Основные типы нейронных сетей. Классификация нейронных сетей. Многослойные нейронные сети

Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.

Искусственная нейронная сеть - это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.

С чего всё началось

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному - ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Как же работает нейросеть?

Исследователи выяснили, нейронная сеть - это совокупность слоёв нейронов, каждый из которых отвечает за распознавание конкретного критерия: формы, цвета, размера, текстуры, звука, громкости и т. д. Год от года в результате миллионов экспериментов и тонн вычислений к простейшей сети добавлялись новые и новые слои нейронов. Они работают по очереди. Например, первый определяет, квадрат или не квадрат, второй понимает, квадрат красный или нет, третий вычисляет размер квадрата и так далее. Не квадраты, не красные и неподходящего размера фигуры попадают в новые группы нейронов и исследуются ими.

Какими бывают нейронные сети и что они умеют

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры - наборов параметров данных и веса этих параметров, некой приоритетности. Ниже некоторые из них.

Свёрточные нейросети

Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 - первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:

Сегодня свёрточные нейронные сети используются в основном с мультимедиными целями: они работают с графикой, аудио и видео.

Рекуррентные нейросети

Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.

Сегодня с помощью таких сетей пишутся и переводятся тексты, программируются боты, которые ведут осмысленные диалоги с человеком, создаются коды страниц и программ.

Использование такого рода нейросетей - это возможность анализировать и генерировать данные, составлять базы и даже делать прогнозы.

В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными:

Комбинированные нейросети (свёрточные + рекуррентные)

Такие нейронные сети способны понимать, что находится на изображении, и описывать это. И наоборот: рисовать изображения по описанию. Ярчайший пример продемонстрировал Кайл Макдональд, взяв нейронную сеть на прогулку по Амстердаму. Сеть мгновенно определяла, что находится перед ней. И практически всегда точно:

Нейросети постоянно самообучаются. Благодаря этому процессу:

1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский - одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.

2. Яндекс на базе нейронных сетей создал два поисковых алгоритма: «Палех» и «Королёв». Первый помогал найти максимально релевантные сайты для низкочастотных запросов. «Палех» изучал заголовки страниц и сопоставлял их смысл со смыслом запросов. На основе «Палеха» появился «Королёв». Этот алгоритм оценивает не только заголовок, но и весь текстовый контент страницы. Поиск становится всё точнее, а владельцы сайтов разумнее начинают подходить к наполнению страниц.

3. Коллеги сеошников из Яндекса создали музыкальную нейросеть: она сочиняет стихи и пишет музыку. Нейрогруппа символично называется Neurona, и у неё уже есть первый альбом:

4. У Google Inbox с помощью нейросетей осуществляется ответ на сообщение. Развитие технологий идет полный ходом, и сегодня сеть уже изучает переписку и генерирует возможные варианты ответа. Можно не тратить время на печать и не бояться забыть какую-нибудь важную договорённость.

5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.

6. Facebook активно работает над DeepText AI - программой для коммуникаций, которая понимает жаргон и чистит чатики от обсценной лексики.

7. Приложения вроде Prisma и Fabby, созданные на нейросетях, создают изображения и видео:

Colorize восстанавливает цвета на чёрно-белых фото (удивите бабушку!).

MakeUp Plus подбирает для девушек идеальную помаду из реального ассортимента реальных брендов: Bobbi Brown, Clinique, Lancome и YSL уже в деле.


8.
Apple и Microsoft постоянно апгрейдят свои нейронные Siri и Contana. Пока они только исполняют наши приказы, но уже в ближайшем будущем начнут проявлять инициативу: давать рекомендации и предугадывать наши желания.

А что ещё нас ждет в будущем?

Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?

Аграрный сектор

Нейросеть внедрят в спецтехнику. Комбайны будут автопилотироваться, сканировать растения и изучать почву, передавая данные нейросети. Она будет решать - полить, удобрить или опрыскать от вредителей. Вместо пары десятков рабочих понадобятся от силы два специалиста: контролирующий и технический.

Медицина

В Microsoft сейчас активно работают над созданием лекарства от рака. Учёные занимаются биопрограммированием - пытаются оцифрить процесс возникновения и развития опухолей. Когда всё получится, программисты смогут найти способ заблокировать такой процесс, по аналогии будет создано лекарство.

Маркетинг

Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.

Ecommerce

Ecommerce будет внедрён повсеместно. Уже не потребуется переходить в интернет-магазин по ссылке: вы сможете купить всё там, где видите, в один клик. Например, читаете вы эту статью через несколько лет. Очень вам нравится помада на скрине из приложения MakeUp Plus (см. выше). Вы кликаете на неё и попадаете сразу в корзину. Или смотрите видео про последнюю модель Hololens (очки смешанной реальности) и тут же оформляете заказ прямо из YouTube.

Едва ли не в каждой области будут цениться специалисты со знанием или хотя бы пониманием устройства нейросетей, машинного обучения и систем искусственного интеллекта. Мы будем существовать с роботами бок о бок. И чем больше мы о них знаем, тем спокойнее нам будет жить.

P. S. Зинаида Фолс - нейронная сеть Яндекса, пишущая стихи. Оцените произведение, которое машина написала, обучившись на Маяковском (орфография и пунктуация сохранены):

« Это »

это
всего навсего
что-то
в будущем
и мощь
у того человека
есть на свете все или нет
это кровьа вокруг
по рукам
жиреет
слава у
земли
с треском в клюве

Впечатляет, правда?

Искусственным нейроном называется простой элемент, сначала вычисляющий взвешенную сумму V входных величин xi:

Здесь N – размерность пространства входных сигналов. Затем полученная сумма сравнивается с пороговой величиной W0, вслед за чем вступает в действие нелинейная функция активации f. Коэффициенты Wi во взвешенной сумме обычно называют синаптическими коэффициентами или весами. Саму же взвешенную сумму V мы будем называть потенциалом нейрона i . Выходной сигнал тогда имеет вид f(V). Величину порогового барьера можно рассматривать как еще один весовой коэффициент при постоянном входном сигнале. В этом случае мы говорим о расширенном входном пространстве : нейрон с N-мерным входом имеет N+1 весовой коэффициент. Если ввести в уравнение пороговую величину W0, то оно перепишется так:

В зависимости от способа преобразования сигнала и характера активации возникают различные виды нейронных структур. Существуют детерминированные нейроны , когда активизирующая функция однозначно вычисляет выход по входу, и вероятностные нейроны , состояние которых в момент t есть случайная функция потенциала и состояния в момент t-1. Рассмотрим детерминированные нейроны.

Структура нейронной сети

Используется 3-слойная нейронная сеть, структура которой приведена на рис. 2.

Рис. 2. Структура примененной нейронной сети (n – число распознаваемых букв)

Третий слой образуют выходные нейроны. В нейронной сети выбранной структуры каждый элемент младшего слоя передает свой выходной сигнал на входы всех элементов следующего слоя. Число элементов в первом и втором слоях нейронной сети может варьироваться. В частности, в разбираемом примере второй слой содержит 8, а третий – 24 нейрона.

Функции активации В искусственных нейронах могут быть различные функции активации, но и в используемых мной программах, и в известной литературе указаны только следующие виды функций: Линейная: выходной сигнал нейрона равен его потенциалу, пороговая: нейрон выбирает решение из двух вариантов: активен / неактивен, Многопороговая: выходной сигнал может принимать одно из q значений, определяемых (q-1) порогом внутри предельных значений. Сигмоидная: рассматриваются два вида сигмоидных функций:

с выходными значениями в промежутке и

с выходными значениями в промежутке [-1,1]. Коэффициент b определяет крутизну сигмоида. Поскольку сигмоидная функция является гладким отображением бесконечной функции на промежутке (-1,1), то крутизну можно учесть через величины весов и порогов, и без ограничения общности можно полагать ее равной единице. Графические изображения простейшего нейрона и виды функций с их графиками приведены на рис. 2.
РИС.2. Пример простейшего нейрона в виде математической модели

Типы архитектур нейросетей

Из точек на плоскости и соединений между ними можно построить множество графических фигур, называемых графами. Если каждую точку представить себе как один нейрон, а соединения между точками – как дендриты и синапсы, то мы получим нейронную сеть. Но не всякое соединение нейронов будет работоспособно или вообще целесообразно. Поэтому на сегодняшний день существует только несколько работающих и реализованных программно архитектур нейросетей. Я только вкратце опишу их устройство и классы решаемых ими задач. По архитектуре связей нейросети могут быть сгруппированы в два класса: сети прямого распространения , в которых связи не имеют петель (см. рис. 3 ), и сети рекуррентного типа , в которых возможны обратные связи(см. рис. 4 )

РИС.3. Нейросети прямого распространения РИС.4. Нейросети рекурентного типа

Сети прямого распространения подразделяются на однослойные перцепротроны (сети) и многослойные перцептроны (сети). Название перцептрона для нейросетей придумал американский нейрофизиолог Ф. Розенблатт, придумавший в 1957 году первый нейропроцессорный элемент (НПЭ) , то есть нейросеть . Он же доказал сходимость области решений для перцептрона при его обучении. Сразу после этого началось бурное исследование в этой области и был создан самый первый нейрокомпьютер Mark I. Многослойные сети отличаются тем, что между входными и выходными данными располагаются несколько так называемых скрытых слоев нейронов, добавляющих больше нелинейных связей в модель. Рассмотрим устройство простейшей многослойной нейросети. Любая нейронная сеть состоит из входного слоя и выходного слоя . Соответственно подаются независимые и зависимые переменные. Входные данные преобразуются нейронами сети и сравниваются с выходом. Если отклонение больше заданного, то специальным образом изменяются веса связей нейронов между собой и пороговые значения нейронов. Снова происходит процесс вычислений выходного значения и его сравнение с эталоном. Если отклонения меньше заданной погрешности, то процесс обучения прекращается. Помимо входного и выходного слоев в многослойной сети существуют так называемые скрытые слои . Они представляют собой нейроны, которые не имеют непосредственных входов исходных данных, а связаны только с выходами входного слоя и с входом выходного слоя. Таким образом, скрытые слои дополнительно преобразуют информацию и добавляют нелинейности в модели. Чтобы лучше понять устройство многослойного перцептрона смотрите рис. 5.

РИС.5. Многослойный перцептрон

Если однослойная нейросеть очень хорошо справляется с задачами классификации, так как выходной слой нейронов сравнивает полученные от предыдущего слоя значения с порогом и выдает значение либо ноль, то есть меньше порогового значения, либо единицу - больше порогового (для случая пороговой внутренней функции нейрона), и не способен решать большинство практических задач(что было доказано Минским и Пейпертом), то многослойный перцептрон с сигмоидными решающими функциями способен аппроксимировать любую функциональную зависимость (это было доказано в виде теоремы). Но при этом не известно ни нужное число слоев, ни нужное количество скрытых нейронов, ни необходимое для обучения сети время. Эти проблемы до сих пор стоят перед исследователями и разработчиками нейросетей. Лично мне кажется, что весь энтузиазм в применении нейросетей строится именно на доказательстве этой теоремы. Класс рекуррентных нейросетей гораздо обширнее, да и сами сети сложнее по своему устройству. Поведение рекуррентных сетей описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов, возможно, и от самого себя, и от окружающей среды. Этот тип сетей имеет важное значение, так как с их помощью можно моделировать нелинейные динамические системы. Среди рекуррентных сетей можно выделить сети Хопфилда и сети Кохонена . С помощью сетей Хопфилда можно обрабатывать неупорядоченные (рукописные буквы), упорядоченные во времени (временные ряды) или пространстве (графики) образцы. Рекуррентная нейросеть простейшего вида была введена Хопфилдом и построена она из N нейронов, связанных каждый с каждым кроме самого себя, причем все нейроны являются выходными. Нейросеть Хопфилда можно использовать в качестве ассоциативной памяти. Архитектура сети Хопфилда изображена на рис. 6.

РИС.6. Архитектура сети Хопфилда

Сеть Кохонена еще называют "самоорганизующейся картой признаков". Сеть такого типа рассчитана на самостоятельное обучение во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различные образцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже обученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием "близости". Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько различных кластеров сеть сможет распознать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синаптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутрислойные связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход. Выходные элементы соревнуются между собой за право вступить в действи и "получить урок". Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору.

Введение

Искусственные нейронные сети (ИНС) строятся по принципам организации и функционирования их биологических аналогов. Они способны решать широкий круг задач распознавания образов, идентификации, прогнозирования, оптимизации, управления сложными объектами. Дальнейшее повышение производительности компьютеров все в большой мере связывают с ИНС, в частности, с нейрокомпьютерами (НК), основу которых составляет искусственная нейронная сеть.

Термин «нейронные сети» сформировался к середине 50-х годов XX века. Основные результаты в этой области связаны с именами У. Маккалоха, Д. Хебба, Ф. Розенблатта, М. Минского, Дж. Хопфилда. Приведем краткую историческую справку .

1943 г. У. Маккалох (W. McCulloch) и У. Питтс (W. Pitts) предложили модель нейрона и сформулировали основные положения теории функционирования головного мозга.
1949 г. Д. Хебб (D. Hebb) высказал идеи о характере соединений нейронов мозга и их взаимодействии (клеточные ансамбли, синаптическая пластичность). Впервые предложил правила обучения нейронной сети.
1957 г. Ф. Розенблатт (F. Rosenblatt) разработал принципы организации и функционирования персептронов, предложил вариант технической реализации первого в мире нейрокомпьютера Mark.
1959 г. Д. Хьюбел (D, Hubel) и Т. Визель (Т. Wiesel) показали распределенный и параллельный характер хранения и обработки информации в биологических нейронных сетях.
1960-1968 гг. Активные исследования в области искусственных нейронных сетей, например, АДАЛИНА и МАДАЛИНА В. Уидроу (W. Widrow) (1960-1962 гг.), ассоциативные матрицы К. Штайнбуха (К. Steinbuch) (1961 г.).
1969 г. Публикация книги М. Минского (М. Minsky) и С. Пей-перта (S. Papert) «Персептроны», в которой доказывается принципиальная ограниченность возможностей персептронов. Угасание интереса к искусственным нейронным сетям.
1970-1976 гг. Активные разработки в области персептронов в СССР (основные заказчики - военные ведомства).
Конец 1970-х гг. Возобновление интереса к искусственным нейронным сетям как следствие накопления новых знаний о деятельности мозга, а также значительного прогресса в области микроэлектроники и компьютерной техники.
1982-1985 гг. Дж. Хопфилд (J. Hopfield) предложил семейство оптимизирующих нейронных сетей, моделирующих ассоциативную память.
1985 г. Появление первых коммерческих нейрокомпьютеров, например, Mark III фирмы TRW (США).
1987 г. Начало широкомасштабного финансирования разработок в области ИНС и НК в США, Японии и Западной Европе (японская программа «Human Frontiers» и европейская программа «Basic Research in Adaptive Intelligence and Neurocomputing»).
1989 г. Разработки и исследования в области ИНС и НК ведутся практически всеми крупными электротехническими фирмами. Нейрокомпьютеры становятся одним из самых динамичных секторов рынка (за два года объем продаж вырос в пять раз). Агентством DARPA (Defence Advanced Research Projects Agency) министерства обороны США начато финансирование программы по созданию сверхбыстродействующих образцов НК для разнообразных применений.
1990 г. Активизация советских исследовательских организаций в области ИНС и НК (Институт кибернетики им. Глушкова в Киеве, Институт многопроцессорных вычислительных систем в Таганроге, Институт нейрокибернетики в Ростове-на-Дону). Общее число фирм, специализирующихся в области ИНС и НК, достигает трехсот.
1991 г. Годовой объем продаж на рынке ИНС и НК приблизился к 140 млн. долларам. Создаются центры нейрокомпьютеров в Москве, Киеве, Минске, Новосибирске, С.-Петербурге.
1992 г. Работы в области ИНС находятся стадии интенсивного развития. Ежегодно проводится десятки международных конференций и форумов по нейронным сетям, число специализированных периодических научных изданий по указанной тематике достигло двух десятков наименований.
1996 г. Число международных конференций по ИНС и НК достигло ста.
1997 г. Годовой объем продаж на рынке ИНС и НК превысил 2 млрд. долларов, а ежегодный прирост составил 50%.
2000 г. Переход на субмикронные и нанотехнологии, а также успехи молекулярной и биомолекулярной технологии приводят к принципиально новым архитектурным и технологическим решениям по созданию нейрокомпьютеров.

Глубокое изучение ИНС требует знания нейрофизиологии, науки о познании, психологии, физики (статистической механики), теории управления, теории вычислений, проблем искусственного интеллекта, статистики/математики, распознавания образов, компьютерного зрения, параллельных вычислений и аппаратных средств (цифровых и аналоговых). С другой стороны, ИНС также стимулируют эти дисциплины, обеспечивая их новыми инструментами и представлениями. Этот симбиоз жизненно необходим для исследования нейронных сетей.

Представим некоторые проблемы, решаемые искусственными нейронными сетями

Классификация образов . Задача состоит в указании принадлежности входного образа, представленного вектором признаков, одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание речи, классификация сигнала электрокардиограммы, классификация клеток крови.

Кластеризация/категоризация . При решении задачи кластеризации, которая известна также как классификация образов без учителя, отсутствует обучающая выборка с метками классов. Алгоритм кластеризации основан на подобии образов и размещает близкие образы в один кластер. Известны случаи применения кластеризации для извлечения знаний, сжатия данных и исследования свойств данных.

Аппроксимация функций. Предположим, что имеется обучающая выборка ((X 1, Y 2), (X 2, Y 2),..., (X N, Y N)), которая генерируется неизвестной функцией, искаженной шумом. Задача аппроксимации состоит в нахождении оценки этой функции.

Предсказание/прогноз . Пусть заданы N дискретных отсчетов { y (t 1), y (t 2),..., y(t n)} в последовательные моменты времени t 1, t 2,..., t n. Задача состоит в предсказании значения y(t n +1) в момент t n +1. Прогноз имеют значительное влияние на принятие решений в бизнесе, науке и технике.

Оптимизация . Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей оптимизации является нахождение решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию.

Память, адресуемая по содержанию. В модели вычислений фон Неймана обращение к памяти доступно только посредством адреса, который не зависит от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найдена совершенно иная информация. Память, адресуемая по содержанию, или ассоциативная память, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному или искаженному содержанию. Ассоциативная память чрезвычайно желательна при создании перспективных информационно-вычислительных систем.

Управление . Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) является входным управляющим воздействием, a y(t) - выходом системы в момент времени f. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(f), при котором система следует по желаемой траектории, диктуемой эталонной моделью.

Каким образом нейронная сеть решает все эти, часто неформализуемые или трудно формализуемые задачи? Как известно, для решения таких задач традиционно применяются два основных подхода. Первый, основанный на правилах (rule-based), характерен для экспертных систем. Он базируется на описании предметной области в виде набора правил (аксиом) «если..., то...» и правил вывода. Искомое знание представляется в этом случае теоремой, истинность которой доказывается посредством построения цепочки вывода. При этом подходе, однако, необходимо заранее знать весь набор закономерностей, описывающих предметную область. При использовании другого подхода, основанного на примерах (case-based), надо лишь иметь достаточное количество примеров для настройки адаптивной системы с заданной степенью достоверности. Нейронные сети представляют собой классический пример такого подхода.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

Под нейронными сетями подразумеваются вычислительные структуры, которые моделируют простые биологические процессы, обычно ассоциируемые с процессами человеческого мозга. Они представляют собой распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Элементарным преобразователем в данных сетях является искусственный нейрон или просто нейрон, названный так по аналогии с биологическим прототипом.

Биологический нейрон

Нервная система и мозг человека состоят из нейронов, соединенных между собой нервными волокнами. Нервные волокна способны передавать электрические импульсы между нейронами. Все процессы передачи раздражений от кожи, ушей и глаз к мозгу, процессы мышления и управления действиями - все это реализовано в живом организме как передача электрических импульсов между нейронами.

Нейрон (нервная клетка) является особой биологической клеткой, которая обрабатывает информацию (рис. 1.). Он состоит из тела (cell body), или сомы (soma), и отростков нервных волокон двух типов - дендритов (dendrites), по которым принимаются импульсы, и единственного аксона (ахо n), по которому нейрон может передавать импульс. Тело нейрона включает ядро (nucleus), которое содержит информацию о наследственных свойствах, и плазму , обладающую молекулярными средствами для производства необходимых нейрону материалов. Нейрон получает сигналы (импульсы) от аксонов других нейронов через дендриты (приемники) и передает сигналы, сгенерированные телом клетки, вдоль своего аксона (передатчика), который в конце разветвляется на волокна (strands). На окончаниях этих волокон находятся специальные образования - синапсы (synapses), которые влияют на величину импульсов.

Рис. 1. Взаимосвязь биологических нейронов

Синапс является элементарной структурой и функциональным узлом между двумя нейронами (волокно аксона одного нейрона и дендрит другого). Когда импульс достигает синаптического окончания, высвобождаются химические вещества, называемые нейротрансмиттерами. Нейротрансмиттеры диффундируют через синаптическую щель, возбуждая или затормаживая, в зависимости от типа синапса, способность нейрона-приемника генерировать электрические импульсы. Результативность передачи импульса синапсом может настраиваться проходящими через него сигналами так, что синапсы могут обучаться в зависимости от активности процессов, в которых они участвуют. Эта зависимость от предыстории действует как память, которая, возможно, ответственна за память человека. Важно отметить, что веса синапсов могут изменяться со временем, а значит, меняется и поведение соответствующих нейронов.

Кора головного мозга человека содержит около 1011 нейронов и представляет собой протяженную поверхность толщиной от 2 до 3 мм с площадью около 2200 см 2. Каждый нейрон связан с 103-104 другими нейронами. В целом мозг человека содержит приблизительно от 1014 до 1015 взаимосвязей.

Нейроны взаимодействуют короткими сериями импульсов продолжительностью, как правило, несколько миллисекунд. Сообщение передается посредством частотно-импульсной модуляции. Частота может изменяться от нескольких единиц до сотен герц, что в миллион раз медленнее, чем быстродействующие переключательные электронные схемы. Тем не менее сложные задачи распознавания человек решает за несколько сотен миллисекунд. Эти решения контролируются сетью нейронов, которые имеют скорость выполнения операций всего несколько миллисекунд. Это означает, что вычисления требуют не более 100 последовательных стадий. Другими словами, для таких сложных задач мозг «запускает» параллельные программы, содержащие около 100 шагов. Рассуждая аналогичным образом, можно обнаружить, что количество информации, посылаемое от одного нейрона другому, должно быть очень малым (несколько бит). Отсюда следует, что основная информация не передается непосредственно, а захватывается и распределяется в связях между нейронами.

Структура и свойства искусственного нейрона

Нейрон является составной частью нейронной сети. На рис. 2 показана его структура. Он состоит из элементов трех типов: умножителей (синапсов), сумматора и нелинейного преобразователя. Синапсы осуществляют связь между нейронами, умножают входной сигнал на число, характеризующее силу связи, (вес синапса). Сумматор выполняет сложение сигналов, поступающих по синаптическим связям от других нейронов, и внешних входных сигналов. Нелинейный преобразователь реализует нелинейную функцию одного аргумента - выхода сумматора. Эта функция называется функцией активации или передаточной функцией нейрона.

Рис. 2. Структура искусственного нейрона

Нейрон в целом реализует скалярную функцию векторного аргумента. Математическая модель нейрона:

где w i, - вес (weight) синапса, i = 1...n; b - значение смещения (bias); s - результат суммирования (sum); x, - компонент входного вектора (входной сигнал), x i = 1... n ; у - выходной сигнал нейрона; n - число входов нейрона; f - нелинейное преобразование (функция активации).

В общем случае входной сигнал, весовые коэффициенты и смещение могут принимать действительные значения, а во многих практических задачах - лишь некоторые фиксированные значения. Выход (у) определяется видом функции активации и может быть как действительным, так и целым.

Синаптические связи с положительными весами называют возбуждающими , с отрицательными весами - тормозящими .

Описанный вычислительный элемент можно считать упрощенной математической моделью биологических нейронов. Чтобы подчеркнуть различие нейронов биологических и искусственных, вторые иногда называют нейроноподобными элементами или формальными нейронами.

На входной сигнал (s) нелинейный преобразователь отвечает выходным сигналом f(s), который представляет собой выход у нейрона. Примеры активационных функций представлены в табл. 1. и на рис. 3.

Таблица 1

Рис. 3. Примеры активационных функций
а - функция единичного скачка; б - линейный порог (гистерезис);
в - сигмоид (логистическая функция); г - сигмоид (гиперболический тангенс)

Одной из наиболее распространенных является нелинейная функция активации с насыщением, так называемая логистическая функция или сигмоид (функция S-образного вида):

Следует отметить, что сигмоидальная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того, она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.

Классификация нейронных сетей и их свойства

Нейронная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой с помощью связей, определяемых весовыми коэффициентами. В зависимости от функций, выполняемых нейронами в сети, можно выделить три их типа:

входные нейроны , на которые подается вектор, кодирующий входное воздействие или образ внешней среды; в них обычно не осуществляется вычислительных процедур, а информация передается с входа на выход путем изменения их активации;
выходные нейроны , выходные значения которых представляют выходы нейронной сети; преобразования в них осуществляются по выражениям (1.1) и (1.2);
промежуточные нейроны , составляющие основу нейронных сетей, преобразования в которых выполняются также по выражениям (1.1) и (1.2).

В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот - выходной нейрон. Однако возможен серий, когда выход топологически внутреннего нейрона рассматривается как Часть выхода сети. В процессе функционирования сети осуществляется преобразование входного вектора в выходной, некоторая переработка информации. Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, а именно топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, направлением и способами управления и синхронизации передачи информации между нейронами.

С точки зрения топологии можно выделить три основных типа нейронных сетей:

Полносвязные (рис. 4, а);
многослойные или слоистые (рис. 4, б);
слабосвязные (с локальными связями) (рис. 4, в).

Рис. 4. Архитектуры нейронных сетей:
а - полносвязная сеть, б - многослойная сеть с последовательными связями, в - слабосвязные сети

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из Q слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (q +1) называются последовательными.

В свою очередь, среди многослойных нейронных сетей выделяют следующие типы.

1) Монотонные. Это частный случай слоистых сетей с дополнительными условиями на связи и нейроны. Каждый слой кроме последнего (выходного) разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждающие. Если от нейронов блока А к нейронам блока В ведут только возбуждающие связи, то это означает, что любой выходной сигнал блока является монотонной неубывающей функцией любого выходного сигнала блока А. Если же эти связи только тормозящие, то любой выходной сигнал блока В является невозрастающей функцией любого выходного сигнала блока А. Для нейронов монотонных сетей необходима монотонная зависимость выходного сигнала нейрона от параметров входных сигналов.

2) Сети без обратных связей. В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного, который выдает сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал q-гo слоя подастся на вход всех нейронов (q+1)-гo слоя; однако возможен вариант соединения q-гo слоя с произвольным (q+p)-м слоем.

Среди многослойных сетей без обратных связей различают полносвязанные (выход каждого нейрона q-гo слоя связан с входом каждого нейрона (q+1)-гo слоя) и частично полносвязанные. Классическим вариантом слоистых сетей являются полносвязанные сети прямого распространения (рис. 5).

Рис. 5. Многослойная (двухслойная) сеть прямого распространения

3) Сети с обратными связями . В сетях с обратными связями информация с последующих слоев передается на предыдущие. Среди них, в свою очередь, выделяют следующие:

Слоисто-циклические, отличающиеся тем, что слои замкнуты в кольцо: последний слой передает свои выходные сигналы первому; все слои равноправны и могут как получать входные сигналы, так и выдавать выходные;
слоисто-полносвязанные состоят из слоев, каждый из которых представляет собой полносвязную сеть, а сигналы передаются как от слоя к слою, так и внутри слоя; в каждом слое цикл работы распадается на три части: прием сигналов с предыдущего слоя, обмен сигналами внутри слоя, выработка выходного сигнала и передача к последующему слою;
полносвязанно-слоистые, по своей структуре аналогичные слоисто-полносвязанным, но функционирующим по-другому: в них не разделяются фазы обмена внутри слоя и передачи следующему, на каждом такте нейроны всех слоев принимают сигналы от нейронов как своего слоя, так и последующих.

В качестве примера сетей с обратными связями на рис. 6 представлены частично-рекуррентные сети Элмана и Жордана.

Рис. 6. Частично-рекуррентные сети: а - Элмана, б – Жордана

В слабосвязных нейронных сетях нейроны располагаются в узлах прямоугольной или гексагональной решетки. Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрестность Голея) или восемью (окрестность Мура) своими ближайшими соседями.

Известные нейронные сети можно разделить по типам структур нейронов на гомогенные (однородные) и гетерогенные. Гомогенные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации.

Существуют бинарные и аналоговые сети. Первые из них оперируют только двоичными сигналами, и выход каждого нейрона может принимать значение либо логического ноля (заторможенное состояние) либо логической единицы (возбужденное состояние).

Еще одна классификация делит нейронные сети на синхронные и асинхронные. В первом случае в каждый момент времени лишь один нейрон меняет свое состояние, во втором - состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейронных сетях задается итерационным выполнением однотипных действий над нейронами. Далее будут рассматриваться только синхронные сети.

Сети можно классифицировать также по числу слоев. Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированных микросхем, на которых обычно реализуется нейронная сеть. Чем сложнее сеть, тем более сложные задачи она может решать.

Выбор структуры нейронной сети осуществляется в соответствии с особенностями и сложностью задачи. Для решения отдельных типов задач уже существуют оптимальные конфигурации, описанные в приложении. Если же задача не может быть сведена ни к одному из известных типов, приходится решать сложную проблему синтеза новой конфигурации. При этом необходимо руководствоваться следующими основными правилами:

Возможности сети возрастают с увеличением числа нейронов сети, плотности связей между ними и числом слоев;
введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети;
сложность алгоритмов функционирования сети, введение нескольких типов синапсов способствует усилению мощности нейронной сети.

Вопрос о необходимых и достаточных свойствах сети для решения задач того или иного рода представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза нейронной сети сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев оптимальный вариант получается на основе интуитивного подбора, хотя в литературе приведены доказательства того, что для любого алгоритма существует нейронная сеть, которая может его реализовать. Остановимся на этом подробнее.

Многие задачи распознавания образов (зрительных, речевых), выполнения функциональных преобразований при обработке сигналов, управления, прогнозирования, идентификации сложных систем, сводятся к следующей математической постановке. Необходимо построить такое отображение X -> У, чтобы на каждый возможный входной сигнал X формировался правильный выходной сигнал У. Отображение задается конечным набором пар (<вход>, <известный выход>). Число этих пар (обучающих примеров) существенно меньше общего числа возможных сочетаний значений входных и выходных сигналов. Совокупность всех обучающих примеров носит название обучающей выборки.

В задачах распознавания образов X - некоторое представление образа (изображение, вектор), У - номер класса, к которому принадлежит входной образ.

В задачах управления X - набор контролируемых параметров управляемого объекта, У - код, определяющий управляющее воздействие, соответствующее текущим значениям контролируемых параметров.

В задачах прогнозирования в качестве входных сигналов используются временные ряды, представляющие значения контролируемых переменных на некотором интервале времени. Выходной сигнал - множество переменных, которое является подмножеством переменных входного сигнала.

При идентификации X и У представляют входные и выходные сигналы системы соответственно.

Вообще говоря, большая часть прикладных задач может быть сведена к реализации некоторого сложного функционального многомерного преобразования.
В результате отображения X -> У необходимо обеспечить формирование правильных выходных сигналов в соответствии:
со всеми примерами обучающей выборки;
со всеми возможными входными сигналами, которые не вошли в обучающую выборку.

Второе требование в значительной степени усложняет задачу формирования обучающей выборки. В общем виде эта задача в настоящее время еще не решена, однако во всех известных случаях может быть найдено частное решение.

Теорема Колмогорова-Арнольда

Построить многомерное отображение X -> У - это значит представить его с помощью математических операций над не более, чем двумя переменными.

Проблема представления функций многих переменных в виде суперпозиции функций меньшего числа переменных восходит 13-й проблеме Гильберта. В результате многолетней научной полемики между А. Н. Колмогоровым и В. И. Арнольдом был получен ряд важных теоретических результатов, опровергающих тезис непредставимости функции многих переменных функциями меньшего числа переменных:

Теорема о возможности представления непрерывных функций нескольких, переменных суперпозициями непрерывных функций меньшего числа переменных (1956 г.);
теорема о представлении любой непрерывной функции трех переменных в виде суммы функций не более двух переменных (1957 г.);
теорема о представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения (1957 г.).

Работа Хехт-Нильсена

Теорема о представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения в 1987 году была переложена Хехт-Нильсеном для нейронных сетей.

Теорема Хехт-Нильсена доказывает представимость функции многих переменных достаточно общего вида с помощью двухслойной нейронной сети с прямыми полными связями с n нейронами входного слоя, (2 n +1) нейронами скрытого слоя с заранее известными ограниченными функциями активации (например, сиг-моидальными) и m нейронами выходного слоя с неизвестными функциями активации.

Теорема, таким образом, в неконструктивной форме доказывает решаемость задачи представления функции произвольного вида на нейронной сети и указывает для каждой задачи минимальные числа нейронов сети, необходимых для ее решения.

Следствия из теоремы Колмогорова-Арнольда - Хехт-Нильсена

Следствие 1 . Из теоремы Хехт-Нильсена следует представимость любой многомерной функции нескольких переменных с помощью нейронной сети фиксированной размерности. Неизвестными остаются следующие характеристики функций активации нейронов:

Ограничения области значений (координаты асимптот) сигмоидальных функций активации нейронов скрытого слоя;
наклон сигмоидальных функций активации;
вид функций активации нейронов выходного слоя.

Про функции активации нейронов выходного слоя из теоремы Хехт-Нильсена известно только то, что они представляют собой нелинейные функции общего вида. В одной из работ, продолжающих развитие теории, связанной с рассматриваемой теоремой, доказывается, что функции активации нейронов выходного слоя должны быть монотонно возрастающими. Это утверждение в некоторой степени сужает класс функций, которые могут использоваться при реализации отображения с помощью двухслойной нейронной сети.

На практике требования теоремы Хехт-Нильсена к функциям активации удовлетворяются следующим образом. В нейронных сетях как для первого (скрытого), так и для второго (выходного) слоя используют сигмоидальные передаточные функции с настраиваемыми параметрами. То есть в процессе обучения индивидуально для каждого нейрона задается максимальное и минимальное значение, а также наклон сигмоидальной функции.

Следствие 2. Для любого множества пар (X k, Y k) (где Y k - скаляр) существует двухслойная однородная (с одинаковыми функциями активации) нейронная сеть первого порядка с последовательными связями и с конечным числом нейронов, которая выполняет отображение X -> У, выдавая на каждый входной сигнал X k правильный выходной сигнал У k. Нейроны в такой двухслойной нейронной сети должны иметь сигмоидальные передаточные функции.

К сожалению, эта теорема не конструктивна. В ней не заложена методика определения числа нейронов в сети для некоторой коифетной обучающей выборки.

Для многих задач единичной размерности выходного сигнала недостаточно. Необходимо иметь возможность строить с помощью нейронных сетей функции X -> У, где У имеет произвольную размерность. Следующее утверждение является теоретической основой для построения таких функций на базе однородных нейронных сетей.

Утверждение. Для любого множества пар входных-выходных векторов произвольной размерности {(X k, У k), k = 1... N } существует однородная двухслойная нейронная сеть с последовательными связями, с сигмоидальными передаточными функциями и с конечным числом нейронов, которая для каждого входного вектора X k формирует соответствующий ему выходной вектор Y k.

Таким образом, для представления многомерных функций многих переменных может быть использована однородная двухслойная нейронная сеть с сигмоидальными передаточными функциями.

Для оценки числа нейронов с скрытых слоях однородных нейронных сетей можно воспользоваться формулой для оценки необходимого числа синаптических весов L w в многослойной сети с сигмоидальными передаточными функциями:

mN / (1+log 2N) < L w < m (1+ N/m)(n+m+1)+m (1.5)

где n - размерность входного сигнала, m - размерность выходили сигнала, N - число элементов обучающей выборки.

Оценив необходимое число весов, можно рассчитать число нейронов в скрытых слоях. Например, для двухслойной сети это число составит:

Известны и другие формулы для оценки, например:

2 (n + L + m) < N < 10 (n + L+ m),
N/10 - n - m < L < N/2 - n – m

Иногда целесообразно использовать сети с большим числом слоев. Такие многослойные нейронные сети могут иметь меньшие размерности матриц синаптических весов нейронов одного слоя, чем двухслойные сети, реализующие то же самое отображение. Однако строгой методики построения таких сетей пока нет.

Аналогичная ситуация складывается и с многослойными нейронными сетями, в которых помимо последовательных связей используются и прямые (связи от слоя с номером q к слою с номером (q+p), где р > 1). Нет строгой теории, которая показывала бы возможность и целесообразность построения таких сетей.

Наибольшие проблемы возникают при использовании сетей циклического функционирования. К этой группе относятся многослойные сети с обратными связями (от слоя с номером q к слою с номером (q+p), где р < 0), а также полносвязные сети. Для успешного функционирования таких сетей необходимо соблюдение условий динамической устойчивости, иначе сеть может не сойтись к правильному решению, либо, достигнув на некоторой итерации правильного значения выходного сигнала, после нескольких итераций уйти от этого значения. Проблема динамической устойчивости подробно исследована, пожалуй, лишь для одной модели из рассматриваемой группы - нейронной сети Хопфилда.

Отсутствие строгой теории для перечисленных моделей нейронных сетей не препятствует исследованию возможностей их применения.

Отметим, что отечественному читателю приведенные результаты известны в более фрагментарной форме - в виде так называемой теоремы о полноте.

Теорема о полноте. Любая непрерывная функция на замкнутом ограниченном множестве может быть равномерно приближена функциями, вычисляемыми нейронными сетями, если функция активации нейрона дважды непрерывно дифференцируема и непрерывна.

Таким образом, нейронные сети являются универсальными структурами, позволяющими реализовать любой вычислительный алгоритм.

Нейронная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой с помощью связей, определяемых весовыми коэффициентами В зависимости от функций, выполняемых нейронами в сети, можно выделить три их типа

Входные нейроны, на которые подается вектор, кодирующий входное воздействие или образ внешней среды; в них обычно не осуществляется вычислительных процедур, а информация передается с входа на выход путем изменения их активации;

Выходные нейроны, выходные значения которых представляют выходы нейронной сети; преобразования в них осуществляются по выражениям (1.1) и (1.2);

Промежуточные нейроны, составляющие основу нейронных сетей, преобразования в которых выполняются также по выражениям (1.1) и (1.2).

В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот - выходной нейрон. Однако возможен случай, когда выход топологически внутреннего нейрона рассматривается как часть выхода сети. В процессе функционирования сети осуществляется преобразование входного вектора в выходной, некоторая переработка информации. Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, а именно топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, направлением и способами управления и синхронизации передачи информации между нейронами.

С точки зрения топологии можно выделить три основных типа нейронных сетей:

Полносвязные (рис. 1.4, а);

Многослойные или слоистые (рис. 1.4, б);

Слабосвязные (с локальными связями) (рис. 1.4, в).

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные

Рис. 1.4. Архитектуры нейронных сетей. а - полносвязная сеть, б - многослойная сеть с последовательными связями, в - слабосвязные сети

сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя к входам нейронов следующего слоя называются последовательными.

В свою очередь, среди многослойных нейронных сетей выделяют следующие типы.

1) Монотонные.

Это частный случай слоистых сетей с дополнительными условиями на связи и нейроны. Каждый слой кроме последнего (выходного) разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждающие. Если от нейронов блока А к нейронам блока В ведут только возбуждающие связи, то это означает, что любой выходной сигнал

Рис. 1.5 Многослойная (двухслойная) сеть прямого распространения

блока является монотонной неубывающей функцией любого выходного сигнала блока А Если же эти связи только тормозящие, то любой выходной сигнал блока В является невозрастающей функцией любого выходного сигнала блока А Для нейронов монотонных сетей необходима монотонная зависимость выходного сигнала нейрона от параметров входных сигналов

2) Сети без обратных связей. В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного, который выдает сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал слоя подастся на вход всех нейронов слоя; однако возможен вариант соединения слоя с произвольным слоем

Среди многослойных сетей без обратных связей различают полносвязанные (выход каждого нейрона слоя связан с входом каждого нейрона слоя) и частично полносвязанные. Классическим вариантом слоистых сетей являются полносвязанные сети прямого распространения (рис. 1.5).

3) Сети с обратными связями В сетях с обратными связями информация с последующих слоев передается на предыдущие. Среди них, в свою очередь, выделяют следующие:

Слоисто-циклические, отличающиеся тем, что слои замкнуты в кольцо, последний слой передает свои выходные сигналы первому; все слои равноправны и могут как получать входные сигналы, так и выдавать выходные;

Слоисто-полносвязанные состоят из слоев, каждый из которых представляет собой полносвязную сеть, а сигналы передаются как от слоя к слою, так и внутри слоя; в каждом слое цикл работы распадается на три части, прием сигналов с предыдущего слоя, обмен сигналами внутри слоя, выработка выходного сигнала и передача к последующему слою,

Полносвязанно-слоистые, по своей структуре аналогичные слоисто-полносвязанным, но функционирующим по-другому: в них не разделяются фазы обмена внутри слоя и передачи следующему, на каждом такте нейроны всех слоев принимают сигналы от нейронов как своего слоя, так и последующих

В качестве примера сетей с обратными связями на рис. 1.6 представлены частично-рекуррентные сети Элмана и Жордана.

Рис. 1.6 Частично-рекуррентные сети а - Элмана, б - Жордана

В слабосвязных нейронных сетях нейроны располагаются в узлах прямоугольной или гексагональной решетки Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрестность Голея) или восемью (окрестность Мура) своими ближайшими соседями.

Известные нейронные сети можно разделить по типам структур нейронов на гомогенные (однородные) и гетерогенные. Гомогенные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации.

Существуют бинарные и аналоговые сети. Первые из них оперируют только двоичными сигналами, и выход каждого нейрона может принимать значение либо логического ноля (заторможенное состояние) либо логической единицы (возбужденное состояние).

Еще одна классификация делит нейронные сети на синхронные и асинхронные. В первом случае в каждый момент времени лишь один нейрон меняет свое состояние, во втором - состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейронных сетях задается итерационным выполнением однотипных действий над нейронами Далее будут рассматриваться только синхронные сети

Сети можно классифицировать также по числу слоев. Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированных микросхем, на которых обычно реализуется нейронная сеть. Чем сложнее сеть, тем более сложные задачи она может решать.

Выбор структуры нейронной сети осуществляется в соответствии с особенностями и сложностью задачи. Для решения отдельных типов задач уже существуют оптимальные конфигурации, описанные в приложении. Если же задача не может быть сведена ни к одному из известных типов, приходится решать сложную проблему синтеза новой конфигурации. При этом необходимо руководствоваться следующими основными правилами:

Возможности сети возрастают с увеличением числа нейронов сети, плотности связей между ними и числом слоев;

Введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети;

Сложность алгоритмов функционирования сети, введение нескольких типов синапсов способствует усилению мощности нейронной сети.

Вопрос о необходимых и достаточных свойствах сети для решения задач того или иного рода представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза нейронной сети сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно В большинстве случаев оптимальный вариант получается на основе интуитивного подбора, хотя в литературе приведены доказательства того, что для любого алгоритма существует нейронная сеть, которая может его реализовать. Остановимся на этом подробнее.

Многие задачи распознавания образов (зрительных, речевых), выполнения функциональных преобразований при обработке сигналов, управления, прогнозирования, идентификации сложных систем, сводятся к следующей математической постановке. Необходимо построить такое отображение чтобы на каждый возможный входной сигнал X формировался правильный выходной сигнал У. Отображение задается конечным набором пар («вход», «известный выход»). Число этих пар (обучающих примеров) существенно меньше общего числа возможных сочетаний значений входных и выходных сигналов. Совокупность всех обучающих примеров носит название обучающей выборки.

В задачах распознавания образов X - некоторое представление образа (изображение, вектор), У - номер класса, к которому принадлежит входной образ.

В задачах управления X - набор контролируемых параметров управляемого объекта, Y - код, определяющий управляющее воздействие, соответствующее текущим значениям контролируемых параметров.

В задачах прогнозирования в качестве входных сигналов используются временные ряды, представляющие значения контролируемых переменных на некотором интервале времени. Выходной сигнал - множество переменных, которое является подмножеством переменных входного сигнала.

При идентификации X и Y представляют входные и выходные сигналы системы соответственно.

Вообще говоря, большая часть прикладных задач может быть сведена к реализации некоторого сложного функционального многомерного преобразования.

В результате отображения необходимо обеспечить формирование правильных выходных сигналов в соответствии:

Со всеми примерами обучающей выборки;

Со всеми возможными входными сигналами, которые не вошли в обучающую выборку.

Второе требование в значительной степени усложняет задачу формирования обучающей выборки В общем виде эта задача в настоящее время еще не решена однако во всех известных случаях может быть найдено частное решение

Из точек на плоскости и соединений между ними можно построить множество графических фигур, называемых графами. Если каждую точку представить себе как один нейрон, а соединения между точками – как дендриты и синапсы, то мы получим нейронную сеть.

Но не всякое соединение нейронов будет работоспособно или вообще целесообразно. Поэтому на сегодняшний день существует только несколько работающих и реализованных программно архитектур нейросетей. Я только вкратце опишу их устройство и классы решаемых ими задач.

По архитектуре связей нейросети могут быть сгруппированы в два класса: сети прямого распространения , в которых связи не имеют петель Рисунок 1, и сети рекуррентного типа , в которых возможны обратные связи Рисунок 3

Рисунок 2 Нейросети прямого распространения

Рисунок 3 Нейросети рекурентного типа

Сети прямого распространения подразделяются на однослойные перцепротроны (сети) и многослойные перцептроны (сети). Название перцептрона для нейросетей придумал американский нейрофизиолог Ф. Розенблатт, придумавший в 1957 году первый нейропроцессорный элемент (НПЭ) , то есть нейросеть . Он же доказал сходимость области решений для перцептрона при его обучении. Сразу после этого началось бурное исследование в этой области и был создан самый первый нейрокомпьютер Mark I.

Многослойные сети отличаются тем, что между входными и выходными данными располагаются несколько так называемых скрытых слоев нейронов, добавляющих больше нелинейных связей в модель.

Рассмотрим устройство простейшей многослойной нейросети. Любая нейронная сеть состоит из входного слоя и выходного слоя . Соответственно подаются независимые и зависимые переменные. Входные данные преобразуются нейронами сети и сравниваются с выходом. Если отклонение больше заданного, то специальным образом изменяются веса связей нейронов между собой и пороговые значения нейронов. Снова происходит процесс вычислений выходного значения и его сравнение с эталоном. Если отклонения меньше заданной погрешности, то процесс обучения прекращается.

Помимо входного и выходного слоев в многослойной сети существуют так называемые скрытые слои . Они представляют собой нейроны, которые не имеют непосредственных входов исходных данных, а связаны только с выходами входного слоя и с входом выходного слоя. Таким образом, скрытые слои дополнительно преобразуют информацию и добавляют нелинейности в модели. Чтобы лучше понять устройство многослойного перцептрона смотрите Рисунок 4

Рисунок 4 Многослойный перцептрон

Если однослойная нейросеть очень хорошо справляется с задачами классификации, так как выходной слой нейронов сравнивает полученные от предыдущего слоя значения с порогом и выдает значение либо ноль, то есть меньше порогового значения, либо единицу - больше порогового (для случая пороговой внутренней функции нейрона), и не способен решать большинство практических задач(что было доказано Минским и Пейпертом), то многослойный перцептрон с сигмоидными решающими функциями способен аппроксимировать любую функциональную зависимость (это было доказано в виде теоремы). Но при этом не известно ни нужное число слоев, ни нужное количество скрытых нейронов, ни необходимое для обучения сети время. Эти проблемы до сих пор стоят перед исследователями и разработчиками нейросетей. Лично мне кажется, что весь энтузиазм в применении нейросетей строится именно на доказательстве этой теоремы. Впоследствии я сам покажу, как нейроны могут моделировать различные классы функций, но я не претендую на полноту доказательства.



Класс рекуррентных нейросетей гораздо обширнее, да и сами сети сложнее по своему устройству.

Поведение рекуррентных сетей описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов, возможно, и от самого себя, и от окружающей среды. Этот тип сетей имеет важное значение, так как с их помощью можно моделировать нелинейные динамические системы.

Среди рекуррентных сетей можно выделить сети Хопфилда и сети Кохонена .

С помощью сетей Хопфилда можно обрабатывать неупорядоченные (рукописные буквы), упорядоченные во времени (временные ряды) или пространстве (графики) образцы. Рекуррентная нейросеть простейшего вида была введена Хопфилдом и построена она из N нейронов, связанных каждый с каждым кроме самого себя, причем все нейроны являются выходными. Нейросеть Хопфилда можно использовать в качестве ассоциативной памяти. Архитектура сети Хопфилда изображена на Рисунок 5

Рисунок 5 Архитектура сети Хопфилда

Сеть Кохонена еще называют "самоорганизующейся картой признаков". Сеть такого типа рассчитана на самостоятельное обучение во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различные образцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже обученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием "близости". Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько различных кластеров сеть сможет распознать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синаптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутрислойные связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход. Выходные элементы соревнуются между собой за право вступить в действи и "получить урок". Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору.




Top