Для целевой функции ее значение при равно. Большая энциклопедия нефти и газа. Листинг решения прямой задачи оптимизации

где - постоянные затраты, которые не зависят от режима обработки, мин;

Здесь - подготовительно – заключительное время на операцию, мин;

Размер партии обрабатываемых деталей;

Вспомогательное время операции, мин;

Время на обслуживание без учета времени на замену инструмента, мин;

Время на отдых рабочего, мин;

Затраты времени, связанные с заменой затупившегося инструмента и соответствующей поднастройкой технологической системы;

где - время на замену инструмента и соответствующую размерную настройку;

Диаметр и длина обрабатываемого вала;

Коэффициент для расчета скорости резания;

Скорость резания;

Глубина резания;

Здесь - показатели степени в формулах для расчета режимов резания.

Анализ целевой функции времени позволяет вскрыть резервы дополнительного повышения производительности и определить оптимальные режимы резания, обеспечивающие минимальные затраты на выполнение операции.

Целевая функция стоимости на примере обработки вала имеет вид:

Здесь - расходы на материал;

Расходы в единицу времени соответственно на эксплуатацию оборудования, приспособления, по зарплате с учетом накладных расходов;

Время на замену инструмента и соответствующую размерную настройку;

Стоимость инструмента за период его эксплуатации.

Первый член выражения определяет постоянные затраты на материал, расходы, связанные с подготовительно – заключительным временем и временем обслуживания. Второй член выражения определяет затраты на режущий инструмент и простои при его замене. Третий член выражения определяет расходы, связанные непосредственно с выполнением процесса резания.

Объемное планирование работы технологических станочных систем

Эта и все последующие лекции посвящены вопросам математического моделирования и оптимизации технологических станочных систем.

Объемное планирование работы механического участка при достижении максимальной загрузки технологического оборудования

Постановка задачи . Имеется m – станков (m – групп станков), на которых могут быть изготовлены n – типов деталей. Трудоемкость обработки j - ой детали на i – м станке составляет , час. Известны фонды времени работы каждого станка (группы станков) – B i . Исходные данные для решения задачи представлены в таблице 14.1.

Таблица 14.1. Исходные данные для решения задачи, представленные в общем виде

Требуется определить количество деталей каждого наименования , при обработке которых достигается максимальная загрузка оборудования участка.



Математическая модель для решения задачи запишется:

Ограничения :

Задача решается методом линейного программирования. При этом следует иметь в виду следующее. Количество ограничений вида (14.1) - (14.3) в математической модели должно строго равняться количеству станков (групп станков) участка. При решении задачи с помощью компьютера количество станков (групп станков), а также типов деталей практически не ограничено и определяется только возможностями компьютера и соответствующей программы. При решении задачи вручную с применением графо-аналитического метода количество типов станков (групп станков) также не ограничено, но их увеличение естественным образом приведет к увеличению времени расчетов. Количество же типов деталей не должно превышать двух, т.к. в противном случае невозможно будет на плоскости выполнить необходимые графические построения.

Пример. Исходные данные для примера приведены в таблице 14.2.

Таблица 14.2. Исходные данные для решения задачи

Обозначим через количество деталей типа D 1 , через количество деталей типа D 2 .

Математическая модель для решения данной задачи запишется следующим образом:

Ограничения (по фонду времени работы оборудования):

Требуется найти значения и , удовлетворяющие заданным ограничениям (14.6) – (14.10) и обеспечивающие максимум целевой функции (14.11). Параметры и являются управляемыми параметрами в математической модели.

Решим задачу графо – аналитическим методом (см. лекцию 6). Графическая иллюстрация решения задачи приведена на рис. 14.1.

Рис.14.1. Графическая иллюстрация решения задачи

Вычисления для построения ограничений (14.6) – (14.8):

x 1
x 2
x 1
x 2

Проведя прямую линию, параллельную данной, находим точку касания ее границы ОДР – это точка А. Для нахождения ее координат (точки пересечения ограничений 14.7 и 14.8) решаем следующую систему уравнений:

Т.е. окончательно

Максимальное значение целевой функции (максимальная загрузка оборудования участка) при оптимальных значениях искомых параметров составит:

Задача о минимальной загрузке оборудования

Эта и последующие задачи в данной лекции приводятся на уровне постановки задачи и формирования математической модели для ее решения. Все они решаются методами линейного программирования.

Имеется m станков, на которых могут быть изготовлены n типов деталей. Производительность i - го станка при изготовлении детали j - го типа составляет C ij . Величины плановых заданий A j на изготовление j - ой детали и ресурс времени B i работы i - го станка приведены в таблице 14.3.

Таблица 14.3 Исходные данные для решения задачи

Требуется, учитывая ресурсы времени работы каждого станка распределить задания между станками таким образом, чтобы общее время работы всех станков было минимальным.

Пусть t ij - время изготовления j - ой детали i - м станком. Составим ограничения по ресурсу времени для каждого станка:

Решение поставленной задачи состоит в минимизации линейной целевой функции (суммарного времени)

(14.14)

при ограничениях (14.12), (14.13) и условии, что все переменные .

Задача об оптимальном распределении деталей по станкам

Пусть некоторая машина состоит из различных видов деталей, которые мы пронумеруем числами . Имеется типов различных станков, причем количество станков - го типа равно . Детали могут быть изготовлены на станках разного типа. Производительность станка - го типа при изготовлении - ой детали составляет . После изготовления детали поступают на сборку. Требуется закрепить станки за деталями так, чтобы в единицу времени получать максимальное количество машин.

Пусть - количество станков - го типа, на которых можно изготовить - ю деталь. Очевидно, что количество станков - го типа, изготавливающих детали видов, не должно превышать заданное число :

Общее количество комплектов деталей, необходимых для сборки машины, равно общему количеству какой-либо одной детали, имеющей, например, номер 1. Поэтому решение задачи заключается в максимизации линейной функции

(14.17)

при ограничениях (14.15), (14,16) с дополнительным условием, что все переменные .

Найденные оптимальные значения этой задачи не обязательно целые числа. Например, означает, что на двух станках первого типа в течение единицы времени будут изготовлять деталь с номером 1, тогда как третий станок того же типа будет работать лишь половину указанного времени.

Задача о производстве продукции при ограниченных запасах сырья

Из видов сырья производится различных типов продукции. Стоимость реализации изготовленной продукции - го типа составляет . Запас сырья - го вида на планируемый период равен . Потребность в сырье - го типа составляет . Исходные данные для решения задачи приведены в таблице 14.4.

Таблица 14.4 Исходные данные для решения задачи

Требуется для каждого типа продукта определить такой объем производства , чтобы обеспечить максимальную стоимость реализации изготовленной продукции при условии, что не будут превышены запасы имеющегося сырья.

Ограничения по запасам сырья имеют вид:

(14.18)

Задача заключается в том, чтобы определить оптимальные значения параметров (переменных) , обращающих в максимум стоимость продукции, т.е. целевую функцию

при ограничениях (14.18) и дополнительных условиях .

Основы теории массового обслуживания

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности .

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

Понятие случайного процесса

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системе S протекает случайный процесс , если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры: 1. Система S – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

Марковский случайный процесс

Случайный процесс, протекающий в системе, называется Марковским , если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянии S 0 . Мы знаем характеристики состояния системы в настоящем и все, что было при t < t 0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет при t > t 0 ? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое время система S окажется в состоянии S 1 или останется в состоянии S 0 и т.д.

Пример . Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество «красных» самолетов, y – количество «синих» самолетов. К моменту времени t 0 количество сохранившихся (не сбитых) самолетов соответственно – x 0 , y 0 . Нас интересует вероятность того, что в момент времени численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времени t 0 , а не от того, когда и в какой последовательности погибали сбитые до момента t 0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием , если его возможные состояния S 1 , S 2 , … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем , если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Пример . Технологическая система (участок) S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

S 0 - оба станка исправны;

S 1 - первый станок ремонтируется, второй исправен;

S 2 - второй станок ремонтируется, первый исправен;

S 3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний . Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в

Рис.15.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.15.1.

Примечание. Переход из состояния S 0 в S 3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

Потоки событий

Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.

В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.

Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 15.2.

Рис.15.2. Изображение потока событий на оси времени

Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.

Интенсивность потока событий () – это среднее число событий, приходящееся на единицу времени.

Рассмотрим некоторые свойства (виды) потоков событий.

Поток событий называется стационарным , если его вероятностные характеристики не зависят от времени.

В частности, интенсивность стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Поток событий называется потоком без последствий , если для любых двух непересекающихся участков времени и (см. рис.15.2) число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты времени независимо друг от друга и вызваны каждое своими собственными причинами.

Поток событий называется ординарным , если события в нем появляются поодиночке, а не группами по нескольку сразу.

Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами: 1) стационарен, 2) ординарен, 3) не имеет последствий.

Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.

Для простейшего потока с интенсивностью интервал T между соседними событиями имеет так называемое показательное (экспоненциальное) распределение с плотностью

Целевая функция – это математическое представление зависимости критерия оптимальности от искомых переменных.

2. Градиент функции.

Вектор, компонентами которого служат значения частных производных, то есть вектор

называется градиентом функции , вычисленным в точке.

3. Общая задача линейного программирования.

Стандартная математическая формулировка общей задачи линейного программирования выглядит так: требуется найти экстремальное значение показателя эффективности (целевой функции)

(линейной функции элементов решения ) при линейных ограничительных условиях, накладываемых на элементы решения:

где - заданные числа.

4. Стандартная задача лп.

В стандартной форме задача линейного программирования является задачей на максимум (минимум) линейной целевой функции. Система ограничений ее состоит из одних линейных неравенств типа « <= » или « >= ». Все переменные задачи неотрицательны.

Всякую задачу линейного программирования можно сформулировать в стандартной форме . Преобразование задачи на минимум в задачу на максимум, а также обеспечение не отрицательности переменных производится так же, как и раньше. Всякое равенство в системе ограничений равносильно системе взаимопротивоположных неравенств:

Существует и другие способы преобразования системы равенств в систему неравенств, т.е. всякую задачу линейного программирования можно сформулировать в стандартной форме.

2 вариант ответа:

Стандартная задача ЛП. или, в матричной записи,где- матрица коэффициентов. Векторназывается вектором коэффициентов линейной формы,- вектором ограничений.

5. Каноническая задача лп.

В канонической форме задача является задачей на максимум (минимум) некоторой линейной функции F , ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х 1 , х 2 , ..., х n являются неотрицательными:

К канонической форме можно преобразовать любую задачу линейного программирования.

Короткая запись канонической задачи ЛП:

Х=(х1, х2, …, хn), С=(с1, с2, …, сn).

2 вариант ответа:

Каноническая задача ЛП. или, в матричной записи,

6. Симметричные и несимметричные двойственные задачи.

Двойственная задача линейного программирования. Рассмотрим задачу ЛП (1) или, в матричной записи,(2) Задачей, двойственной к (1) (двойственной задачей), называется задача ЛП отпеременныхвида(3) или, в матричной записи,(4) где. Правила построения задачи (3) по форме записи задачи (1) таковы: в задаче (3)

переменных столько же, сколько строк в матрицезадачи (1). Матрица ограничений в (3) - транспортированная матрица. Вектор правой части ограничений в (3) служит вектором коэффициентов максимизируемой линейной форме в (1), при этом знаки неравенств меняются на равенство. Наоборот, в качестве целевой функции в (3) выступает линейная форма, коэффициентами которой задаются вектором правой части ограничений задачи (1), при этом максимизация меняется на минимизацию. На двойственные переменныенакладывается условие неотрицательности. Задача (1), в отличии от двойственной задачи (3) называется прямой.Теорема двойственности . Если взаимодвойственные задачи (2), (4) допустимы, то они обе имеют решение и одинаковое значение .

Симметричные двойственные задачи

Разновидностью двойственных задач линейного, программирования являются двойственные симметричные задачи, в которых система ограничений как исходной, так и двойственной задач задается неравенствами, причем на двойственные переменные налагается условие неотрицательности.

) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций , линейном программировании , теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи . Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

Примеры

Гладкие функции и системы уравнений

\left\{ \begin{matrix} F_1(x_1, x_2, \ldots, x_M) = 0 \\ F_2(x_1, x_2, \ldots, x_M) = 0 \\ \ldots \\ F_N(x_1, x_2, \ldots, x_M) = 0 \end{matrix} \right.

может быть сформулирована как задача минимизации целевой функции

S = \sum_{j=1}^N F_j^2(x_1, x_2, \ldots, x_M) \qquad (1)

Если функции гладкие, то задачу минимизации можно решать градиентными методами .

Для всякой гладкой целевой функции можно приравнять к 0 частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

Линейное программирование

Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

Комбинаторная оптимизация

Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра . Эта функция равна длине гамильтонова цикла на графе . Она задана на множестве перестановок n-1 вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

Напишите отзыв о статье "Целевая функция"

Примечания

См. также

Литература

  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. - 1977. - Вып. 5. - С.26-30

Отрывок, характеризующий Целевая функция

Бедный муж мой переносит труды и голод в жидовских корчмах; но новости, которые я имею, еще более воодушевляют меня.
Вы слышали, верно, о героическом подвиге Раевского, обнявшего двух сыновей и сказавшего: «Погибну с ними, но не поколеблемся!И действительно, хотя неприятель был вдвое сильнее нас, мы не колебнулись. Мы проводим время, как можем; но на войне, как на войне. Княжна Алина и Sophie сидят со мною целые дни, и мы, несчастные вдовы живых мужей, за корпией делаем прекрасные разговоры; только вас, мой друг, недостает… и т. д.
Преимущественно не понимала княжна Марья всего значения этой войны потому, что старый князь никогда не говорил про нее, не признавал ее и смеялся за обедом над Десалем, говорившим об этой войне. Тон князя был так спокоен и уверен, что княжна Марья, не рассуждая, верила ему.
Весь июль месяц старый князь был чрезвычайно деятелен и даже оживлен. Он заложил еще новый сад и новый корпус, строение для дворовых. Одно, что беспокоило княжну Марью, было то, что он мало спал и, изменив свою привычку спать в кабинете, каждый день менял место своих ночлегов. То он приказывал разбить свою походную кровать в галерее, то он оставался на диване или в вольтеровском кресле в гостиной и дремал не раздеваясь, между тем как не m lle Bourienne, a мальчик Петруша читал ему; то он ночевал в столовой.
Первого августа было получено второе письмо от кня зя Андрея. В первом письме, полученном вскоре после его отъезда, князь Андрей просил с покорностью прощения у своего отца за то, что он позволил себе сказать ему, и просил его возвратить ему свою милость. На это письмо старый князь отвечал ласковым письмом и после этого письма отдалил от себя француженку. Второе письмо князя Андрея, писанное из под Витебска, после того как французы заняли его, состояло из краткого описания всей кампании с планом, нарисованным в письме, и из соображений о дальнейшем ходе кампании. В письме этом князь Андрей представлял отцу неудобства его положения вблизи от театра войны, на самой линии движения войск, и советовал ехать в Москву.
За обедом в этот день на слова Десаля, говорившего о том, что, как слышно, французы уже вступили в Витебск, старый князь вспомнил о письме князя Андрея.
– Получил от князя Андрея нынче, – сказал он княжне Марье, – не читала?
– Нет, mon pere, [батюшка] – испуганно отвечала княжна. Она не могла читать письма, про получение которого она даже и не слышала.
– Он пишет про войну про эту, – сказал князь с той сделавшейся ему привычной, презрительной улыбкой, с которой он говорил всегда про настоящую войну.
– Должно быть, очень интересно, – сказал Десаль. – Князь в состоянии знать…
– Ах, очень интересно! – сказала m llе Bourienne.
– Подите принесите мне, – обратился старый князь к m llе Bourienne. – Вы знаете, на маленьком столе под пресс папье.
M lle Bourienne радостно вскочила.
– Ах нет, – нахмурившись, крикнул он. – Поди ты, Михаил Иваныч.
Михаил Иваныч встал и пошел в кабинет. Но только что он вышел, старый князь, беспокойно оглядывавшийся, бросил салфетку и пошел сам.
– Ничего то не умеют, все перепутают.
Пока он ходил, княжна Марья, Десаль, m lle Bourienne и даже Николушка молча переглядывались. Старый князь вернулся поспешным шагом, сопутствуемый Михаилом Иванычем, с письмом и планом, которые он, не давая никому читать во время обеда, положил подле себя.

Целевая функция - вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

Примеры

Гладкие функции и системы уравнений

Задача решения любой системы уравнений

{ F 1 (x 1 , x 2 , … , x M) = 0 F 2 (x 1 , x 2 , … , x M) = 0 … F N (x 1 , x 2 , … , x M) = 0 {\displaystyle \left\{{\begin{matrix}F_{1}(x_{1},x_{2},\ldots ,x_{M})=0\\F_{2}(x_{1},x_{2},\ldots ,x_{M})=0\\\ldots \\F_{N}(x_{1},x_{2},\ldots ,x_{M})=0\end{matrix}}\right.}

может быть сформулирована как задача минимизации целевой функции

S = ∑ j = 1 N F j 2 (x 1 , x 2 , … , x M) (1) {\displaystyle S=\sum _{j=1}^{N}F_{j}^{2}(x_{1},x_{2},\ldots ,x_{M})\qquad (1)}

Если функции гладкие, то задачу минимизации можно решать градиентными методами.

Для всякой гладкой целевой функции можно приравнять к 0 {\displaystyle 0} частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) {\displaystyle (1)} это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

Линейное программирование

Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

Комбинаторная оптимизация

Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра. Эта функция равна длине гамильтонова цикла на графе. Она задана на множестве перестановок n − 1 {\displaystyle n-1} вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

Глава 1. Постановка основной задачи линейного программирования

  1. Линейное программирование

Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием. Такие задачи находят обширные приложения в различных сферах человеческой деятельности. Систематическое изучение задач такого типа началось в 1939 – 1940 гг. в работах Л.В. Канторовича.

К математическим задачам линейного программирования относят исследования конкретных производственно-хозяйственных ситуаций, которые в том или ином виде интерпретируются как задачи об оптимальном использовании ограниченных ресурсов.

Круг задач, решаемых при помощи методов линейного программирования достаточно широк.Это, например:

    задача об оптимальном использовании ресурсов при производственном планировании;

    задача о смесях (планирование состава продукции);

    задача о нахождении оптимальной комбинации различных видов продукции для хранения на складах (управление товарно-материальными запасами или);

    транспортные задачи (анализ размещения предприятия, перемещение грузов).

Линейное программирование – наиболее разработанный и широко применяемый раздел математического программирования (кроме того, сюда относят: целочисленное, динамическое, нелинейное, параметрическое программирование). Это объясняется следующим:

    математические модели большого числа экономических задач линейны относительно искомых переменных;

    данный тип задач в настоящее время наиболее изучен. Для него разработаны специальные методы, с помощью которых эти задачи решаются, и соответствующие программы для ЭВМ;

    многие задачи линейного программирования, будучи решенными, нашли широкое применение;

    некоторые задачи, которые в первоначальной формулировке не являются линейными, после ряда дополнительных ограничений и допущений могут стать линейными или могут быть приведены к такой форме, что их можно решать методами линейного программирования.

Экономико-математическая модель любой задачи линейного программирования включает: целевую функцию, оптимальное значение которой (максимум или минимум) требуется отыскать; ограничения в виде системы линейных уравнений или неравенств; требование неотрицательности переменных.

В общем виде модель записывается следующим образом:

целевая функция

(1.1) при ограничениях

(1.2) требования неотрицательности

(1.3) где x j – переменные (неизвестные);

- коэффициенты задачи линейного программирования.

Задача состоит в нахождении оптимального значения функции (1.1) при соблюдении ограничений (1.2) и (1.3).

Систему ограничений (1.2) называют функциональными ограничениями задачи, а ограничения (1.3) - прямыми.

Вектор, удовлетворяющий ограничениям (1.2) и (1.3), называется допустимым решением (планом) задачи линейного программирования. План, при котором функция (1.1) достигает своего максимального (минимального) значения, называется оптимальным.

1.2. Симплекс метод решения задач линейного программирования

Симплекс-метод был разработан и впервые применен для решения задач в 1947 г. американским математиком Дж. Данцигом.

Двумерные задачи линейного программирования решаются графически. Для случая N=3 можно рассмотреть трехмерное пространство и целевая функция будет достигать своё оптимальное значение в одной из вершин многогранника.

Допустимым решением (допустимым планом) задачи ЛП, данной в стандартной форме, называется упорядоченное множество чисел (х1, х2, …, хn), удовлетворяющих ограничениям; это точка в n-мерном пространстве.

Множество допустимых решений образует область допустимых решений (ОДР) задачи ЛП. ОДР представляет собой выпуклый многогранник (многоугольник).

В общем виде, когда в задаче участвуют N-неизвестных, можно сказать, что область допустимых решений, задаваемая системой ограничивающих условий, представляется выпуклым многогранником в n-мерном пространстве и оптимальное значение целевой функции достигается в одной или нескольких вершинах.

Базисным называется решение, при котором все свободные переменные равны нулю.

Опорное решение - это базисное неотрицательное решение. Опорное решение может быть невырожденным и вырожденным. Опорное решение называется невырожденным, если число его ненулевых координат равно рангу системы, в противном случае оно является вырожденным.

Допустимое решение, при котором целевая функция достигает своего экстремального значения, называется оптимальным и обозначается .

Решить данные задачи графически, когда количество переменных более 3 весьма затруднительно. Существует универсальный способ решения задач линейного программирования, называемый симплекс-методом.

Симплекс-метод - это универсальный метод решения задач ЛП, представляющий собой итерационный процесс, который начинается с одного решения и в поисках лучшего варианта движется по угловым точкам области допустимых решений до тех пор, пока не достигнет оптимального значения.

С его помощью можно решить любую задачу линейного программирования.

В основу симплексного метода положена идея последовательного улучшения получаемого решения.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений к соседней, в которой целевая функция принимает лучшее (или, по крайней мере, не худшее) значение до тех пор, пока не будет найдено оптимальное решение - вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).

Таким образом, имея систему ограничений, приведенную к канонической форме (все функциональные ограничения имеют вид равенств), находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще. Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то осуществляется переход к другому, обязательно допустимому базисному решению. Симплексный метод гарантирует, что при этом новом решении целевая функция, если и не достигнет оптимума, то приблизится к нему (или, по крайней мере, не удалится от него). С новым допустимым базисным решением поступают так же, пока не отыщется решение, которое является оптимальным.

Процесс применения симплексного метода предполагает реализацию трех его основных элементов:

    способ определения какого-либо первоначального допустимого базисного решения задачи;

    правило перехода к лучшему (точнее, не худшему) решению;

    критерий проверки оптимальности найденного решения.

Симплексный метод включает в себя ряд этапов и может быть сформулирован в виде четкого алгоритма (четкого предписания о выполнении последовательных операций). Это позволяет успешно программировать и реализовывать его на ЭВМ. Задачи с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.

6.1.Введение

Оптимизация. Часть 1

Методы оптимизации позволяют выбрать наилучший вариант конструкции из всех возможных вариантов. В последние годы этим методам уделялось большое внимание, и в результате был разработан целый ряд высокоэффективных алгоритмов, позволяющих найти оптимальный вариант конструкции при помощи ЭЦВМ. В данной главе излагаются основы теории оптимизации, рассмат-риваются принципы, лежащие в основе построения алгоритмов оптимальных решений, описываются наиболее известные алгоритмы, анализируются их достоинства и недостатки.

6.2.Основы теории оптимизации

Термином «оптимизация» в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего, или «оптимального», решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. Поэтому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

Рассматривая некоторую произвольную систему, описываемую m уравнениями с n неизвестными, можно выделить три основных типа задач. Если m=n , задачу называют алгебраической. Такая задача обычно имеет одно решение. Если m>n, то задача переопределена и, как правило, не имеет решения. Наконец, при m

Прежде чем приступить к обсуждению вопросов оптимизации, введем ряд определений.

Проектные параметры

Этим термином обозначают независимые переменные параметры, которые полностью и однозначно определяют решаемую задачу проектирования. Проектные параметры - неизвестные величины, значения которых вычисляются в процессе оптимизации. В качестве проектных параметров могут служить любые основные или произ-водные величины, служащие для количественного описания системы. Так, это могут быть неизвестные значения длины, массы, време-ни, температуры. Число проектных параметров характеризует сте-пень сложности данной задачи проектирования. Обычно число проектных параметров обозначают через n, а сами проектные пара-метры через х с соответствующими индексами. Таким образом n проектных параметров данной задачи будем обозначать через

X1, x2, x3,...,xn.

Целевая функция

Это - выражение, значение которого инженер стремится сделать максимальным или минимальным. Целевая функция позволяет количественно сравнить два альтернативных решения. С мате-матической точки зрения целевая функция описывает некоторую (n+1) - мерную поверхность. Ее значение определяется проектными параметрами

M=M(x 1 , x 2 ,...,x n).

Примерами целевой функции, часто встречающимися в инженерной практике, являются стоимость, вес, прочность, габариты, КПД. Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости (рис.6.1). Если проектных параметров два, то целевая функция будет изображаться поверх-ностью в пространстве трех измерений (рис.6.2). При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются гиперповерхностями и не поддаются изобра-

жению обычными средствами. Топологические свойства поверхности целевой функции играют большую роль в процессе оптимизации, так как от них зависит выбор наиболее эффективного алгоритма.

Целевая функция в ряде случаев может принимать самые неожиданные формы. Например, ее не всегда удается выразить в

Рис.1.Одномерная целевая функция.

Рис.6.2.Двумерная целевая функция.

замкнутой математической форме, в других случаях она может

представлять собой кусочно-гладкую функцию. Для задания целевой функции иногда может потребоваться таблица технических данных (например, таблица состояния водяного пара) или может понадобиться провести эксперимент. В ряде случаев проектные параметры принимают только целые значения. Примером может служить число зубьев в зубчатой передаче или число болтов во фланце. Иногда проектные параметры имеют только два значения - да или нет. Качественные параметры, такие как удовлетворение, которое испытывает приобретший изделие покупатель, надежность, эстетичность, трудно учитывать в процессе оптимизации, так как их практически невозможно охарактеризовать количественно. Однако в каком бы виде ни была представлена целевая функция, она должна быть однозначной функцией проектных параметров.

В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несов-местимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов и поставить в соответствие каждой целевой функции некоторый безразмерный мно-житель. В результате появляется «функция компромисса», позво-ляющая в процессе оптимизации пользоваться одной составной целевой функцией.

Поиск минимума и максимума

Одни алгоритмы оптимизации приспособлены для поиска максимума, другие - для поиска минимума. Однако независимо от типа решаемой задачи на экстремум можно пользоваться одним т тем же алгоритмом, так как задачу минимизации можно легко превратить в задачу на поиск максимума, поменяв знак целевой функции на обратный. Этот прием иллюстрируется рис.6.3.

Пространство проектирования

Так называется область, определяемая всеми n проектными параметрами. Пространство проектирования не столь велико, как может показаться, поскольку оно обычно ограничено рядом

условий, связанных с физической сущностью задачи. Ограничения могут быть столь сильными, что задача не будет иметь ни одного

Рис.6.3.Изменением знака целевой функции на противоположный

задача на максимум превращается в задачу на минимум.

удовлетворительного решения. Ограничения делятся на две группы: ограничения - равенства и ограничения - неравенства.

Ограничения - равенства

Ограничения - равенства - это зависимость между проектными параметрами, которые должны учитываться при отыскании решения. Они отражают законы природы, экономики, права, господствующие вкусы и наличие необходимых материалов. Число ограничений - равенств может быть любым. Они имеют вид

C 1 (x 1 , x 2 ,...,x n)=0,

C 2 (x 1 , x 2 ,...,x n)=0,

..................

C j (x 1 , x 2 ,...,x n)=0.

Если какое-либо из этих соотношений можно разрешить отно-сительно одного из проектных параметров, то это позволяет исключить данный параметр из процесса оптимизации. Тем самым уменьшается число измерений пространства проектирования и упрощается решение задачи.

Ограничения - неравенства

Это особый вид ограничений, выраженных неравенствами. В общем случае их может быть сколько угодно, причем все они имееют вид

z 1 r 1 (x 1 , x 2 ,...,x n) Z 1

z 2 r 2 (x 1 , x 2 ,...,x n) Z 2

.......................

z k r k (x 1 , x 2 ,...,x n) Z k

Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается не тем, где ее поверхность имеет нулевой градиент. Нередко лучшее решение соответствует одной из границ области проектирования.

Локальный оптимум

Так называется точка пространства проектирования, в которой целевая функция имеет наибольшее значение по сравнению с ее значениями во всех других точках ее ближайшей окрестности.

Рис.6.4.Произвольная целевая функция может иметь несколько

локальных оптимумов.

На рис. 6.4 показана одномерная целевая функция, имеющая два локальных оптимума. Часто пространство проектирования содержит много локальных оптимумов и следует соблюдать осторожность, чтобы не принять первый из них за оптимальное решение задачи.

Глобальный оптимум

Глобальный оптимум - это оптимальное решение для всего пространства проектирования. Оно лучше всех других решений, соответствующих локальным оптимумам, и именно его ищет конструктор. Возможен случай нескольких равных глобальных оптимумов, расположенных в разных частях пространства проектирования. Как ставится задача оптимизации, лучше всего показать на примере.

Пример 6.1

Пусть требуется спроектировать прямоугольный контейнер объемом 1м , предназначенный для перевозки неупакованного волокна. Желательно, чтобы на изготовление таких контейнеров затрачивалось как можно меньше материала (при условии посто-янства толщины стенок это означает, что площадь поверхности должна быть минимальной), так как при этом он будет дешевле. Чтобы контейнер удобно было брать автопогрузчиком, его ширина должна быть не менее 1,5м.

Сформулируем эту задачу в виде, удобном для применения алгоритма оптимизации.

Проектные параметры: x 1 , x 2 , x 3 .

Целевая функция (которую требуется минимизировать) - площадь боковой поверхности контейнера:

A=2(x 1 x 2 +x 2 x 3 +x 1 x 3), м2.

Ограничение - равенство:

Объем = x 1 x 2 x 3 =1м3.

Ограничение - неравенство:

Задачи линейного программирования

Линейное программирование (ЛП) является одним из разделов математического программирования – дисциплины, изучающей экстремальные (оптимизационные) задачи и разработкой методов их решения.

Оптимизационная задача – это математическая задача, заключающаяся в нахождении оптимального (т.е. максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (ОДЗ).

В общем виде постановка экстремальной задачи математического программирования состоит в определении наибольшего или наименьшего значения функции , называемой целевой функцией , при условиях (ограничениях) , где и – заданные функции, а – заданные постоянные величины. При этом ограничения в виде равенств и неравенств определяют множество (область) допустимых решений (ОДР), а – называют проектными параметрами .

В зависимости от вида функций и задачи математического программирования делятся на ряд классов (линейной, нелинейное, выпуклое, целочисленное, стохастическое, динамическое программирование и др.).

В общем виде задача ЛП имеет следующий вид:

, (5.1)

, , (5.2)

, , (5.3)

где , , – заданные постоянные величины.

Функцию (5.1) называют целевой функцией; системы (5.2), (5.3) – системой ограничений; условие (5.4) – условием неотрицательности проектных параметров.

Совокупность проектных параметров , удовлетворяющих ограничениям (5.2), (5.3) и (5.4), называют допустимым решением или планом .

Оптимальным решением или оптимальным планом задачи ЛП называется допустимое решение , при котором целевая функция (5.1) принимает оптимальное (максимальное или минимальное) значение.

Стандартной задачей ЛП называют задачу нахождения максимального (минимального) значения целевой функции (5.1) при условии (5.2) и (5.4), где , , т.е. т.е. ограничения только в виде неравенств (5.2) и все проектные параметры удовлетворяют условию неотрицательности, а условия в виде равенств отсутствуют:

,

, , (5.5)

.

Канонической (основной) задачей ЛП называют задачу нахождения максимального (минимального) значения целевой функции (5.1) при условии (5.3) и (5.4), где , , т.е. т.е. ограничения только в виде равенств (5.3) и все проектные параметры удовлетворяют условию неотрицательности, а условия в виде неравенств отсутствуют:

,

.

Каноническую задачу ЛП можно также записать в матричной и векторной форме.

Матричная форма канонической задачи ЛП имеет следующий вид:

Векторная форма канонической задачи ЛП.

Являясь централизованным, выполняет следующие функции функцию регулирования цен между новой и серийной продукцией функцию целевого и постоянного обеспечения -процесса производства новой техники денежными средствами функцию перераспределения средств по освоению новой техники между предприятиями, в различной степени участвующими в освоении новой техники.  

Что касается расходов государства, то они представляют целевые фонды денежных средств , ассигнованные и фактически использованные государством для реализации своих функций. К основным функциям целевых расходов относят  

Перейдем теперь к описанию целевых функций. Целевая функция ПМ  

Целевая функция. Целевая функция определяет задачу, которая должна быть решена в процессе оптимизации. Например, в этой главе мы занимаемся минимизацией риска портфеля активов. Типичной целевой функцией для портфеля рискованных активов будет  

ФУНКЦИЯ ЦЕЛЕВАЯ - это функция, которая связывает цель (оптимизируемую переменную) и управляемые переменные в задаче оптимизации.  

Первое выражение называется целевой функцией (равно произведению прибыли на единицу продукта с,- на выпуск этого продукта Xj). Остальные уравнения составляют линейные ограничения , которые означают, что расход сырья, полуфабрикатов, качество продукции , мощности, т. е. исходные ресурсы, не должны превышать заранее установленных величин / /. Коэффициенты а,7 - постоянные величины , показывающие расход ресурса на /-и продукт. Задача может быть решена при неотрицательности переменных и при числе неизвестных большем, чем число ограничений. Если последнее условие не удовлетворяется, то задача является несовместной.  

В качестве целевой функции принимаем выработку автобензина А-76  

Целевая функция имеет вид  

Поскольку от объема производства зависят переменные затраты , то максимизации подлежит разность между ценой и переменными затратами . Условно-постоянные расходы (амортизационные отчисления , затраты па текущий ремонт , заработная плата с начислениям общецеховые и общезаводские расходы) в модель не включают и вычитают из целевой функции, полученной на ЭВМ. Если в качестве неизвестных принята длительность работы установки по каждому варианту, то рассчитывают переменные затраты на один день ее работы.  

Условие (4,56) характеризует целевую функцию, те максимальную разность между оптовой ценой и себестоимостью товарных бензинов.  

В качестве целевой функции при решении данной задачи может быть как максимум прибыли по предприятию (4.52), так и максимум объема производства товарной продукции в стоимостном выражении (4.53)  

Приведенная модель расчета себестоимости является одновременно и моделью расчета прибыли предприятия. Однако основной эффект реализации расчета себестоимости на ЭВМ состоит в возможности использования результатов этого расчета для оптимизации производственной программы предприятия . В данном случае в качестве целевой функции может быть принят максимум прибыли от реализации продукции . Оптимизируя производственную программу , необходимо максимизировать функцию вида  

Преимущества и недостатки структуры, ориентированной на покупателя, в общем те же, что и у продуктовой структуры , если учесть различия, связанные с разной целевой функцией.  

Так как интегральную энергоемкость определяют с учетом энергозатрат прямых и опосредованных (через материальные, технические и трудовые ресурсы), то и в суммарной народнохозяйственной экономии учитывают снижение энергоемкости каждого из расходуемых и используемых ресурсов. Энергоемкость каждого целевого эффекта (продукта, услуги) рассчитывают как сумму энергоемкостей по стадиям его формирования. Например, энергоемкость трубы складывается из энергоемкости добычи руды, выплавки стали, проката листа и собственно изготовления трубы и измеряется в килограммах условного топлива на 1 руб. ее стоимости. Существующие формы учета и предложенная методика позволяют определить эти показатели для любого продукта, услуги и т.д. Таким образом, для экономии энергии необходимо снизить расход производственных ресурсов всех видов при достижении заданного целевого эффекта. Эти ресурсы и конечный целевой эффект измеряют в стоимостном выражении. Затраты на них зависят от масштаба применяемой технологии, уровня срвершенства технических средств , в которых реализуется главная целевая функция - целевой технологический процесс , числа масштабности и разветвленности вспомогательных функций, обеспечивающих выполнение главной функции, а также уровня применяемой техники и технологии.  

Выражение (I) обычно наз. исходной системой уравнений и неравенств, а выражение (II) - функционалом задачи линейного программирования или целевой функцией. Целевая функция является критерием оптимальности . Первая группа неравенств системы (I) позволяет учесть в расчете ограничения в существующих на начало планируемого периода мощностях топливодобывающих предприятий. Вторая группа неравенств учиты-  

К М. м. в з. и. относят след, разделы прикладной математики математическое программирование , теорию игр, теорию массового обслуживания , теорию расписании , теорию управления запасами и теорию износа п замены оборудования . М а т е м а т и ч. (или оптимальное) п р о г р а м м н р о в а н и о разрабатывает теорию и методы решения условных экстремальных адач, является осн. частью формального аппарата анализа разнообразных задач управления , планирования и проектирования. Играет особую роль в задачах оптимизации планирования нар. х-ва и управления нронз-вом. Задачи планирования экономики п управления техникой сводятся обычно к выбору совокупности чисел (т. н. параметров управления), обеспечивающих оптимум пек-рой функции (целевой функции пли показателя качества решения) при ограничениях вида равенств и неравенств, определяемых условиями работы системы . В зависимости от свойств функций, определяющих показатель качества и ограничения задачи, математич. программирование делится на линейное и нелинейное. Задачи, и к-рых целевая функция - линейная, а условия записываются в виде линейных равенств и неравенств, составляют предмет линейного программа-ронпии.ч. Задачи, в к-рых показатель качества решения или нек-рые из функций, определяющих ограничения, нелинейны, относятся к н е л и н е и н о м у п р о-г р а м м и [) о н а н п го. Нелинейное программирование , в свою очередь, делится на выпуклое и невынуклое программирование. В зависимости от того, являются лп исходные параметры, характеризующие условия задачи, вполне определёнными числами или случайными величинами , в математич. программировании различаются методы управления и планирования в условиях полной и неполной информации . Методы постановки и решения условных экстремальных задач , условия к-рых содержат случайные параметры, составляют предмет с т о х а с т и ч о с к о г о п р о г р а м м и р о в а-  

Цель модели - максимизация суммарного дисконтированного чистого дохода (до на-огов) для совокупности месторождений и газопроводных систем при заданных ехнологических и экономических ограничениях. Модель позволяет использовать льтернативные критерии - минимизации взвешенной суммы отклонений от заданного начения целевой функции (целевое программирование) расчеты могут проводиться ля заданного уровня инвестиций, для заданного уровня добычи, для заданного начения ДЧД.  

Успех такой деловой женщины зависит от того, насколько администрацией будутугаданы возможные поприща, способные дать удовлетворение трудом. Замечено, что женщины хорошо справляются с функциями, требующими общения с людьми, если же это еще и интеллектуальная деятельность -учительница, журналист, экскурсовод и т. п. - то высокая эффективность их труда и положительная ими самими оценка почти наверняка совпадут. В Японии женщинам редко удается получить инженерное, естественно-научное образование, особенно по современным, наиболее перспективным специальностям, тем не менее их включение в широко распростра-няющиеся подвижные целевые группы по решению нестандартных задач оказывается продуктивным. Изобретательность женского ума замечена давно и во всех странах. В Японии же, когда хотят привести яркое тому доказательство, вспоминают конкурс, объявленный известной фирмой "Адзи-но мото". Она предложила большой денежный приз за подсказку, как увеличить продажи, выпускаемой ею приправы, с виду похожей на соль и продаваемой в подобии солонок. Люди писали трактаты, привлекали всевозможные научные знания. Но победительницей стала домохозяйка, ответ которой уместился в одной строке "Сделать покрупнее дырки у солонки".  




Top