным удалением их от источника излучения, максимально возможное расстояние между рентгеновской трубкой и кожей пациента (кожно-фокусное расстояние). Доказано, что с увеличением этого расстояния вдвое доза уменьшается вчетверо.

3. Защита временем, т.е. чем меньше время облучения, тем меньше доза. В связи с этим существует строгая регламентация рабочего дня рентгенолога и время проведения рентгенодиагностических процедур.

Так, при рентгенографии экспозиция длится в среднем до 1-3 с, рентгеноскопия грудной клетки - 5 мин, желудка - 10 мин и т.д.

Устройство рентгеновского аппарата (основные функциональные блоки)

Рентгеновский аппарат состоит:

Из одной или нескольких трубочек, которые называют излучателями.

Питающего устройства, предназначенного для обеспечения электроэнергией и регулирования радиационных параметров

В устройство рентгеновского аппарата входят штативы, с помощью которых можно им управлять.

Устройства, преобразующего рентгеновское излучение в видимое изображение, которое становится доступным для наблюдения

Подробно:

Устройства аппарата

Аппарат выполнен в виде блок -трансформатора на передвижном штативе. Включение высокого напряжения при снимке осуществляется с помощью пультика на длинном выносном шнуре.

Подключение аппарата к сети, заземление и сочленение блок- трансформатора со штативом осуществляется с помощью разъемов кабелей и проводов.

Штатив аппарата обеспечивает перемещение фокуса трубки на высоте от 1750 мм от пола (выходное окно блок- трансформатора направленно вниз) до 360 мм от пола (выходное окно блок- трансформатора направленно вверх).

Штатив обеспечивает также горизонтальное перемещение фокуса трубки относительно колонны при направлении выходного окна вниз в пределах от 400 до 620 мм. Блок- трансформатор имеет возможность поворота в вилке на 30º к колонне, на 210º от колонны и вокруг оси вилки на ±180º от положения для снимок при направлении пучка лучей вниз. Во всех рабочих положениях блок- трансформатор фиксируется самотормозящими устройствами.

Тубус для снимков на кассету обеспечивает поле облучения диаметров 38 см на расстоянии 70 см от фокуса трубки. Тубус для зубных снимков обеспечивает поле облучения диаметром 5,5 см на расстоянии 15 см от фокуса трубки с точностью ±3 мм.

-Колонка штатива:

Колонка штатива представляет собой квадратную дюралюминиевую трубу, на одной из боковых поверхностей которой укреплена зубчатая рейка. Зубчатая рейка на колоне служит для перемещения по ней каретки моноблока. Нижняя конусная часть трубы вставляется в специальное отверстие на основании.

-каретка вертикального и горизонтального перемещения блок- трансформатора:

Каретка представляет собой литой корпус из алюминия, на которой укреплены две пары роликов для перемещения по колонне, а также две пары роликов и пара жестких регулируемых упоров для перемещения горизонтальной каретки. Ролики крепятся на регулируемых эксцентриковых осях. Регулируемые упоры закреплены винтами.

Перемещение каретки вверх и вниз осуществляется с помощью зубчатого механизма с самоторможением. Зубчатое колесо механизма постоянно находится в зацеплении с зубчатой рейкой колонны штатива. На вилке зубчатого колеса с помощью шпонки закреплен диск и пружина с отогнутым усиком. Пружина надета на барабан каретки. Весь механизм закрыт колпачком в паз которого входит отогнутый усик пружины. При вращении рукоятки механизма, вращается колпачок, разжимает пружину и вращает ее. Пружина через диск вращает валик зубчатого колеса и колесо. Колесо по зубчатой рейки

перемещают каретку вверх или вниз, в зависимости от вращения рукоятки. При остановке каретки пружина сжимается на барабане и препятствует перемещению зубчатого колеса. Этим осуществляется самоторможение от произвольного перемещения по колонне.

Перемещение блок- трансформатора в горизонтальном направлении осуществляется с помощью горизонтальной каретки. Горизонтальная каретка представляет собой две параллельные прямоугольные штанги, соединенные на концах алюминиевыми поперечинами, перемещающимися по роликам. В передней поперечине имеется гнездо и болт- фиксатор для закрепления вилки блок- трансформатора. Самоторможение от произвольного перемещения горизонтальной каретки осуществляется с помощью резиновых накладок, которые через скобу крепятся к литой каретке.

Снаружи каретка закрывается двумя оформительными колпаками.

-блок- трансформатор:

Блок- трансформатор представляет собой металлический бак, внутри которого размещен высоковольтный трансформатор и укреплена рентгеновская трубка. Блок- трансформатор укрепляется на карете штатива с помощью вилки и может вращаться, как в самой вилке, так и вместе с вилкой вокруг оси ее хвостика.

Вилка, в которой вращается блок- трансформатор, сконструирована так, что блок- трансформатор остается в равновесии в любом положении и для его фиксации не требуется дополнительно никаких тормозящих устройств. В хвостике укреплен штепсельный разъем, на который выведены цепи питания и контроля блок- трансформатора. На боковой стенке блок- трансформатора нанесены деления, показывающие угол его поворота в вилке.

Для компенсации изменения объема масла при транспортировке и эксплуатации в блок- трансформаторе имеются четыре маслорасширителя. В блок- трансформаторе имеется прозрачное окно для выхода рентгеновских лучей и два закрытых отверстия, предназначенные для смены вышедшей из строя трубки.

-пульт управления:

Ручной пультик управления выполнен в виде пластмассовой коробочки. На пультике имеются: переключатель установок миллиамперсекунд, кнопка снимок и индикатор включения высокого напряжения. Внутри пультика размещены элементы электрической схемы.

Из пультика выходит гибкий пятижильный кабель 3 метра, который подсоединен к контактной колодке, расположенной на основании.

-кабели и провода:

Блок- трансформатор соединяется с основаниям кабелем, имеющим на конце штепсельный разъем. При помощи сетевого 3-х жильного кабеля аппарат может быть подключен к трехполюсной настенной розеткой с заземляющим контактом. Для включения в сеть с обычной двухполюсной розеткой служит переходная колодка с проводом заземления, входящая в комплект аппарата.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-03

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Лабораторная работа №1

Руководитель: профессор кафедры ММС

Кульков Сергей Николаевич

Студенты группы 4Б21:

Кондратенко А.И.

Проскурников Г.В.

Дронов А.А.

Томск, 2015

Цель: познакомиться, изучить, а так же получить навыки в рентгенографическом анализе порошков.

Устройство рентгеновского апарата

Одним из наиболее эффективных методов изучения строения кристаллических веществ является рентгенография.

Рентгенография делится на 2 типа:

1. рентгеноструктурный анализ (РСтА);

2. рентгенофазовый анализ (РФА).

Первый метод является наиболее общим и информативным и позволяет однозначно определить все детали кристаллической структуры (координаты атомов и т.д.). Объектом исследования в РСтА является монокристалл. Второй метод позволяет идентифицировать вещество и определить некоторые параметры кристаллической структуры. Объектами исследования РФА являются поликристаллические образцы.

Рентгеновский аппарат предназначается для превращения электроэнергии в рентгеновское излучение. Устройство рентгеновского аппарата зависит от его функции, но в целом он состоит из источника излучения, блока питания, системы управления и периферии.

Как работает рентгеновский аппарат

Питание аппарата осуществляется обычно от электросети переменного тока в 126 или 220 В. Однако современные рентгеновские установки работают от постоянного тока существенно более высокого напряжения. В связи с этим в состав блока питания входят трансформатор (или система трансформаторов) и выпрямитель тока (иногда выпрямитель может отсутствовать – при низкой мощности аппарата). Генератор излучения – это рентгеновская трубка, одна или несколько.

Система управления – это распределительное устройство, то есть пульт управления, регулирующий работу всей установки. Кроме того, аппарат включает в себя штатив (систему штативов), на который крепится генератор излучения. Принцип работы установки следующий. Переменный ток от электросети подводится к первичной обмотке трансформатора. С его вторичной обмотки снимается более высокое напряжение и подается на излучатель непосредственно (полуволновые установки) или через выпрямитель – кенотрон. Накалом катодной нити рентгеновской трубки регулируется ее работа. В излучение при этом переходит не более 1% подаваемой на трубку энергии, остальное превращается в тепло, прежде всего греется анод. Для того чтобы избежать его повреждения от перегрева, либо используются тугоплавкие материалы (вольфрам, молибден), либо конструируется специальная система охлаждения (водное охлаждение, вращающийся анод). Современные рентгеновские установки снабжаются специальными устройствами для стабилизации тока и защиты излучателя от перегрузки. Кроме того, устанавливается система защиты окружающих от избыточного излучения (а также от тока высокого напряжения).

Рентгеновская трубка устройство

Рентгеновская трубка - электровакуумный прибор с источником излучения электронов (катод) и мишенью, в которой они тормозятся (анод). Высоковольтное напряжение для разогревакатода подается через минусовой высоковольтный кабель с накального трансформатора, который находится вгенераторном устройстве. Накаленная спираль катода, при прикладывание к рентгеновской трубке высокого напряжения,начинает выбрасывать ускоряющийся потокэлектронов, а затем они резко тормозятся на вольфрамовой пластинке анода, что и приводит к появлениюрентгеновских лучей.

Принцип работы рентгеновской трубки

Рисунок 1 - Схема рентгеновской трубки для структурного анализа: 1 - металлический анодный стакан (обычно заземляется); 2 – окна из бериллия для выхода рентгеновского излучения; 3 – термоэмиссионный катод; 4 – стеклянная колба, изолирующая анодную часть трубки от катодной; 5 – выводы катода, к которым подводится напряжение накала, а также высокое (относительно анода) напряжение; 6 – электростатическая система фокусировки электронов; 7 – ввод (антикатод); 8 – патрубки для ввода и вывода проточной воды, охлаждающей вводный стакан.

Площадь анода, на которую попадают электроны, называют фокусом. В современных рентгеновских трубках обычно имеется два фокуса: большой и малый. В аноде свыше 95% энергии электронов превращается в тепловую энергию, нагревающую анод до 2000° и более. По этой причине с увеличением длительности экспозиции допустимая мощность снижается.

Рентгенодиагностическую трубку размещают в просвинцованном кожухе, который заполнентрансформаторным маслом. В кожухе имеются отверстиядля подсоеденения высоковольтных кабелей и выходное окно, через которое выводится пучок излучения. Для минимизации дозы рентгеновского излучения в современных рентгеновских аппаратах, например ФМЦ на выходном окне крепится устройство колимации. Для того, чтоб исключить появление на аноде рентгеновской трубки повреждений, последний должен вращаться, для этого внизу кожуха рентгеновской трубки размещается устройство вращения анода.

Рис. 1. Терапевтическая, рентгеновская трубка с массивным вольфрамовым анодом: 1 - катод; 2 - анод.

Рентгеновская трубка - электровакуумный прибор, предназначенный для получения рентгеновского излучения. Рентгеновское излучение возникает при торможении ускоренных электронов на экране антикатода (анода), изготовленного из тяжелого металла (например, вольфрама). Получение электронов, их ускорение и торможение осуществляется в самой рентгеновской трубке, представляющей вакуумированный стеклянный баллон, в который впаяны металлические электроды: катод (см.) - для получения электронов и анод (см.) - для их торможения (рис. 1). Для ускорения электронов к электродам подводится высокое напряжение.

Вильгельм Конрад Рентген
(Wilhelm Conrad Rontgen)

Первая рентгеновская трубка, с которой В. К. Рентген сделал свое открытие, была ионной. Рентгеновская трубка этого типа (хрупкие и трудноуправляемые) в настоящее время полностью вытеснены более совершенными электронными трубками. В них электроны получаются путем накаливания катода. Регулируя ток в цепи накала рентгеновской трубки, а следовательно, и температуру катода, можно изменять количество испускаемых катодом электронов. При низком напряжении не все испускаемые катодом электроны участвуют в создании анодного тока и у катода образуется так называемое электронное облако. При повышении напряжения электронное облако рассасывается и, начиная с определенного напряжения (напряжения насыщения), все электроны достигают анода. Через трубку при этом течет максимальный ток (ток насыщения). Напряжение на рентгеновской трубке обычно выше напряжения насыщения, поэтому возможно раздельно регулировать напряжение и ток Р. т.. Это означает, что жесткость излучения, определяемая напряжением, регулируется независимо от интенсивности, которая обусловлена анодным током.
Анод рентгеновской трубки обычно выполняется в виде массивного медного чехла, обращенного к катоду скошенным торцом, чтобы выходящее рентгеновское излучение было перпендикулярно оси трубки. В толщу анода впаяна вольфрамовая пластинка в 2- (зеркало анода).
Катод электронной рентгеновской трубки содержит тугоплавкую нить накала, обычно из вольфрама, которая выполнена в виде цилиндрической или плоской спирали и окружена металлическим стаканчиком для фокусирования пучка электронов на зеркале анода (фокусе рентгеновской трубки). В двухфокусных рентгеновских трубках катод содержит две нити накала.
При работе рентгеновской трубки на аноде выделяется большое количество тепла. Чтобы предохранить анод от перегрева и повысить мощность рентгеновской трубки, используются охлаждающие анод устройства: воздушное радиаторное, масляное, водяное охлаждение, охлаждение лучеиспусканием. В качестве материала оболочки рентгеновской трубки обычно применяют стекло, которое позволяет прикладывать к электродам достаточно высокое напряжение, пропускает рентгеновское излучение без заметного ослабления (для получения букки-лучей делают бериллиевые окна), достаточно прочно и непроницаемо для газов (вакуум в рентгеновской трубке 10-6- 10-7 мм рт. ст.). Диагностические рентгеновские трубки работают при максимальных напряжениях до 150 кв, терапевтические - до 400 кв.

Рис. 2. Линейчатый фокус диагностической рентгеновской трубки; 1 - зеркало анода; 2 - действительный фокус; 3 - анод; 4 - центральный луч; 5 - оптический фокус; 6 - ось трубки; 7 - катод.

Рис. 4. Фокус трубки с вращающимся дисковым анодом: 1 - действительный фокус; 2 - развертка действительного фокуса; 3 - мгновенный фокус; 4 - ось трубки; 5 — катод; 6 - оптический фокус; 7 - анод.

Резкость рентгеновского изображения обусловлена величиной фокуса. Основное требование к диагностическим рентгеновским трубкам - большая мощность при малом фокусе. Современные рентгеновские трубки имеют линейчатый фокус размером 10-40 мм2, но практическое значение имеет не действительная величина фокуса, а его видимая проекция в направлении пучка, т. е. размеры эффективного оптического фокуса (рис. 2). При угле наклона анода 19° площадь эффективного фокуса в 3 раза меньше действительного, что позволяет увеличить мощность рентгеновской трубки в два раза. Дальнейшее увеличение мощности достигнуто в трубках с вращающимся анодом (рис. 3 и 4).
В настоящее время выпускают рентгеновские трубки различного назначения, отличающиеся как конструктивно, так и мощностью, способами охлаждения, защиты от излучения и высокого напряжения. Условное обозначение рентгеновской трубки представляет собой комбинацию букв и цифр. Первая цифра - мощность трубки в киловаттах; второй знак определяет род защиты (Р - защитная от излучения, Б - защитная от излучения и высокого напряжения, отсутствие буквы указывает на отсутствие защиты); третий знак
определяет назначение рентгеновской трубки (Д - диагностика, Т - терапия); четвертый - указывает способ охлаждения (К - воздушное радиаторное, М-масляное, В - воздушное, отсутствие буквы означает охлаждение лучеиспусканием); пятая цифра указывает максимальное анодное напряжение в киловольтах. Так, например, 6-РДВ-110 - шестикиловаттная защитная диагностическая трубка с водяным охлаждением на 110 кв; трубка 1-Т-1-200-терапевтическая, без защиты, охлаждение лучеиспусканием, мощностью 1 кет на напряженно 200 кв (условный номер 1).

Рис. 3. Трубка с вращающимся дисковым анодом: 1 - катод; 2 - дисковый анод; 3 - защитный диск; 4 - ось анода; 5 - стальной цилиндр - ротор электродвигателя.

Каждую новую трубку перед пуском в работу необходимо проверить на вакуум, не включая накала. Если при этом появится розовое свечение или искра, рентгеновская трубка потеряла вакуум и к работе непригодна. Трубку, сохранившую вакуум, подвергают тренировке: устанавливают ток 1-2 ма при высоком напряжении порядка 1/3 от номинального и в течение 30- 60 мин. напряжение и ток постепенно повышают до значений длительного режима, указанного в паспорте рентгеновской трубки. При эксплуатации рентгеновской трубки необходимо строго придерживаться режимов работы, указанных в ее паспорте.

Рентгеновская трубка - это электровакуумное устройство, применяемое для генерирования рентгеновых лучей путем эмиссии электронов с катода, фокусировки
и ускорения их в электрическом поле высокого напряжения с последующим торможением электронного потока на зеркале анода. В результате торможения потока электронов на аноде рентгеновской трубки выделяется большое количество тепла и лишь незначительное количество этой энергии трансформируется в энергию рентгеновского излучения (см.).
Со времени открытия Рентгеном икс-лучей и до начала первой мировой войны для рентгенодиагностики и рентгенотерапии применялись так называемые ионные газосодержащие Р. т. (рис. 1), хрупкие и трудноуправляемые. Лилиенфельд (L. Lilienfeld) предложил более совершенную Р. т. с промежуточным электродом, накаливаемым катодом и водяным охлаждением (рис. 2). Однако высоковакуумная двухэлектродная Р. т., предложенная американцем Кулиджем (W. D. Coolidge), постепенно вытеснила все другие Р. т. и применяется в разных модификациях до настоящего времени.
Современная рентгеновская трубка представляет собой высоковольтный вакуумный диод (с двумя электродами - катодом и анодом). Катод Р. т. содержит тугоплавкую нить накала, обычно из вольфрама. В двухфокусных диагностических рентгеновских трубках, предназначенных для разных режимов работы, катод содержит две нити накала для каждого из фокусов. Нити накала, как правило, выполнены в виде цилиндрической или плоской спирали (рис. 3, 1 и 2) соответственно для линейчатого или круглого фокуса.
Анод рентгеновской трубки обычно выполнен в виде массивного медного чехла, обращенного к катоду скошенным торцом, в толщу которого впаяна вольфрамовая пластинка толщиной 2-2,5 мм (зеркало анода), являющаяся мишенью, куда фокусируется поток электронов с катода, и представляющая, таким образом, рентгенооптический фокус трубки. Имеются Р. т. для специальных целей, например для внутриполостной рентгенотерапии (рис. 4), в которых анод является дном полого цилиндра, вводимого в соответствующую полость.
С целью повышения разрешающей способности современных диагностических трубок фокусу рентгеновской трубки уделяется большое внимание, так как чем острее фокус, тем резче рентгеновское изображение.
При оценке рентгенооптических свойств Р. т. следует учитывать, что решающее значение имеет не величина действительного фокуса на зеркале анода, а видимая проекция фокусного пятна в направлении центрального луча, т. е. размеры эффективного оптического фокуса. Уменьшение размеров оптического фокуса достигается уменьшением угла скашивания анода по отношению к центральному лучу.
В отличие от терапевтических Р. т. (рис. 5), снабженных круглым или в форме эллипса оптическим фокусом, современные диагностические трубки имеют так называемый линейчатый фокус (рис. 6). В трубках с линейчатым фокусом площадь эффективного фокуса, имеющего форму квадрата, примерно в 3 раза меньше площади действительного фокуса, имеющего форму прямоугольника. При одинаковых рентгенооптических свойствах мощность рентгеновской трубки с линейчатым фокусом примерно в 2 раза больше, чем у Р. т. с круглым фокусом.
Дальнейшее повышение мощности диагностических Р. т. достигнуто в трубках с вращающимся анодом (рис. 7 и 8). В этих рентгеновских трубках массивный вольфрамовый анод с линейчатым фокусом, растянутым по всей окружности, укреплен на оси, вращающейся в подшипниках, а катод трубки смещен относительно ее оси так, чтобы фокусированный пучок электронов попадал всегда на скошенную поверхность зеркала анода. При вращении анода пучок фокусированных электронов попадает на меняющийся участок фокуса анода, эффективная величина которого, т. е. оптический фокус, имеет благодаря этому весьма малые размеры (порядка 1X1 мм, 2,5X2,5 мм). Так как скорость вращения анода достаточно велика (анод является продолжением оси двигателя, вращающегося с угловой скоростью 2500 об/мин), мощность трубки при выдержках в 0,1 сек. может достигать 40-50 кВт.
Значительное количество тепла, образующегося на аноде работающей трубки, требует ее охлаждения путем отвода тепла с анода в окружающую среду. Это достигается путем воздушного радиаторного охлаждения (рис. 9), водяного охлаждения (рис. 10 и 11) или масляного охлаждения (рис. 12); масло является одновременно и изолирующей средой; масляное охлаждение обычно применяется в так называемых блок-аппаратах (см. Рентгенотехника).
В связи с многообразными запросами рентгенодиагностики и рентгенотерапии в настоящее время выпускаются рентгеновские трубки самого различного назначения, отличающиеся как конструктивным оформлением, так и величиной, мощностью, способами охлаждения и защиты от неиспользуемого излучения. Условные обозначения различных типов трубок состоят из комбинаций цифр и букв. Первая цифра - предельно допустимая мощность трубки (в кВт); первая буква определяет защиту от излучения (Р - самозащитная; Б - в защитном кожухе; отсутствие буквы означает отсутствие защиты); вторая буква определяет назначение Р. т. (Д - диагностика; Т - терапия); третья буква указывает систему охлаждения (К - воздушное радиаторное охлаждение, М - масляное, В - водяное, отсутствие буквы означает охлаждение лучеиспусканием); последняя цифра соответствует предельно допустимому анодному напряжению в киловольтах. Так, например, 3-БДМ-2-100 - трехкиловаттная диагностическая трубка с масляным охлаждением (радиаторным) на 100 кв для работы в защитном кожухе (условный номер типа - 2); трубка - 1-Т-1-200 - терапевтическая без защиты с охлаждением лучеиспусканием, мощностью 1 кет на напряжение 200 кв (условный номер типа - 1).
Независимо от типа рентгеновской трубки общий принцип их работы состоит в следующем. Накал катода Р. т. вызывает термоэлектронную эмиссию с образованием у катода так называемого электронного облака. С включением высокого напряжения на электродах Р. т. свободные электроны под действием электрического поля устремляются к аноду, тормозятся на его зеркале, причем часть энергии торможения преобразуется в рентгеновское излучение.
При повышении напряжения на рентгеновской трубке эмиссионный ток вначале круто возрастает за счет постепенного уменьшения плотности электронного облака. Когда же число электронов, образующихся на катоде, становится равным числу электронов, достигающих анода, дальнейшее повышение напряжения не вызывает увеличения тока, проходящего через Р. т., а лишь увеличивает кинетическую энергию электронов, достигающих анода. Режим работы Р. т., при котором происходит использование всех электронов, образующихся на катоде, а дальнейшее повышение напряжения не вызывает увеличения анодного тока, называется током насыщения. Практически ток насыщения i достигается в диагностических рентгеновских трубках при разности потенциалов? порядка 10-20 кв (рис. 13). Поэтому обычно Р. т. большей частью работают в режиме тока насыщения. При необходимости увеличить анодный ток следует соответственно увеличить ток накала катода и, подняв напряжение, снова создать режим тока насыщения.
В процессе промышленного производства из Р. т. удаляют газ до остаточного давления 10-6 -10-7 мм рт. ст. При этой степени вакуума прохождение тока через Р. т. практически обусловлено только термоэлектронной эмиссией с катода. Однако при чрезмерном нагреве деталей трубки, а также при включении ее после длительного перерыва в работе в ней может появиться газ; при этом возникает эффект ионизации; рентгеновская трубка начинает пропускать ток в обоих направлениях. Измерительные приборы на пульте управления обнаруживают резкие колебания анодного тока. Если такую «газящую» Р. т. включить под высокое напряжение без накала катода, в ней создается устойчивый газовый разряд, сопровождающийся характерным свечением трубки. Такая трубка к работе непригодна и подлежит замене.
Каждую новую Р. т. перед пуском в работу необходимо проверить на вакуум под высоким напряжением, не включая накала, затем подвергнуть «тренировке». Для этого при анодном напряжении порядка 1/3 от номинального устанавливают ток 1-2 мА. Затем в течение 30-60 мин. напряжение и ток постепенно повышают до номинальных значений длительного режима в соответствии с паспортом Р. т. При эксплуатации Р. т. необходимо строго придерживаться режимов работы, указанных в ее паспорте.
См. также Рентгеновские аппараты, Рентгеновское излучение.

Рис. 1. Ионная рентгеновская трубка с воздушным охлаждением и газовым регенератором.
Рис. 2. Рентгеновская трубка Лилиенфельда.
Рис. 3. Катоды двухфокусных электронных рентгеновских трубок: 1 - с двумя цилиндрическими спиралями нити накала; 2 - с двумя плоскими спиралями нити накала.
Рис. 4. Безопасная рентгеновская трубка для внутриполостной рентгенотерапии: 1 - катод; 2 - анодная трубка; 3 - окно выхода рентгеновых лучей; 4 - анодный цоколь; 5 - водяная рубашка; 6 - патрубки охлаждения.
Рис. 5. Терапевтическая рентгеновская трубка с массивным вольфрамовым анодом: 1 - катод; 2 - анод.
Рис. 6. Схематическое изображение линейчатого фокуса диагностической рентгеновской трубки: 1 - зеркало анода; 2 - действительный фокус ; 3 - анод; 4 - центральный луч; 5 - оптический фокус; 6 - ось трубки; 7 - катод.
Рис. 7. Трубка с вращающимся дисковым анодом: 1 - катод; 2 - дисковый анод; 3 - защитный диск; 4 - ось анода; 5 - стальной цилиндр-ротор асинхронного электродвигателя.
Рис. 8. Схематическое изображение фокуса трубки с вращающимся дисковым анодом: 1 - действительный фокус; 2 - его развертка; 3 - мгновенный фокус; 4 - ось трубки; 5 - катод ; 6 - оптический фокус; 7 - анод.
Рис. 9. Трубка с радиаторным воздушным охлаждением.
Рис. 10. Анод трубки с водяным охлаждением: 1 - стержень анода; 2 - резервуар с охлаждающей водой.
Рис. 11. Анод трубки, охлаждаемой проточной водой: 1 - соединительные трубки водяного охлаждения.
Рис. 12. Миниатюрная рентгеновская трубка с масляным охлаждением для рентгенографии зубов.
Рис. 13. Анодные характеристически электронной рентгеновской трубки: S’- при токе накала 3,8 a; S-при токе накала 3,4 а.

Прибор рентгеновская трубка — это электровакуумное устройство, у которого обязательно есть источник облучения (катод) и цель торможения (анод). Также в приборе присутствует генератор — устройство, расположенное в накальном трансформаторе, которое способствует подаче сильного напряжения в катод по минусовому высоковольтному проводнику.

Лучи появляются благодаря тому, что катод-спираль при сильном напряжении накаливается и выбрасывает поток электронов, задерживающихся на пластине анода, сделанной из вольфрама. Анод способствует превращению энергии в тепловую, в результате чего анод разогревается до температуры выше 2000°С. Это и есть причина снижения мощности, повышения длительности экспозиции.

Устройство размещается в особом свинцовом чехле. Фартук наполнен специальным маслом. Строение чехла включает в себя высоковольтные проводники и окно выхода, через которое и удаляется скопленное излучение. Современный электровакуумный прибор устроен таким образом, чтобы человек получал минимальную порцию лучей.

Строение электровакуумного прибора

Схема рентгеновской трубки выглядит так:

  • стандартная колба;
  • горловина анода;
  • двигающийся диск анода;
  • фокус-пятно анода;
  • спираль накаливания катода;
  • система фокуса катода.

Сегодня электровакуумные приборы оснащены двумя фокусами большого и малого размеров, на них и распределяются электроны. Для этого в окно встроен прибор коллимации, который должен находиться в постоянном движении, чтобы рентгеновская трубка не повредилась. В этих целях снизу устроена система передвижения анода.

Некоторые справки об РТ

Электровакуумный прибор 0.2БДМ7-50 применяется в дентальном рентген-устройстве, 5Д 2РТ 1.6 БДМ 13-90 используется для функционирования с точкой заземления. Работа прибора должна быть при напряжении не больше 110 кВт, а моноблок в обязательном порядке необходимо наполнять специальным маслом. Для работы близкого фокуса применяют РТ 1БТВ4-100. Аппарат 1.7БДМ18-100 используют для работы РТ в передвижном приборе. 2-20БД14-15 и 2-20БД14-150 применим в диагностических целях. Для работы рентгеновской трубки 2.5-30БД29-150 существует устройство «Проскан». 4БПМ8-250 применяется в медицине для проведения исследований и диагностики.

Принцип работы прибора

РТ — это устройство, которое функционирует как диод, но способно осуществлять свои задачи в режиме пространственного заряда.

Принцип работы достаточно прост: эмиссия производится в результате повышенного напряжения. Именно вследствие этого РТ должна располагаться в фартуке из свинца. Благодаря последнему не происходит лишнего . В результате выводится исключительно невредный лучевой поток. Далее неопасные лучи ограничиваются с помощью стационарного либо двигающегося коллиматора. Он хоть и не является деталью фартука, но делать рентген без него нельзя, так как произойдет утечка вредного излучения.

Кроме того, фартук способствует защите от высоких напряжений, которые создаются между анодом и катодом. Заряд проходит по кабелю, который идет из повышающей трансформаторной будки с генератором. Образуется рентгеновское излучение с огромными затратами энергии, в основном обращенными на прогрев элементов, расположенных внутри рентгеновской трубки. Мельчайшие доли секунды энергия концентрируется на фокусе, далее она размещается по всему фокусному пятну.

Дольше происходит перевод энергии на непроводящее масло, которое находится в фартуке РТ. В это же время энергия как горячее излучение перемещается на фартук, выполненный из металла. И, наконец, уже из стенок происходит высвобождение энергии в качестве конвенции либо вентиляции. Во время такого теплообмена рентгеновская трубка нагревается до определенного предела — экстремальной температуры, которая и не должна ни в коем случае выйти за рамки необходимых показателей. Иначе произойдет разрушение рентгеновской трубки. Температурный режим фокуса и его пятна подлежит контролю при помощи того, что устанавливаются определенный временной режим и напряжение, подаваемые с генератора под минимальным, ограниченным заполняющим фактором. Последний вычисляется при помощи разработанной таблицы характеристик нагрузки.

Анодный температурный режим определяется верной экспозицией. Делается это для того, чтобы было соблюдено время соотношения перепада энергии.

Время охлаждения контролируется приборами с родным ПО с помощью специальной схемы моделирования скопленного тепла. Если же такая функция отсутствует, то контроль осуществляется с помощью спланированного расписания, которое составил рабочий персонал, основываясь на смене волн нагрева и охлаждения анода. Температурный режим фартука контролируется так же переменой нагрева и охлаждения. В данном случае он должен выполняться с длительными промежутками во времени: по половине дня на охлаждение и нагревание. Регулируется температура в кожухе с помощью 3 устройств:

  • переключатель температур внешний;
  • переключатель температур внутренний;
  • микропереключатель.

Струйный материал фильтрует полезные лучи. У РТ им служит:

  • стекло;
  • масло;
  • пластик.

Но такой фильтрации, конечно, недостаточно для того, чтобы ограничить низкую энергию мягких лучей. Последние приносят вред человеческому организму, а изображение не передают. По этой причине на приборе располагаются дополнительные фильтры на безвредных лучах. Оценка пользы и вреда рентгеновского облучения сложна. Работу на рентгеновском оборудовании должен осуществлять только обученный квалифицированный специалист. Данные устройства не предназначаются для работы вручную или замещения автоматического управления временным показателем охлаждения. Однако без них нельзя говорить о полной безопасности аппарата. В обычной работе такие устройства не применяются. Следует обратить внимание, что сама РТ не имеет данных устройств для создания границ температурного режима. Исходя из чего необходимо контролировать цикл энергии, которая идет с генератора. Это поможет не навредить пациенту. Калибровка накаливания на одном уровне осуществляется при помощи дополнительного программирования системы, содержащей необходимую информацию.

Рентгеновская трубка - это электровакуумный прибор, предназначенный для получения рентгеновского излучения. Рентгеновское излучение возникает при торможении ускоренных на экране антикатода (анода), изготовленного из тяжелого металла (например, вольфрама). Получение электронов, их ускорение и торможение осуществляется в самой рентгеновской трубке, представляющей вакуумированный стеклянный баллон, в который впаяны металлические электроды: катод (см.) - для получения электронов и анод (см.) - для их торможения (рис. 1). Для ускорения электронов к электродам подводится высокое напряжение.

Рис. 1. Терапевтическая, рентгеновская трубка с массивным вольфрамовым анодом: 1 - катод; 2 - анод.


Вильгельм Конрад Рентген
(Wilhelm Conrad Röntgen)

Первая рентгеновская трубка, с которой В. К. Рентген сделал свое открытие, была ионной. Рентгеновская трубка этого типа (хрупкие и трудноуправляемые) в настоящее время полностью вытеснены более совершенными электронными трубками. В них электроны получаются путем накаливания катода. Регулируя ток в цепи накала рентгеновской трубки, а следовательно, и температуру катода, можно изменять количество испускаемых катодом электронов. При низком напряжении не все испускаемые катодом электроны участвуют в создании анодного тока и у катода образуется так называемое электронное облако. При повышении напряжения электронное облако рассасывается и, начиная с определенного напряжения (напряжения насыщения), все электроны достигают анода. Через трубку при этом течет максимальный ток (ток насыщения). Напряжение на рентгеновской трубке обычно выше напряжения насыщения, поэтому возможно раздельно регулировать напряжение и ток рентгеновской трубки. Это означает, что жесткость излучения, определяемая напряжением, регулируется независимо от интенсивности, которая обусловлена анодным током.

Анод рентгеновской трубки обычно выполняется в виде массивного медного чехла, обращенного к катоду скошенным торцом, чтобы выходящее было перпендикулярно оси трубки. В толщу анода впаяна вольфрамовая пластинка в 2- (зеркало анода).

Катод электронной рентгеновской трубки содержит тугоплавкую нить накала, обычно из вольфрама, которая выполнена в виде цилиндрической или плоской спирали и окружена металлическим стаканчиком для фокусирования пучка электронов на зеркале анода (фокусе рентгеновской трубки). В двухфокусных рентгеновских трубках катод содержит две нити накала.

При работе рентгеновской трубки на аноде выделяется большое количество тепла. Чтобы предохранить анод от перегрева и повысить мощность рентгеновской трубки, используются охлаждающие анод устройства: воздушное радиаторное, масляное, водяное охлаждение, охлаждение лучеиспусканием. В качестве материала оболочки рентгеновской трубки обычно применяют стекло, которое позволяет прикладывать к электродам достаточно высокое напряжение, пропускает рентгеновское излучение без заметного ослабления (для получения букки-лучей делают бериллиевые окна), достаточно прочно и непроницаемо для газов (вакуум в рентгеновской трубке 10 -6 - 10 -7 мм рт. ст.). Диагностические рентгеновские трубки работают при максимальных напряжениях до 150 кв, терапевтические - до 400 кв.


Рис. 6. Схематическое изображение линейчатого фокуса диагностической рентгеновской трубки: 1 - зеркало анода; 2 - действительный фокус; 3 - анод; 4 - центральный луч; 5 - оптический фокус; 6 - ось трубки; 7 - катод.


Рис. 8. Схематическое изображение фокуса трубки с вращающимся дисковым анодом: 1 - действительный фокус; 2 - его развертка; 3 - мгновенный фокус; 4 - ось трубки; 5 - катод; 6 - оптический фокус; 7 - анод.

Резкость рентгеновского изображения обусловлена величиной фокуса. Основное требование к диагностическим рентгеновским трубкам - большая мощность при малом фокусе. Современные рентгеновские трубки имеют линейчатый фокус размером 10-40 мм 2 , но практическое значение имеет не действительная величина фокуса, а его видимая проекция в направлении пучка, т. е. размеры эффективного оптического фокуса (рис. 2). При угле наклона анода 19° площадь эффективного фокуса в 3 раза меньше действительного, что позволяет увеличить мощность рентгеновской трубки в два раза. Дальнейшее увеличение мощности достигнуто в трубках с вращающимся анодом (рис. 3 и 4).

В настоящее время выпускают рентгеновские трубки различного назначения, отличающиеся как конструктивно, так и мощностью, способами охлаждения, защиты от излучения и высокого напряжения. Условное обозначение рентгеновской трубки представляет собой комбинацию букв и цифр. Первая цифра - мощность трубки в киловаттах; второй знак определяет род защиты (Р - защитная от излучения, Б - защитная от излучения и высокого напряжения, отсутствие буквы указывает на отсутствие защиты); третий знак определяет назначение рентгеновской трубки (Д - диагностика, Т - терапия); четвертый - указывает способ охлаждения (К - воздушное радиаторное, М-масляное, В - воздушное, отсутствие буквы означает охлаждение лучеиспусканием); пятая цифра указывает максимальное анодное напряжение в киловольтах. Так, например, 6-РДВ-110 - шестикиловаттная защитная диагностическая трубка с водяным охлаждением на 110 кв; трубка 1-Т-1-200-терапевтическая, без защиты, охлаждение лучеиспусканием, мощностью 1 кет на напряженно 200 кв (условный номер 1).


Рис. 3. Трубка с вращающимся дисковым анодом: 1 - катод; 2 - дисковый анод; 3 - защитный диск; 4 - ось анода; 5 - стальной цилиндр - ротор асинхронного электродвигателя.

Каждую новую трубку перед пуском в работу необходимо проверить на вакуум, не включая накала. Если при этом появится розовое свечение или искра, рентгеновская трубка потеряла вакуум и к работе непригодна. Трубку, сохранившую вакуум, подвергают тренировке: устанавливают ток 1-2 ма при высоком напряжении порядка 1/3 от номинального и в течение 30-60 мин. напряжение и ток постепенно повышают до значений длительного режима, указанного в паспорте рентгеновской трубки. При эксплуатации рентгеновской трубки необходимо строго придерживаться режимов работы, указанных в ее паспорте.

Рентгеновская трубка - это электровакуумное устройство, применяемое для генерирования рентгеновых лучей путем эмиссии электронов с катода, фокусировки и ускорения их в электрическом поле высокого напряжения с последующим торможением электронного потока на зеркале анода. В результате торможения потока электронов на аноде рентгеновской трубки выделяется большое количество тепла и лишь незначительное количество этой энергии трансформируется в энергию рентгеновского излучения (см.).

Со времени открытия Рентгеном икс-лучей и до начала первой мировой войны для рентгенодиагностики и рентгенотерапии применялись так называемые ионные газосодержащие рентгеновские трубки (рис. 1), хрупкие и трудноуправляемые. Лилиенфельд (L. Lilienfeld) предложил более совершенную рентгеновскую трубку с промежуточным электродом, накаливаемым катодом и водяным охлаждением (рис. 2). Однако высоковакуумная двухэлектродная рентгеновская трубка, предложенная американцем Кулиджем (W. D. Coolidge), постепенно вытеснила все другие рентгеновские трубки и применяется в разных модификациях до настоящего времени.


Рис. 1. Ионная рентгеновская трубка с воздушным охлаждением и газовым регенератором.

Рис. 2. Рентгеновская трубка Лилиенфельда.

Современная рентгеновская трубка представляет собой высоковольтный вакуумный диод (с двумя электродами - катодом и анодом). Катод рентгеновской трубки содержит тугоплавкую нить накала, обычно из вольфрама. В двухфокусных диагностических рентгеновских трубках, предназначенных для разных режимов работы, катод содержит две нити накала для каждого из фокусов. Нити накала, как правило, выполнены в виде цилиндрической или плоской спирали (рис. 3, 1 и 2) соответственно для линейчатого или круглого фокуса.


Рис. 3. Катоды двухфокусных электронных рентгеновских трубок: 1 - с двумя цилиндрическими спиралями нити накала; 2 - с двумя плоскими спиралями нити накала.

Анод рентгеновской трубки обычно выполнен в виде массивного медного чехла, обращенного к катоду скошенным торцом, в толщу которого впаяна вольфрамовая пластинка толщиной 2-2,5 мм (зеркало анода), являющаяся мишенью, куда фокусируется поток электронов с катода, и представляющая, таким образом, рентгенооптический фокус трубки. Имеются рентгеновские трубки для специальных целей, например для внутриполостной рентгенотерапии (рис. 4), в которых анод является дном полого цилиндра, вводимого в соответствующую полость.


Рис. 4. Безопасная рентгеновская трубка для внутриполостной рентгенотерапии: 1 - катод; 2 - анодная трубка; 3 - окно выхода рентгеновых лучей; 4 - анодный цоколь; 5 - водяная рубашка; 6 - патрубки охлаждения.

С целью повышения разрешающей способности современных диагностических трубок фокусу рентгеновской трубки уделяется большое внимание, так как чем острее фокус, тем резче рентгеновское изображение.

При оценке рентгенооптических свойств рентгеновской трубки следует учитывать, что решающее значение имеет не величина действительного фокуса на зеркале анода, а видимая проекция фокусного пятна в направлении центрального луча, т. е. размеры эффективного оптического фокуса. Уменьшение размеров оптического фокуса достигается уменьшением угла скашивания анода по отношению к центральному лучу.

В отличие от терапевтических рентгеновских трубок (рис. 5), снабженных круглым или в форме эллипса оптическим фокусом, современные диагностические трубки имеют так называемый линейчатый фокус (рис. 6). В трубках с линейчатым фокусом площадь эффективного фокуса, имеющего форму квадрата, примерно в 3 раза меньше площади действительного фокуса, имеющего форму прямоугольника. При одинаковых рентгенооптических свойствах мощность рентгеновской трубки с линейчатым фокусом примерно в 2 раза больше, чем у рентгеновской трубки с круглым фокусом.

Дальнейшее повышение мощности диагностических рентгеновских трубок достигнуто в трубках с вращающимся анодом (рис. 7 и 8). В этих рентгеновских трубках массивный вольфрамовый анод с линейчатым фокусом, растянутым по всей окружности, укреплен на оси, вращающейся в подшипниках, а катод трубки смещен относительно ее оси так, чтобы фокусированный пучок электронов попадал всегда на скошенную поверхность зеркала анода. При вращении анода пучок фокусированных электронов попадает на меняющийся участок фокуса анода, эффективная величина которого, т. е. оптический фокус, имеет благодаря этому весьма малые размеры (порядка 1X1 мм, 2,5X2,5 мм). Так как скорость вращения анода достаточно велика (анод является продолжением оси двигателя, вращающегося с угловой скоростью 2500 об/мин), мощность трубки при выдержках в 0,1 сек. может достигать 40-50 кВт.

Значительное количество тепла, образующегося на аноде работающей трубки, требует ее охлаждения путем отвода тепла с анода в окружающую среду. Это достигается путем воздушного радиаторного охлаждения (рис. 9), водяного охлаждения (рис. 10 и 11) или масляного охлаждения (рис. 12); масло является одновременно и изолирующей средой; масляное охлаждение обычно применяется в так называемых блок-аппаратах (см. Рентгенотехника).


Рис. 9. Трубка с радиаторным воздушным охлаждением.


Рис. 10. Анод трубки с водяным охлаждением: 1 - стержень анода; 2 - резервуар с охлаждающей водой.


Рис. 11. Анод трубки, охлаждаемой проточной водой: 1 - соединительные трубки водяного охлаждения.


Рис. 12. Миниатюрная рентгеновская трубка с масляным охлаждением для рентгенографии зубов.

В связи с многообразными запросами рентгенодиагностики и рентгенотерапии в настоящее время выпускаются рентгеновские трубки самого различного назначения, отличающиеся как конструктивным оформлением, так и величиной, мощностью, способами охлаждения и защиты от неиспользуемого излучения. Условные обозначения различных типов трубок состоят из комбинаций цифр и букв. Первая цифра - предельно допустимая мощность трубки (в кВт); первая буква определяет защиту от излучения (Р - самозащитная; Б - в защитном кожухе; отсутствие буквы означает отсутствие защиты); вторая буква определяет назначение рентгеновской трубки (Д - диагностика; Т - терапия); третья буква указывает систему охлаждения (К - воздушное радиаторное охлаждение, М - масляное, В - водяное, отсутствие буквы означает охлаждение лучеиспусканием); последняя цифра соответствует предельно допустимому анодному напряжению в киловольтах. Так, например, 3-БДМ-2-100 - трехкиловаттная диагностическая трубка с масляным охлаждением (радиаторным) на 100 кв для работы в защитном кожухе (условный номер типа - 2); трубка - 1-Т-1-200 - терапевтическая без защиты с охлаждением лучеиспусканием, мощностью 1 кет на напряжение 200 кв (условный номер типа - 1).

Независимо от типа рентгеновской трубки общий принцип их работы состоит в следующем. Накал катода рентгеновской трубки вызывает термоэлектронную эмиссию с образованием у катода так называемого электронного облака. С включением высокого напряжения на электродах рентгеновской трубки свободные электроны под действием электрического поля устремляются к аноду, тормозятся на его зеркале, причем часть энергии торможения преобразуется в рентгеновское излучение.

При повышении напряжения на рентгеновской трубке эмиссионный ток вначале круто возрастает за счет постепенного уменьшения плотности электронного облака. Когда же число электронов, образующихся на катоде, становится равным числу электронов, достигающих анода, дальнейшее повышение напряжения не вызывает увеличения тока, проходящего через рентгеновскую трубку, а лишь увеличивает кинетическую энергию электронов, достигающих анода. Режим работы рентгеновской трубки, при котором происходит использование всех электронов, образующихся на катоде, а дальнейшее повышение напряжения не вызывает увеличения анодного тока, называется током насыщения. Практически ток насыщения i достигается в диагностических рентгеновских трубках при разности потенциалов σ порядка 10-20 кв (рис. 13). Поэтому обычно рентгеновские трубки большей частью работают в режиме тока насыщения. При необходимости увеличить анодный ток следует соответственно увеличить ток накала катода и, подняв напряжение, снова создать режим тока насыщения.


Рис. 13. Анодные характеристически электронной рентгеновской трубки: S"- при токе накала 3,8 a; S-при токе накала 3,4 а.

В процессе промышленного производства из рентгеновских трубок удаляют газ до остаточного давления 10 -6 -10 -7 мм рт. ст. При этой степени вакуума прохождение тока через рентгеновскую трубку практически обусловлено только термоэлектронной эмиссией с катода. Однако при чрезмерном нагреве деталей трубки, а также при включении ее после длительного перерыва в работе в ней может появиться газ; при этом возникает эффект ионизации; рентгеновская трубка начинает пропускать ток в обоих направлениях. Измерительные приборы на пульте управления обнаруживают резкие колебания анодного тока. Если такую «газящую» рентгеновскую трубку включить под высокое напряжение без накала катода, в ней создается устойчивый газовый разряд, сопровождающийся характерным свечением трубки. Такая трубка к работе непригодна и подлежит замене.

Каждую новую рентгеновскую трубку перед пуском в работу необходимо проверить на вакуум под высоким напряжением, не включая накала, затем подвергнуть «тренировке». Для этого при анодном напряжении порядка 1/3 от номинального устанавливают ток 1-2 мА. Затем в течение 30-60 мин. напряжение и ток постепенно повышают до номинальных значений длительного режима в соответствии с паспортом рентгеновской трубки. При эксплуатации рентгеновской трубки необходимо строго придерживаться режимов работы, указанных в ее паспорте.

См. также Рентгеновские аппараты, Рентгеновское излучение.




Top