Как сделать системный блок бесшумным. Громко работает ПК - как исправить? Охлаждение чипсета материнской платы

Вас когда нибудь тревожил шум от компьютера? Если нет, то вам повезло, но скорее всего временно. Ведь компьютер работает как правило часто, и вентиляторы (кулеры) внутри корпуса все охлаждают воздухом, в котором есть пыль и она имеет свойство оседать на устройствах. Поэтому рано или поздно шум или появится или просто увеличится до заметного уровня.

  • Почему шумит ваш компьютер?
  • Очистка от пыли
  • Как именно менять термопасту?
  • Замена корпуса
  • Есть несколько способов сделать компьютер тише, но если у вас компьютер на гарантии - то лучше обратится в сервисный центр. Так как простое вскрытие корпуса уже нарушает гарантийные условия.

    Почему шумит ваш компьютер?

    Давайте попробуем понять, почему шумит ваш компьютер, впрочем шум компьютера это нормальное явление, вот только если он не вызывает дискомфорта во время работы.

    Итак, первое что шумит в любом компьютере и даже ноутбуке это кулеры или по простому - вентиляторы . Их цель - охлаждать устройства внутри корпуса, основные из которых это видеокарта, процессор, а также некоторые элементы на материнской плате, к примеру мосфеты (играют важную роль в обеспечении питания процессора).

    Жесткие диски также могут издавать шум, особенно когда они не очень удачно монтированы в корпусе. Если во время крепежа жесткий диск по бокам смазать силиконом, то шума будет меньше, но это так - из «домашних советов». Также увеличить шум может фрагментированность диска, поэтому стоит проводить регулярную дефрагментацию (примерно раз в месяц или в две недели, в зависимости от интенсивности использования компьютера).

    Ну и конечно шумят приводы , ведь это механические движения и в отличии от жесткого диска, приводы не так тщательно «упакованы», поэтому звук издают достаточно заметный, но с другой стороны они шумят только при работе, то есть при считывании или записи, а в простое как правило просто находятся в режиме ожидания.

    Что может способствовать шуму компьютера?

    Способствовать могут такие причины как к примеру перегрев , при котором компьютер пытается справится с высокой температурой и увеличивает обороты вентиляторы и вы это замечаете по создаваемому шуму. Также шум может быть при не совсем качественном корпусе, к примеру стенки которого тонкие, а внутри есть области, где наблюдается люфт. Внутри корпуса все устройства должны быть закреплены правильно, чтобы они ни в коем случае не «болтались» - так как это не только шум, но и вред самому устройству.

    Пыль также способствует шуму, ведь она препятствует охлаждению, со временем необходимо больше оборотов вентилятора чтобы охладить пыльное устройство (особенно этому подвержены радиаторы, которые легко со временем забиваются пылью).

    Шуметь также просто может дешевый блок питания , так как в нем как правило стоит обычный вентилятор и не имеет возможности регулировать обороты в зависимости от нагрузки, поэтому вентилятор все время работает на полных оборотах, даже если компьютер ничем не загружен.

    Как можно сделать компьютер тише?

    С причинами мы уже разобрались, теперь перейдем непосредственно к тому, как убрать шум компьютера. Но имейте ввиду, что скорее всего необходимо будет вскрыть корпус компьютера, без этого сложно снизить шум. Поэтому если вы не уверены, то лучше доверьте это дело специалисту. Но если вы дружите с отверткой, то наверно для вас это будет не трудно.

    Очистка от пыли

    Первое необходимо очистить от пыли платы. Перед тем, как разобрать компьютер, полностью отключите его от сети и отключите все провода от него, чтобы ничего не смогло помешать. Потом аккуратно открутите все болтики и снимите крышку, перед вами будут платы (вернее одна основная — материнская и платы расширения на ней), провода и вентиляторы. В таком случае было бы не плохо провести продувку устройств, если у вас есть баллончик со сжатым воздухом - то он идеально подходит для данной задачи, если нет то ничего страшного, можно обойтись и феном (только в режиме холодного воздуха).

    Для удобства вам может понадобится кисточка для покраски, приобрести которую можно на строительном рынке. Ей приходимся по всем компонентам внутри и направляем поток воздуха одновременно в ту область, где проводим кисточкой.

    Также можно пользоваться пылесосом, который имеет возможность обратного выдува, но с ним необходимо осторожно, чтобы еще не повредить элементы на плате.

    Вообще, если у вас есть время и вы достаточно аккуратны - то лучше разобрать компьютер полностью, то есть открутить платы, диски, приводы, все по отдельности очистить кисточкой, видеокарту, снять и промыть радиатор, постараться очистить вентиляторы, а лучше сразу заменить. И заново все аккуратно установить.

    Видеокарту легким движением можно извлечь из разьема, как и другие подобные платы, но будьте осторожны, так как устройства достаточно хрупкие.

    При регулярной такой детальной чистки компьютер конечно прослужит дольше, а при ежегодной замене вентиляторов - еще дольше (и работать будет тише).

    Также разберите блок питания , так как в нем пыли будет скорее всего тоже достаточно, но при этом он также греется как к примеру чип на плате.

    Попробовать изменить обороты вентиляторов

    Вообще-то изменить обороты вентиляторов достаточно просто, стоит просто подключить их к питанию в 5в, вместо 12в к примеру. Но не каждый с этим справится, не говоря уже о потере гарантии.

    Поэтому можно попробовать изменить скорость вращения кулера при помощи программы SpeedFan . При помощи ее на современных компьютерах возможно изменить количество оборотов в минуту и этим снизив шум от компьютера.

    В программе также есть информационный блок, где будут показаны температуры разных компонентов, в том числе и видеокарты, процессора.

    При снижении оборотов следите за температурой, она не должна быть слишком высокой, если в вкратце то если вы не играете температура процессора желательно чтобы не повышалась выше 45 градусов, а видеокарты не выше 50-ти. Никто не спорит что устройства могут работать и при более высоких температурах, но это снижает срок службы устройства.

    Замена термопасты в процессоре, видеокарте

    Опять же, если вы думаете что у вас получится нормально снять радиатор с процессора и сам процесс извлечь из сокета (то есть «гнезда») - то лучше поменять термопасту, это может снизить температуру на 2-6 градусов, все зависит от состояния старой термопасты (может она вообще высохла). Если позволяют финансы — то можно приобрести термопасту с металлическими частицами.

    При возможности тоже самое сделайте и с видеокартой, обычно можно также снять радиатор и заменить термопасту.

    Как именно менять термопасту?

    Перед тем, как наносить новую термопасту, хорошо удалите прежнюю. Необходимо сперва ее удалить большую часть, это можно сделать чем угодно, к примеру бумагой. Потом уже тщательно удалите со всех уголков остатки, к примеру при помощи жесткой кисточки, для таких дел у меня вообще есть спец. зубная щетка (которой я конечно не пользуюсь).

    Какую лучше использовать термопасту?

    Лучше купить хорошую термопасту, к примеру с частицами серебра, если конечно позволяет бюджет. Но если применить обычную КПТ-8 (Кремнийорганическая Паста Теплопроводная), то тоже сгодится. Как правило, тюбик качественной пасты с металлическими «опилками» стоит не более 20 у.е. и продается в специальном шприце, чтобы было удобно ее наносить.

    Замена кулеров в корпусе компьютера

    Как я уже писал выше, будет неплохо, если вы замените кулеры если им больше года. Ведь они не только могут уже работать не на тех оборотах, которых работали после покупки, но и создавать шум, особенно если это обычные вентиляторы (втулка).

    Для уменьшения шума можно установить больше вентиляторов, но чтобы они работали от 5в питания, в итоге они будут работать слабее, но зато гораздо тише.

    Также можно использовать большие кулеры (200 мм), здесь уже вы должны найти золотую середину между тишиной и охлаждением.

    Замена корпуса

    Снизить шум может помочь замена корпуса, если у вас корпус достаточно «люфтит». Корпус может только увеличить звук от жесткого диска, поглощая вибрацию последнего и в следствии издавать шум всем корпусом. Если вы думаете что причина также кроется в корпусе - замените его на корпус с немного более плотными стенками.

    Поэтому лучше сразу покупать компьютер с качественными деталями, такими как корпус и вентиляторами, блоком питанием и приводом и т.д.

    Компьютер лучше приобретать не в магазине, так как там главная цель - просто продать и все. Лучше обратится к специализированным фирмам, которые занимаются и сборкой и ремонтом компьютеров, где сразу обьяснить что вы хотите тихий компьютер. Также уточните о качестве деталей, лучше один раз переплатить, чем несколько раз доплачивать.

    Буду рад, если в этой статье вы нашли ответы на свои вопросы.

    Каждый пользователь ПК рано или поздно сталкивается с проблемой его шумной работы . И тут сразу возникает вопрос, а как же можно сделать компьютер тише? Есть целый ряд причин, которые так или иначе напрямую влияют на появление дополнительных шумов при работе компьютера .

    Основные источники шума создают:

    1) вентиляторы;

    2) винчестеры;

    3) CD- и DVD-приводы.

    Основные причины возникновения дополнительных шумов:

    1) пыль, грязь;

    2) тонкие корпусные стенки;

    3) перегрев;

    4) износ элементов или некачественный монтаж;

    5) использование сразу нескольких маленьких вентиляторов вместо одного большого

    Вызывать дополнительный шум может как одна из этих причин, так и их совокупность.

    Устранение причин

    Довольно редко причины шума в системном блоке устраняются без вскрытия системного блока и чистки его компонентов. Иногда может помочь решить шумовую проблему использование специализированных программ и утилит.

    Чистка ПК от пыли и грязи

    Это самый первый шаг, который необходимо сделать при обнаружении дополнительных шумов. Чаще всего пыль попадает внутрь вентиляторов, из-за чего происходит их , с которым они начинают бороться под дополнительной нагрузкой. На выходе и имеем те злополучные шумовые эффекты. Чистка от пыли осуществляется с помощью пылесоса, мощность которого лучше всего выставить на максимальную отметку. Главное, что стоит помнить при пылесосной уборке, - нельзя касаться трубкой компьютерных элементов внутри системника.

    Лучше пылесоса очистить ваш системный блок от пыли и грязи могут только специальные баллоны со сжатым воздухом .

    Корректировка скорости вращения вентиляторных лопастей

    Из софта хорошо зарекомендовала себя программа Speedfan, которая позволяет снизить скорость вращения лопастей вентилятора, тем самым понизив шумовой уровень. В окне программы содержится информация, отображающая реальную температуру компьютерных элементов.

    Также в программе имеется окно, информирующее пользователя о рабочих скоростях вентилятора, которые корректируются в этом же окне.

    После запуска SpeedFan сразу же обращаем внимание на температурные показатели. После чего запускаем ресурсоёмкое приложение (лучше всего игру или фильм в HD-качестве), юзаем его 15-ть минут и снова наблюдаем за показателями температуры.

    Смысл эксперимента: дать максимально возможную нагрузку на ваш ПК. Отметьте уровень температуры при максимальной нагрузке и постепенно меняйте скорость вращения вентиляторных лопастей. Необходимо выйти на такую скорость вращения, которая позволит одновременно избежать температурной перегрузки и позволит уменьшить шум . Принцип такой: немного уменьшили скорость вращения, поиграли 15-ть минут, проверили температурный режим, который, если не изменился, можно немного снизить, и т. д.

    Замена термопасты

    Термопаста используется при сборке ПК для смазывания соединения куллера и процессора с целью получения более надежного крепления. Однако со временем ее свойства тают на глазах, происходит перегрев и возникает дополнительные шумовые явления. Если проблема только в термопасте, то ее замена вернет былой комфортный уровень шума.

    Замена корпусного вентилятора

    В системных блоках современных ПК расположено не менее 2-х вентиляторов. Иногда производитель по личным соображениям устанавливает несколько маленьких вентиляторов на месте одного большого. Естественно, это приводит к дополнительному шумообразованию. Если желаете сделать компьютер тише , то здесь придется самостоятельно подыскать большой вентилятор с комфортным уровнем шума (число оборотов в минуту не должно превышать 1200) и установить его на месте нескольких малых. Хорошо себя зарекомендовали вентиляторы 120 мм.

    Замена корпуса

    Тонкие стены корпуса – еще одна причина, которая вызывает дополнительный шум даже при наличии больших вентиляторов. Тонкие стены с легкостью проводят вентиляторный шум и звук работы жесткого диска. Замена тонких стенок на толстые не избавит вас от шума, если сами стенки будут плохо прикручены болтами к корпусу.

    Установка радиатора

    Установка радиатора вместо вентилятора обеспечит пассивное охлаждение элементов ПК, которое позволит снизить уровень шума. Однако пассивное охлаждение невыход для мощных ПК. Для них предусмотрено более современное, водяное охлаждение.

    Работа с винчестером

    Дополнительные шумы могу возникать и при работе жесткого диска. Монтаж прокладок из резины между винчестером и корпусом позволяет снизить вибрацию. Если при работе винчестера появился нехарактерный ранее треск, то это явный сигнал пользователю, говорящий о проблемах жесткого диска. Самый лучший вариант – это замена винчестера на SSD-накопитель, который работает совсем без шума.

    Место для ПК

    Не располагайте ПК рядом с источниками тепла, а также в закрытом и плохо вентилируемом пространстве (тумбочки, шкафы). Стоять системник должен на твердой и ровной поверхности. Для снижения уровня вибрации под корпус можно подложить резиновые прокладки.

    Особенности сборки тихого ПК

    1) большой корпус с толстыми стенками и с хорошей циркуляцией воздуха;

    2) вентиляторы большого размера со скоростью вращения лопастей не выше 1200 об/мин.;

    3) проверка отдельных компонентов на уровень шума.

    Вывод

    Абсолютно бесшумной работу компьютера сделать невозможно, но вот свести к минимуму уровень шума можно. Вышеприведенные советы помогут пользователю сделать компьютер тише и по-максимуму использовать все имеющиеся на сегодняшний день ресурсы своего ПК и дополнительного оборудования.

    • Перевод

    Почти три десятилетия я пытаюсь делать мои компьютеры тише. Жидкостное охлаждение собственного изготовления, гидродинамические подшипники с магнитной стабилизацией, акустические демпферы, силиконовые амортизаторы – я использовал всё, что можно представить. И на прошлой неделе я, наконец, сумел построить совершенно бесшумный компьютер. Без лишних слов, знакомьтесь: Streacom DB4 . Корпус размером 26 x 26 x 27 см без единого вентилятора. У него вообще нет никаких движущихся частей. Полная тишина, 0 дБ.

    Если снять с него верхнюю и четыре боковых стенки (штампованный алюминий, толщина стенки 13 мм), вы увидите минимальную раму и центральную монтажную пластину для материнской платы формата mini-ITX (порты ввода/вывода смотрят вниз, сквозь дно корпуса).


    Когда я выбирал компоненты, то вариантов материнской платы такого формата было всего четыре:

    • ASUS ROG Strix B350-I Gaming
    • Gigabyte AB350N-Gaming-WiFi ITX
    • MSI B350I Pro AC
    • ASRock Fatal1ty AB350 Gaming-ITX/ac
    Внимательный читатель заметит, что все материнки заточены под AMD (Socket AM4). Вся эта привела к тому, что мои предыдущие системы на базе Intel стали небезопасными, и для меня это стало последней каплей – всё, больше никаких Intel CPU.

    В итоге я остановился на плате ASRock AB350 Gaming-ITX/ac .

    Хотя теоретически в DB4 можно установить любую материнку mini-ITX, корпус разработан для пассивного охлаждения с тепловыми трубками , передающими тепло, создаваемое CPU и GPU на боковые панели, излучающие его и удаляющие при помощи конвекции. Тщательный анализ путей прокладки трубок и необходимых зазоров показал, что определённые материнки не подойдут для этого корпуса – будут мешаться компоненты.

    • У Gigabyte коннектор питания ATX зачем-то расположен наверху платы, и это препятствие было никак не обойти.
    • У Asus есть группа стабилизаторов напряжения, в которые эти трубки упирались бы. Любой человек, разбирающийся в конденсаторах и тепле, поймёт, что это был бы путь к катастрофе.
    • У MSI имеется огромный радиатор для стабилизаторов напряжения, который мешался бы по меньшей мере одной (возможно, двум) трубкам.
    ASRock оказалась единственной материнкой, которая уместится в DB4, и не будет мешаться дополнительному набору трубок LH6 Cooling Kit. Пожалуй, нагляднее будет продемонстрировать, как это выглядит после установки трубок:

    Чтобы лучше понять, насколько малы оказались зазоры, вот фото с другого угла:


    Да, кое-где зазор буквально составляет доли миллиметра

    В комплекте с DB4 идёт оборудование, с помощью которого тепло от CPU передаётся на одну из боковых панелей – это четыре тепловые трубки и один распределитель тепла. Такая конфигурация поддерживает CPU мощностью 65 Вт. Если добавить LH6 Cooling Kit, то CPU можно подсоединить к двум боковым панелям шестью трубками и тремя распределителями, что позволит использовать CPU до 105 Вт.

    В такой системе с пассивным охлаждением ограничением мощности CPU служат возможности по рассеиванию тепла. Для справки:

    • Ryzen 5 2400G 4C8T 3.6GHz - 46-65 Вт
    • Ryzen 5 1600 6C12T 3.2GHz - 65 Вт
    • Ryzen 5 1600X 6C12T 3.6GHz - 95 Вт
    • Ryzen 7 1700 8C16T 3.0GHz - 65 Вт
    • Ryzen 7 1700X 8C16T 3.4GHz - 95 Вт
    • Ryzen 7 1800X 8C16T 3.6GHz - 95 Вт
    Так что стоковый DB4 поддерживает вплоть до 2400G/1600/1700 – без всякого разгона – а комплект DB4+LH6 поддержит даже 1600X/1700X/1800X - и позволит немного разогнаться.

    В отличие от Intel, время поддержки сокетов у которой сравнимо со временем, необходимым для распаковки очередного процессора, у AMD время поддержки сокетов гораздо больше. AM4 будет поддерживаться до 2020. Отсюда и вырос мой хитрый план – начать в 2018 году с CPU, который без проблем смогут охлаждать DB4+LH6, который можно разгонять и подвергать стресс-тестам пару лет, а потом, если преимущества апгрейда будут очевидными, добавить более эффективный CPU, когда последние процессоры для AM4 сойдут с конвейера, на базе чего можно будет существовать ещё лет пять.

    Всё это привело к тому, что я поставил Ryzen 5 1600 на 65 Вт. Поскольку материнка у меня B350, я имею возможность разгонять проц до 1600X/95 Вт без особых проблем.

    Если вам хватает 65 Вт и не нужен разгон, вы можете отказаться от LH6 Cooling Kit. Тепловые трубки у DB4 короче, чем у LH6, и не заходят за край материнки – поэтому никаких ограничений, упомянутых в связи с платами Gigabyte, Asus и MSI, у вас не будет.

    С Corsair Vengeance LPX RAM у меня никогда не было проблем. Она была указана в списке совместимых модулей для моей материнской платы, а ещё её смогли разогнать до 3200 МГц на точно такой же матери, что и у меня, поэтому я был уверен, что смогу достичь хорошего разгона с минимальными усилиями – естественно, с учётом «кремниевой лотереи». Я собирал компьютер не для игр и не использовал APU, поэтому для меня больше значения имел объём памяти, чем какие-то запредельные скорости.

    SSD – единственный вариант абсолютно тихого накопителя, я избавился от последнего жёсткого диска более семи лет назад, поэтому система изначально была нацелена на использование SSD. Вопрос был только – какого именно.

    Поскольку сзади на материнке есть слот M.2, я решил выбрать 1 Тб Samsung 960 Evo NVMe в качестве основного и 1 Тб Samsung 860 Evo SATA для страховочного.

    Я бы предпочёл два диска NVMe (чтобы было меньше кабелей), но у материнки ASRock есть только один слот M.2. У Asus есть два таких слота, но она несовместима с LH6 Cooling Kit. Ну что ж – иногда приходится идти на компромиссы.

    Для моих целей необходимы большие скорости передачи данных и ожидаемая продолжительность жизни не менее семи лет. Пространства на диске мне нужно порядка 600 Гб, поэтому взяв запас в несколько сотен гигов, я могу позволить накопителям определённый износ и достичь своей цели.

    Хотя система не предназначалась для игр, никогда не повредит установить лучший из возможных GPU, который не расплавит температурные трубки. GPU Cooling Kit позволяет размещать GPU до 75 Вт, тепло с которого по трубкам будет идти к одной из стенок. Это ограничивает выбор платой не выше GTX 1050 Ti, если вы, как я, предпочитаете карты от Nvidia.

    Мне хотелось MSI GeForce GTX 1050 Ti Aero ITX OC 4GB, но они закончились у моего продавца. Из-за безумств с криптовалютами не было известно, как скоро они появятся на складе, поэтому я удовлетворился второй по списку картой, ASUS Phoenix GeForce GTX 1050 Ti 4GB :

    Обе эти карточки вмещаются в корпус, однако MSI на несколько сантиметров короче, чем Asus. Конечно, ни один из двойных вентиляторов у GPU никогда бы туда не влез.

    Удалив вентиляторы, радиатор и корпус, я почистил GPU, добавил свежей пасты, а потом приладил GPU Cooling Kit:

    Последний шаг – добавить радиаторы на каждый из четырёх чипов VRAM:

    Тестирование потребления карточек 1050 Ti показывает, что под нагрузкой они и правда отъедают 75 Вт целиком, поэтому я достигаю пределов GPU Cooling Kit, и никакого разгона не предполагается.

    Для питания всего этого я поставил Streacom ZF240 Fanless 240W ZeroFlex PSU :

    Я изучил потребление всех компонентов и обнаружил, что у всех шин, за исключением шины в 12 В, запас довольно большой. Шина 12 В, теоретически, может дойти до 85% загрузки в 168 Вт, если CPU и GPU одновременно будут работать на 100%. Обычно я предпочитаю оставлять запас побольше, но поскольку система не предназначена для игр, а других вариантов, в которых я бы занял оба процессора одновременно, я не вижу, меня это не сильно волнует. Если это станет проблемой, я легко смогу установить БП SFX и добавить запаса.

    С годами я стал осознавать важность кривых эффективности блоков питания и понял, что стоящая без дела система с крупным БП - это огромные траты энергии. Чтобы извлечь максимальную выгоду из вашего БП, его типичное использование должно находиться в рамках 25-75%%. Рейтинг эффективности ZF240 находится на уровне 93%, и я думаю, что мой выбор компонентов позволит ему регулярно достигать этого уровня – учитывая то, как, я думаю, будет использоваться компьютер.

    Низкое энергопотребление особенно важно, если вы планируете работать в местах, где нет постоянного энергоснабжения.

    Итоговые замечания

    Погоня за тишиной может влететь в копеечку, и данный проект стал именно таким – в итоге он обошёлся почти в 3000 австралийских долларов. Если бы майнеры не взвинтили цены на оборудование, можно было бы уложиться в 2400 – всё равно много, но не так больно. Тем не менее, это меньше, чем три предыдущих собранных мною системы, а новый компьютер способен на то, что им не удавалось – обеспечить полную тишину.

    Компьютер не шумит при старте. Он не шумит при выключении. Он не шумит при простое. Не шумит при большой загрузке. Не шумит при чтении и записи. Его не услышишь в обычной комнате днём. Его не услышишь в абсолютно тихом доме ночью. Его не услышишь с одного метра. Его не услышишь с одного сантиметра. Его просто не слышно. Чтобы достичь такого эффекта, потребовалось 30 лет, и, наконец, я его достиг. Путешествие закончено, и это здорово.

    Если вы пытаетесь собрать беззвучный – не просто тихий, а бесшумный компьютер, я крайне рекомендую корпус с пассивным охлаждением, тепловые трубки и твердотельные накопители. Устраните все движущиеся части (вентиляторы и жёсткие диски), и вы устраните шум – это не так сложно. И это не обязательно будет очень дорого (мои системные требования не были средними, поэтому не думайте, что все системы на базе DB4 такие дорогие). Тишину (и очень приличный компьютер) можно получить и за половину указанной цены.

    Обращаю ваше внимание на то, что это перевод. Ссылка на оригинал – вверху, под заголовком [прим. перев.]

    В этой статье описывается как самостоятельно сделать водяное охлаждение для компьютера не используя заводских компонентов. Если есть проблема с шумом или есть желание разогнать процессор, то можно последовать моему решению и сделать аналогичную систему.

    Сразу предупреждаю - целью была тишина, а не красивое, с эстетической точки зрения, решение.
    Фотографии будут не по тексту.

    Решение установить СВО на компьютер возникло в результате множества попыток сделать его работу немного тише. В процессе экспериментов с уменьшением шума я много чего испробовал: понижение оборотов вентиляторов, чистка кулеров, оклейка корпуса шумопоглощающими материалами - каждый раз был эффект, но слишком незначительный.

    В результате этих экспериментов определились основные источники шума - кулеры в блоке питания и на процессоре.

    Поменять процессорный кулер на малошумящий или почти бесшумный - не проблема, но с блоком питания сложнее: все блоки питания шумят по мере нагрева, даже очень дорогие. А проверять на практике дорогостоящий блок питания не было желания. Даже если заменить все кулеры пассивными радиаторами размером с коробку молока – то все равно эту систему придется обдувать воздухом (тепло никуда не уйдет из закрытого корпуса).

    Один из способов уменьшения шума - замена процессора. На момент начала изготовления СВО у меня стоял Pentium 4 с тепловыделением 130 ватт, поменяв его на Core2Duo с тепловыделением 65-75 ватт, что значительно уменьшило нагрев и как следствие - обороты кулера и его шум. Но решение по созданию СВО уже было принято и нужно было начинать.

    Был вариант взять готовые компонетны, но при их анализе выявлено несколько слабых мест:
    Часто встречается комбинация меди и алюминия при изготовлении водоблоков - а это приведет к коррозии;
    Чрезмерная дороговизна блоков питания с водяным охлаждением (на тот момент цена была более 500 $), данная цена ставит под сомнение сам проект;
    Комплекты с одним водоблоком для процессора (готовая система) достаточно шумные.
    Как итог - делаю все сам!

    Вот перечень того, что я использовал:
    Листовая медь (0,8 мм, 1 мм, 2 мм, листы размером 200*200 мм, ушло по 2 листа каждой толщины) - 2000 рублей (высокая цена из-за того, что покупал медь в магазине для моделистов);
    Медная трубка 10 мм внешний диаметр (отожжённая водопроводная труба со строй рынка) - 500 рублей;
    Радиатор от волговской печки (в его характеристиках указанно, что может рассеивать до 16 кВт тепла - а этого хватит чтобы всю комнату обогреть, а не только комп охладить) - 1000 рублей с доставкой;
    Помпа Laing D5-Pumpe 12V D5-Vario - на тишине не экономим! (самая дорогая отдельная деталь - примерно 4000 рублей на момент покупки);
    Шланги внутренним диаметром 9,7 мм - 6 метров и пружинки от перегиба, все на 1000 рублей (покупал в магазине для моддеров и СВО систем);
    Манометр от старого тонометра - для системы контроля от протечек – 100 рублей, купил на молотке;
    Автомобильный термометр с внешним датчиком - 400 рублей;
    Контейнер для продуктов с герметичной крышкой -100 рублей;
    Хладагент – фильтрованная вода – бесплатно;
    Вентилятор для радиатора - SCYTHE S-Flex SFF21D (максимальный уровень шума 8,7 дБ) – 500 рублей.

    Инструмент:
    Обычная ножовка по металлу;
    Газовый паяльник (в виде баллончика с насадкой как у турбо-зажигалок, купил в китайском инет магазине за 10 баксов);
    Электрический паяльник на 60 ватт;
    Припой, флюс, струбцины и тисочки, надфили, кусачки, плоскогубцы и по мелочи всякое.
    Примерная сумма материалов и инструмента - 10000 руб на момент покупки.

    В процессе было изготовлено следующее:
    водоблок на процессор (площадь 40*40 мм);
    водоблок на чип (35*35 мм) - 2 штуки;
    водоблок на видео (35*35 мм);
    аналог корзины для HDD (на 3 диска);
    водоблок для блока питания (100*60 мм);
    расширительный бачок изготовлен из контейнера для продуктов с герметичной крышкой.

    Водоблоки делались по следующей схеме:
    основание - это медь толщиной 2 мм залуживалось с внутренней стороны;
    ребра - от 20 до 40 ребер (в зависимости от водоблока) размером 33*10 мм для маленьких водоблоков, 38*10 - для процессорного и 80*10 для блока питания, толщина меди 0,8 мм;
    стенки - медь 1 мм (по размерам основания водоблока и высотой 10 мм);
    верхняя крышка - медь 1 мм и размером с основание водоблока;
    Патрубки – водопроводные трубки длинной 30-40 мм.

    Ребра для водоблоков залуживались по кромке, поле этого лишний припой (наплывы и прочее) зачищался надфилями. Подготовленные ребра собирались в блок, между ребрами прокладывалась прослойка из бумаги (маленькие листочки, штук по 5-10). При таком подходе можно собрать радиатор с микро каналами в домашне-кухонных условиях. Далее, полученный блок из ребер и бумаги скреплялся, а точнее пропаивался по торцу, тоненькой проволочкой. Данная проволочка обеспечивала целостность блока и его подвижность (к сожалению нет фотографий). После подготовки блока ребер, бралось залуженное основание и опускалось на конфорку плиты и нагревалось до температуры плавления припоя. На основание с расплавленным припоем опускался полученный блок ребер (смазанный с нижней стороны флюсом). Флюс течении пары секунд выкипал и затягивал на свое место припой с основания водоблока. В результате получался нормально пропаянный водоблок с огромной площадью ребер (40*10 мм * 20-40 штук). После того, как вся конструкция остывала, с нее снималась монтажная проволочка, убирались прослойки из бумаги между ребрами и вычищались ненужные наплывы припоя. Как только основание с ребрами было готово, к нему напаивались боковые ребра и верхняя крышка с уже припаянными патрубками.

    На фото процессорный водоблок. (1 - водоблок на блоке питания, 2- процессорный, 3 - чип на материнке)

    В верхней крышке проделывалось 4 отверстия для входных и выходных патрубков.
    Получается что вся система имеет последовательное соединение водоблоков парными трубками (это видно на картинках). Трубки между водоблоками парные из-за того, что внутреннее сечение трубок помпы больше, чем сечение трубок между водоблоками, и чтобы не создавать дополнительное гидросопротивление было решено применить такую схему. В моем случае внутреннее сечение трубок помпы примерно равно двум внутренним сечениям используемых трубок. Последовательное соединение проще потому, что вода гарантированно обойдет весь контур охлаждения. Если же сделать параллельное соединение водоблоков, то есть шанс, что по трубке с бОльшиим сопротивлением вода не пойдет. Тогда эта часть контура будет более горячая.

    На фото: частичное фото материнки(1 - водоблок на блоке питания, 2- процессорный, 3 - чип на материнке, 4 - водоблок для винтов)

    Парное соединение так же удобно в той ситуации, когда есть риск перегиба шлангов (а такое было в процессе тестирования системы) - как результат - сильно повышается надежность всей системы при незначительно увеличенных затратах.

    Водоблок для блока питания сделан по такой же схеме, только увеличены размеры и изначально добавлены поля на основании для установки транзисторов. Я думал, что выпаяю транзисторы и прикручу их к водоблоку, а ножки припаяю толстыми проводами. Но при разборке блока питания был приятно удивлен тем, что 2 радиатора от транзисторов имеют ровное основание к которому можно хорошо прикрепить водоблок. Что я и сделал с помощью саморезов и термоклея.

    На фото: крепление водоблока для блока питания.

    Система защиты от протечек построена по принципу понижения давления в системе и мониторинга через манометр. Первое время давление держалось по неделе и больше, но потом стало быстро выравниваться с атмосферным. Но это не важно: срок тестирования был длинным (несколько месяцев) в результате которого выяснилось, что система течей не дает.

    На фото система мониторинга (температурные датчики, манометр и крыльчатка. 1- температура в комнате, 2 - в системе охлаждения).

    Датчик потока жидкости – это самодельная крыльчатка, изготовленная из пластика, вырезанного по нужной форме и приклеенного суперклеем на иглу от шприца. Далее, игла с крыльчаткой одевалась поверх швейной иглы (образуя свободно вращающуюся ось) и помещается вдоль прозрачной трубки. Все готово – вода раскручивает крыльчатку, а мы смотрим.

    На фото: температурные датчики вклеенные в патрубок и крыльчатка, показывающая поток жидкости

    Ну вот, все спаяли, соединили, проверили – работает! Осталось смонтировать и в путь.
    С крепежом сильно не мучился - а просто приклеил на термоклей. По характеристикам клея - он размягчается при нагреве до 70 или более градусов (речь идет про повторное размягчение клея, после его первичного высыхания), а это критическая температура для чипов и блокировки материнки выключат питание раньше достижения данной температуры - поэтому нет серьезного риска того, что водоблок отвалится из-за размягчения клея.

    При наклейке водоблоков на чипы встала проблема в том, что площадь поверхности чипа слишком маленькая, чтобы удержать водоблок. Для фиксации водоблоков я придумал другое: взял термоклей (клеевой пистолет) и залил водоблоки по периметру (это отлично видно на фотографиях). Можно сказать – что после этого не отмыть материнку и прочее – пофиг, материнка стоила 1500 рублей, и ее стоимость на стоимости проекта почти ни как не отражается.

    На фото: крепление водоблоков с помощью термоклея (1 - водоблок видеокарты, 2 - водоблок второго чипа материнки).

    Так же, нужно обратить внимание на перегиб шлангов – пришлось все изгибы упаковывать в спиральки – защиту от перегибов.

    После сборки и запуска я был в шоке – комп не слышно вообще! Точнее слышно как работают винты – что напрягало первое время. Шума от помпы или вентиляторов не слышно. Можно конечно сильно прислушиваться, наклонившись ухом к компу. Ощущение было совсем не привычным: уровень шума от компа меньше шума от рабочего винта.

    На фото вся система: 1 - блок питания, 2 - процессор, 3 - чип, 4 - корзина с винтами, 5 - расширительный бачок, 6 - помпа, 7 - радиатор с кулером.

    Уже после обкатки системы я разогнал процессор на 20%, что почти не сказалось на температуре системы.

    Софтверный мониторинг показывает, что температура высокая, примерно 50-55 градусов на процессоре. Это не низко, но не критично. Поэтому я не заморачиваюсь.
    Температура воды в системе редко превышает 43-45 градусов, это при полной загрузке компа на 2-3 часа и температуре в комнате 28 градусов.

    В общем, на все это ушло примерно полгода – работал не торопясь, по выходным, на кухне и результатом доволен абсолютно. Система работает уже два года и радует меня и удивляет друзей.

    Ну и последнее – если хотите тишины – не покупайте аквариумные помпы, шумные вентиляторы и датчики потока жидкости с подключением к компу – это все сделает систему достаточно шумной – не экономьте на тишине!

    В этой статье описывается как самостоятельно сделать водяное охлаждение для компьютера не используя заводских компонентов. Если есть проблема с шумом или есть желание разогнать процессор, то можно последовать моему решению и сделать аналогичную систему.

    Сразу предупреждаю - целью была тишина, а не красивое, с эстетической точки зрения, решение.
    Фотографии будут не по тексту.

    Решение установить СВО на компьютер возникло в результате множества попыток сделать его работу немного тише. В процессе экспериментов с уменьшением шума я много чего испробовал: понижение оборотов вентиляторов, чистка кулеров, оклейка корпуса шумопоглощающими материалами - каждый раз был эффект, но слишком незначительный.

    В результате этих экспериментов определились основные источники шума - кулеры в блоке питания и на процессоре.

    Поменять процессорный кулер на малошумящий или почти бесшумный - не проблема, но с блоком питания сложнее: все блоки питания шумят по мере нагрева, даже очень дорогие. А проверять на практике дорогостоящий блок питания не было желания. Даже если заменить все кулеры пассивными радиаторами размером с коробку молока – то все равно эту систему придется обдувать воздухом (тепло никуда не уйдет из закрытого корпуса).

    Один из способов уменьшения шума - замена процессора. На момент начала изготовления СВО у меня стоял Pentium 4 с тепловыделением 130 ватт, поменяв его на Core2Duo с тепловыделением 65-75 ватт, что значительно уменьшило нагрев и как следствие - обороты кулера и его шум. Но решение по созданию СВО уже было принято и нужно было начинать.

    Был вариант взять готовые компонетны, но при их анализе выявлено несколько слабых мест:

    • Часто встречается комбинация меди и алюминия при изготовлении водоблоков - а это приведет к коррозии;
    • Чрезмерная дороговизна блоков питания с водяным охлаждением (на тот момент цена была более 500 $), данная цена ставит под сомнение сам проект;
    • Комплекты с одним водоблоком для процессора (готовая система) достаточно шумные.

    Как итог - делаю все сам!

    Вот перечень того, что я использовал:

    • Листовая медь (0,8 мм, 1 мм, 2 мм, листы размером 200*200 мм, ушло по 2 листа каждой толщины) - 2000 рублей (высокая цена из-за того, что покупал медь в магазине для моделистов);
    • Медная трубка 10 мм внешний диаметр (отожжённая водопроводная труба со строй рынка) - 500 рублей;
    • Радиатор от волговской печки (в его характеристиках указанно, что может рассеивать до 16 кВт тепла - а этого хватит чтобы всю комнату обогреть, а не только комп охладить) - 1000 рублей с доставкой;
    • Помпа Laing D5-Pumpe 12V D5-Vario - на тишине не экономим! (самая дорогая отдельная деталь - примерно 4000 рублей на момент покупки);
    • Шланги внутренним диаметром 9,7 мм - 6 метров и пружинки от перегиба, все на 1000 рублей (покупал в магазине для моддеров и СВО систем);
    • Манометр от старого тонометра - для системы контроля от протечек – 100 рублей, купил на молотке;
    • Автомобильный термометр с внешним датчиком - 400 рублей;
    • Контейнер для продуктов с герметичной крышкой -100 рублей;
    • Хладагент – фильтрованная вода – бесплатно;
    • Вентилятор для радиатора - SCYTHE S-Flex SFF21D (максимальный уровень шума 8,7 дБ) – 500 рублей.

    Инструмент:

    • Обычная ножовка по металлу;
    • Газовый паяльник (в виде баллончика с насадкой как у турбо-зажигалок, купил в китайском инет магазине за 10 баксов);
    • Электрический паяльник на 60 ватт;
    • Припой, флюс, струбцины и тисочки, надфили, кусачки, плоскогубцы и по мелочи всякое.

    Примерная сумма материалов и инструмента - 10000 руб на момент покупки.

    В процессе было изготовлено следующее:

    • водоблок на процессор (площадь 40*40 мм);
    • водоблок на чип (35*35 мм) - 2 штуки;
    • водоблок на видео (35*35 мм);
    • аналог корзины для HDD (на 3 диска);
    • водоблок для блока питания (100*60 мм);
    • расширительный бачок изготовлен из контейнера для продуктов с герметичной крышкой.

    Водоблоки делались по следующей схеме:

    • основание - это медь толщиной 2 мм залуживалось с внутренней стороны;
    • ребра - от 20 до 40 ребер (в зависимости от водоблока) размером 33*10 мм для маленьких водоблоков, 38*10 - для процессорного и 80*10 для блока питания, толщина меди 0,8 мм;
    • стенки - медь 1 мм (по размерам основания водоблока и высотой 10 мм);
    • верхняя крышка - медь 1 мм и размером с основание водоблока;
    • Патрубки – водопроводные трубки длинной 30-40 мм.

    Ребра для водоблоков залуживались по кромке, поле этого лишний припой (наплывы и прочее) зачищался надфилями. Подготовленные ребра собирались в блок, между ребрами прокладывалась прослойка из бумаги (маленькие листочки, штук по 5-10). При таком подходе можно собрать радиатор с микро каналами в домашне-кухонных условиях. Далее, полученный блок из ребер и бумаги скреплялся, а точнее пропаивался по торцу, тоненькой проволочкой. Данная проволочка обеспечивала целостность блока и его подвижность (к сожалению нет фотографий). После подготовки блока ребер, бралось залуженное основание и опускалось на конфорку плиты и нагревалось до температуры плавления припоя. На основание с расплавленным припоем опускался полученный блок ребер (смазанный с нижней стороны флюсом). Флюс течении пары секунд выкипал и затягивал на свое место припой с основания водоблока. В результате получался нормально пропаянный водоблок с огромной площадью ребер (40*10 мм * 20-40 штук). После того, как вся конструкция остывала, с нее снималась монтажная проволочка, убирались прослойки из бумаги между ребрами и вычищались ненужные наплывы припоя. Как только основание с ребрами было готово, к нему напаивались боковые ребра и верхняя крышка с уже припаянными патрубками.

    на фото процессорный водоблок. (1 - водоблок на блоке питания, 2- процессорный, 3 - чип на материнке)

    В верхней крышке проделывалось 4 отверстия для входных и выходных патрубков.
    Получается что вся система имеет последовательное соединение водоблоков парными трубками (это видно на картинках). Трубки между водоблоками парные из-за того, что внутреннее сечение трубок помпы больше, чем сечение трубок между водоблоками, и чтобы не создавать дополнительное гидросопротивление было решено применить такую схему. В моем случае внутреннее сечение трубок помпы примерно равно двум внутренним сечениям используемых трубок. Последовательное соединение проще потому, что вода гарантированно обойдет весь контур охлаждения. Если же сделать параллельное соединение водоблоков, то есть шанс, что по трубке с бОльшиим сопротивлением вода не пойдет. Тогда эта часть контура будет более горячая.

    на фото: частичное фото материнки(1 - водоблок на блоке питания, 2- процессорный, 3 - чип на материнке, 4 - водоблок для винтов)

    Парное соединение так же удобно в той ситуации, когда есть риск перегиба шлангов (а такое было в процессе тестирования системы) - как результат - сильно повышается надежность всей системы при незначительно увеличенных затратах.

    Водоблок для блока питания сделан по такой же схеме, только увеличены размеры и изначально добавлены поля на основании для установки транзисторов. Я думал, что выпаяю транзисторы и прикручу их к водоблоку, а ножки припаяю толстыми проводами. Но при разборке блока питания был приятно удивлен тем, что 2 радиатора от транзисторов имеют ровное основание к которому можно хорошо прикрепить водоблок. Что я и сделал с помощью саморезов и термоклея.

    на фото: крепление водоблока для блока питания.

    Система защиты от протечек построена по принципу понижения давления в системе и мониторинга через манометр. Первое время давление держалось по неделе и больше, но потом стало быстро выравниваться с атмосферным. Но это не важно: срок тестирования был длинным (несколько месяцев) в результате которого выяснилось, что система течей не дает.

    на фото система мониторинга (температурные датчики, манометр и крыльчатка. 1- температура в комнате, 2 - в системе охлаждения).

    Датчик потока жидкости – это самодельная крыльчатка, изготовленная из пластика, вырезанного по нужной форме и приклеенного суперклеем на иглу от шприца. Далее, игла с крыльчаткой одевалась поверх швейной иглы (образуя свободно вращающуюся ось) и помещается вдоль прозрачной трубки. Все готово – вода раскручивает крыльчатку, а мы смотрим.

    на фото: температурные датчики вклеенные в патрубок и крыльчатка, показывающая поток жидкости

    Ну вот, все спаяли, соединили, проверили – работает! Осталось смонтировать и в путь.
    С крепежом сильно не мучился - а просто приклеил на термоклей. По характеристикам клея - он размягчается при нагреве до 70 или более градусов (речь идет про повторное размягчение клея, после его первичного высыхания), а это критическая температура для чипов и блокировки материнки выключат питание раньше достижения данной температуры - поэтому нет серьезного риска того, что водоблок отвалится из-за размягчения клея.

    При наклейке водоблоков на чипы встала проблема в том, что площадь поверхности чипа слишком маленькая, чтобы удержать водоблок. Для фиксации водоблоков я придумал другое: взял термоклей (клеевой пистолет) и залил водоблоки по периметру (это отлично видно на фотографиях). Можно сказать – что после этого не отмыть материнку и прочее – пофиг, материнка стоила 1500 рублей, и ее стоимость на стоимости проекта почти ни как не отражается.

    на фото: крепление водоблоков с помощью термоклея (1 - водоблок видеокарты, 2 - водоблок второго чипа материнки).

    Так же, нужно обратить внимание на перегиб шлангов – пришлось все изгибы упаковывать в спиральки – защиту от перегибов.

    После сборки и запуска я был в шоке – комп не слышно вообще! Точнее слышно как работают винты – что напрягало первое время. Шума от помпы или вентиляторов не слышно. Можно конечно сильно прислушиваться, наклонившись ухом к компу. Ощущение было совсем не привычным: уровень шума от компа меньше шума от рабочего винта.

    на фото вся система: 1 - блок питания, 2 - процессор, 3 - чип, 4 - корзина с винтами, 5 - расширительный бачок, 6 - помпа, 7 - радиатор с кулером.

    Уже после обкатки системы я разогнал процессор на 20%, что почти не сказалось на температуре системы.

    Софтверный мониторинг показывает, что температура высокая, примерно 50-55 градусов на процессоре. Это не низко, но не критично. Поэтому я не заморачиваюсь.
    Температура воды в системе редко превышает 43-45 градусов, это при полной загрузке компа на 2-3 часа и температуре в комнате 28 градусов.

    В общем, на все это ушло примерно полгода – работал не торопясь, по выходным, на кухне и результатом доволен абсолютно. Система работает уже два года и радует меня и удивляет друзей.

    Ну и последнее – если хотите тишины – не покупайте аквариумные помпы, шумные вентиляторы и датчики потока жидкости с подключением к компу – это все сделает систему достаточно шумной – не экономьте на тишине!



    
    Top