Метод частотного разделения каналов. Частотное разделение каналов. Принципы построения аппаратуры с ВРК

непрерывная случайная величина с плотностью Вид плотности известен, но неизвестны значения параметров Функцией правдоподобия называется функция (здесь - выборка объема п из распределения случайной величины £). Легко видеть, что функции правдоподобия можно придать вероятностный смысл, а именно: рассмотрим случайный вектор компоненты которого независимые в совокупности одинаково распределенные случайные величины с законом Д(ж). Тогда элемент вероятности вектора Е имеет вид т.е. функция правдоподобия связана с вероятностью получения фиксированной выборки в последовательности экспериментов П. Основная идея метода правдоподобия состоит в том, что в качестве оценок параметров А предлагается взять такие значения (3), которые доставляют максимум функции правдоподобия при данной фиксированной выборке, т. е. предлагается считать выборку, полученную в эксперименте, наиболее вероятной. Нахождение оценок параметров pj сводится к решению системы к уравнений (к - число неизвестных параметров): Поскольку функция log L имеет максимум в той же точке, что и функция правдоподобия, то часто систему уравнений правдоподобия (19) записывают в виде В качестве оценок неизвестных параметров Д следует брать решения системы (19) или (20), действительно зависящие от выборки и не являющиеся постоянными. Вслучае, когда £ дискретна с рядом распределения, функцией правдоподобия называют функцию и оценки ищут как решения системы Метод максимального правдоподобия или эквивалентной ей Можно показать, что оценки максимального правдоподобия обладают свойством состоятельности. Следует отмстить, что метод максимального правдоподобия приводит к более сложным вычислениям, нежели метод моментов, но теоретически он более эффективен, так как оценки максимального правдоподобия меньше уклоняются от истинных значений оцениваемых параметров, чем оценки, полученные по методу моментов. Для наиболее часто встречающихся в приложениях распределений оценки параметров, полученные по методу моментов и по методу максимального правдоподобия, в большинстве случаев совпадают. Пршир 1. Отклонение (размера детали от номинала является нормально распределенной случайной личиной. Требуется по выборке определить систематическую ошибку и дисперсию отклонения. М По условию (- нормально распределенная случайная величина с математическим ожиданием (систематическая ошибка) и дисперсией, подлежащими оценке по выборке объема п: Х\>...уХп. В этом случае Функция правдоподобия Система (19) имеет вид Отсюда, исключай решения, не зависящие от Хх, получаем т е. оценки максимального правдоподобия в этом случае совпадают с уже известными нам эмпирическими средним и дисперсией > Пример 2. Оценить по выборке параметр /i экспоненциально распределенной случайной величины. 4 Функция правдоподобия имеет вид Уравнение правдоподобия приводит нас к решению совпадающему с оценкой этого же параметра, полученной по методу моментов, см. (17). ^ Пример 3. Пользуясь методом максимального правдоподобия, оценить вероятность появления герба, если при десяти бросаниях монеты герб появился 8 раз. -4 Пусть подлежащая оценке вероятность равна р. Рассмотрим случайную величину (с рядом распределения. Функция правдоподобия (21) имеет вид Метод максимального Уравнение правдоподобия дает в качестве оценки неизвестной вероятности р частоту появления герба в эксперименте Заканчивая обсуждение методов нахождения оценок, подчеркнем, что, даже имея очень большой объем экспериментальных данных, мы все равно не можем указать точного значения оцениваемого параметра, более того, как уже неоднократно отмечалось, получаемые нами оценки близки к истинным значениям оцениваемых параметров только «в среднем» или «в большинстве случаев». Поэтому важной статистической задачей, которую мы рассмотрим далее, является задача определения точности и достоверности проводимого нами оценивания.

Сущность задачи точечного оценивания параметров

ТОЧЕЧНАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра (к этому вопросу предстоит вернуться при изучении методов интервальной оценки параметров, а предварительно будем считать достаточной выборку, содержащую не менее чем 10 значений). При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования.

Задача точечной оценки параметров в типовом варианте постановки состоит в следующем.

Имеется: выборка наблюдений (x 1 , x 2 , …, x n ) за случайной величиной Х . Объем выборки n фиксирован.

Известен вид закона распределения величины Х , например, в форме плотности распределения f(Θ , x), где Θ – неизвестный (в общем случае векторный) параметр распределения. Параметр является неслучайной величиной.

Требуется найти оценку Θ* параметра Θ закона распределения.

Ограничения: выборка представительная.

Существует несколько методов решения задачи точечной оценки параметров, наиболее употребительными из них являются методы максимального (наибольшего) правдоподобия, моментов и квантилей.

Метод предложен Р. Фишером в 1912 г. Метод основан на исследовании вероятности получения выборки наблюдений (x 1 , x 2, …, x n) . Эта вероятность равна

f(х 1 , Θ) f(х 2 , Θ) … f(х п, Θ) dx 1 dx 2 … dx n .

Совместная плотность вероятности

L(х 1 , х 2 …, х n ; Θ) = f(х 1 , Θ) f(х 2 , Θ) … f(х n , Θ), (2.7)

рассматриваемая как функция параметра Θ , называется функцией правдоподобия .

В качестве оценки Θ* параметра Θ следует взять то значение, которое обращает функцию правдоподобия в максимум. Для нахождения оценки необходимо заменить в функции правдоподобия Т на q и решить уравнение

dL/d Θ* = 0.

Для упрощения вычислений переходят от функции правдоподобия к ее логарифму lnL . Такое преобразование допустимо, так как функция правдоподобия – положительная функция, и она достигает максимума в той же точке, что и ее логарифм. Если параметр распределения векторная величина

Θ* =(q 1 , q 2 , …, q n),

то оценки максимального правдоподобия находят из системы уравнений


d ln L(q 1 , q 2 , …, q n) /d q 1 = 0;

d ln L(q 1 , q 2 , …, q n) /d q 2 = 0;

. . . . . . . . .



d ln L(q 1 , q 2 , …, q n) /d q n = 0.

Для проверки того, что точка оптимума соответствует максимуму функции правдоподобия, необходимо найти вторую производную от этой функции. И если вторая производная в точке оптимума отрицательна, то найденные значения параметров максимизируют функцию.

Итак, нахождение оценок максимального правдоподобия включает следующие этапы: построение функции правдоподобия (ее натурального логарифма); дифференцирование функции по искомым параметрам и составление системы уравнений; решение системы уравнений для нахождения оценок; определение второй производной функции, проверку ее знака в точке оптимума первой производной и формирование выводов.

Решение. Функция правдоподобия для выборки ЭД объемом n

Логарифм функции правдоподобия

Система уравнений для нахождения оценок параметров

Из первого уравнения следует:

или окончательно

Таким образом, среднее арифметическое является оценкой максимального правдоподобия для математического ожидания.

Из второго уравнения можно найти

.

Эмпирическая дисперсия является смещенной. После устранения смещения

Фактические значения оценок параметров: m =27,51, s 2 = 0,91.

Для проверки того, что полученные оценки максимизируют значение функции правдоподобия, возьмем вторые производные

Вторые производные от функции ln(L(m,S )) независимо от значений параметров меньше нуля, следовательно, найденные значения параметров являются оценками максимального правдоподобия.

Метод максимального правдоподобия позволяет получить состоятельные, эффективные (если таковые существуют, то полученное решение даст эффективные оценки), достаточные, асимптотически нормально распределенные оценки. Этот метод может давать как смещенные, так и несмещенные оценки. Смещение удается устранить введением поправок. Метод особенно полезен при малых выборках.

Временное разделение каналов

Принцип временного разделения каналов (ВРК) состоит в том, что групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы (рисунок 6.5). В зарубежных источниках для обозначения принципа временного разделения каналов используется термин Time Division Multiply Access (TDMA).

Рисунок 6.5 – Принцип временного разделения каналов

При передаче используется дискретизация во времени (импульсная модуляция). Сначала передается импульс 1-го канала, затем следующего канала и т.д. до последнего канала за номером N, после чего опять передается импульс первого канала и процесс повторяется периодически. На приеме устанавливается аналогичный коммутатор, который поочередно подключает групповой тракт к соответствующим приемникам. В определенный короткий промежуток времени к групповой линии связи оказывается подключена только одна пара приемник/передатчик.

Это означает, что для нормальной работы многоканальной системы с ВРК необходима синхронная и синфазная работа коммутаторов на приемной и передающей сторонах. Для этого один из каналов занимают под передачу специальных импульсов синхронизации.

На рисунке 6.6, а, б, в приведены графики трех непрерывных аналоговых сигналов S 1 (t ), S 2 (t ) и S 3 (t ) и соответствующие им АИМ-сигналы. Импульсы разных АИМ-сигналов сдвинуты друг относительно друга по времени. При объединении индивидуальных каналов образуется групповой сигнал S г (t ) (рисунок 6.6, г) с частотой следования импульсов в N раз большей частоты следования индивидуальных импульсов. Интервал времени между ближайшими импульсами группового сигнала TK называется канальным интервалом или тайм-слотом (Time Slot ). Промежуток времени между соседними импульсами одного индивидуального сигнала называется циклом передачи ТЦ . От соотношения ТЦ и TK зависит число импульсов, которое можно разместить в цикле, т.е. число временных каналов.

Рисунок 6.6 – Временные диаграммы преобразования сигналов при ВРК

При временном разделении так же как и при ЧРК существуют взаимные помехи, в основном обусловленные двумя причинами. Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характеристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. При временном разделении сигналов это приведет к тому, что импульсы одного канала будут накладываться на импульсы других каналов. Иначе говоря, между каналами возникают взаимные переходные помехи или межсимвольная интерференция . Кроме того, взаимные помехи могут возникать за счет несовершенства синхронизации тактовых импульсов на передающей и приемной сторонах.

В силу данных причин временное разделение каналов на основе АИМ не получило практического применения. Временное разделение широко используют в цифровых системах передачи плезиохронной и синхронной иерархий.

В общем случае для снижения уровня взаимных помех приходится вводить "защитные" временные интервалы, что соответствует некоторому расширению спектра сигналов. Так, в системах передачи полоса эффективно передаваемых частот F =3100 Гц; в соответствии с теоремой Котельникова минимальное значение частоты дискретизации f 0 =1/Т Д =2F =6200 Гц. Однако в реальных системах частоту дискретизации выбирают с некоторым запасом: f 0 =8 кГц. При временном разделении каналов сигнал каждого канала занимает одинаковую полосу частот, определяемую в идеальных условиях согласно теореме Котельникова из соотношения (без учета канала синхронизации) Dt K =T 0 /N= 1/( 2NF)= 1/( 2F ОБЩ), где F ОБЩ =FN , что совпадает с общей полосой частот системы при частотном разделении.

Хотя теоретически временное и частотное разделения позволяют получить одинаковую эффективность использования частотного спектра, тем не менее, системы временного разделения уступают системам частотного разделения по этому показателю. Вместе с тем, системы с временным разделением имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов разных каналов отсутствуют переходные помехи нелинейного происхождения. Кроме того, аппаратура временного разделения значительно проще, чем при частотном разделении, где для каждого индивидуального канала требуются соответствующие полосовые фильтры.

Для разделения сигналов могут использоваться не только такие очевидные признаки, как частота, время и фаза. Общим признаком сигналов является форма. Различающиеся по форме сигналы могут передаваться одновременно и иметь перекрывающиеся частотные спектры, и тем не менее, такие сигналы можно разделить, если выполняется условие их ортогональности. В зарубежных источниках для обозначения данного принципа применяется понятие кодового разделения каналов Code Division Multiply Access (CDMA ). В последние годы успешно развиваются цифровые методы разделения сигналов по их форме, в частности, в качестве переносчиков различных каналов используются дискретные ортогональные последовательности в виде функций Уолша, Радемахера и другие. Широкое развитие методов разделения по форме сигналов привело к созданию систем связи с разделением "почти ортогональных" сигналов, представляющих собой псевдослучайные последовательности, корреляционные функции и энергетические спектры которых близки к аналогичным характеристикам "ограниченного" белого шума. Такие сигналы называют шумоподобными (ШПС).


Методы разделения каналов: пространственное, линейное (частотное, временное), по форме. Условие линейного разделения каналов.

В многоканальных системах тракты всех сигналов должны быть разде­лены каким-либо способом, чтобы сигнал каждого источника мог попасть в соответствующий приемник. Такая процедура носит название разделения каналов или раз­деления канальных сигналов .

Мультиплексирование (англ. MUX) – процедура объединения (уплотнения) канальных сигналов в МСП.

Процедура обратная мультиплексированию связана с разделением каналов – демультиплексирование (англ. DMX или DeMUX).

MUX + DMX = MULDEX - «мульдекс»

Классификация методов разделения каналов

Все используемые методы разделения каналов можно классифицировать на линейные и нелинейные (см. рисунок).

Рисунок - Классификация методов разделения каналов

В МСП выделяют следующие методы разделения каналов:

- про­странственное (схемное);

- линейные: частотное – ЧРК, временное – ВРК, разделение каналов по форме – РКФ;

- нелинейные: приводимые к линейным и мажоритарные.

Пространственное разделение.

Это простейший вид разделения, при котором каждому каналу отводится индивидуальная линия связи:



Рисунок - МСП с пространственным разделением каналов

ИИ – источник информации

ПИ – приемник информации

ЛС - линия связи

Другие формы разделения каналов предполагают передачу сообщений по одной линии связи. В связи с этим многоканальную передачу называют также уплотнением каналов .

Обобщенная структурная схема МСП с линейным разделением сигналов каналов

M i – модулятор i-го канала

П i – перемножитель i-го канала

И i – интегратор i-го канала

Д i – модулятор i-го канала

СС – синхросигнал передающей стороны

ПС – приемник синхросигнала на приёмной стороне

ЛС – линия связи

На передающей стороне первичные сигналы C 1 (t), C 2 (t),...,C N (t) поступают на вход M 1 , M 2 ,..., M N , на другой вход которых от генераторов переносчиков поступают линейно независимые или ортогональные переносчики ψ 1 (t), ψ 2 (t),...,ψ N (t) , переносящие первичные сигналы в канальные сигналы S 1 (t), S 2 (t),.., S N (t) . Затем канальные сигналы суммируются, и формируется групповой много­канальный сигнал S гр (t) .

На приемной стороне групповой сигнал S" гр (t), изменившийся под воз­действием различного вида помех и искажений n(t), поступает на перемножители П 1 , П 2 ,..., П N , над вход которых от генерато­ров переносчиков поступают переносчики ψ 1 (t), ψ 2 (t),..., ψ N (t) . Результаты перемножения поступают на интеграторы И 1 , И 2 ,..., И N , на выходе которых получаются канальные сигналы c учетом помех и искажений, S" 1 (t), S" 2 (t),..., S" N (t). Далее канальные сигналы поступают на Д 1 ,Д 2 ,...,Д n , которые преобразуют канальные сигналы в первичные c учетом помех и искажений С" 1 (t), С" 2 (t),..., С" N (t).

Функционирование системы передачи возможно при синхронном (а иногда и синфазном) воздействии переносчиков на устройства преобразования М на передаче и умножения П на приеме. Для этого на передающей стороне в групповой сигнал вводится синхросигнал (СС), а на приемной стороне он выделяется из группового сигнала приемником синхросигнала (ПС).

Многоканальные системы телекоммуникаций с частотным разделением каналов. Методы формирования канальных сигналов.

Телекоммуникационной системой с частотным разделением каналов называют систему, в линейном тракте которой для передачи канальных сигналов отводятся неперекрывающиеся полосы частот .

Рассмотрим принцип частотного разделения каналов, используя схему N-канальной системы и планы частот в ее характерных точках.

Рисунок - Структурная схема N-канальной МСП с ЧРК

В качестве переносчиков в МСП с ЧРК используются гармонические колебания с различными частотами f 1 , f 2 , …f n (колебания несущих):

ψ i (t ) = S i

Канальные сигналы формируются в результате модуляции одного из параметров переносчиков первичными сигналами C i (t) . Применяются амплитудная , частотная и фазовая модуляции. Частоты несущих колебаний выбираются так, чтобы спектры канальных сигналов S 1 (t) и S 2 (t) не перекрывались . Групповой сигнал S гр (t) , поступивший в линию связи, представляет собой сумму канальных сигналов

S гр (t ) = S 1 (t ) + S 2 (t ) + ...+ S n (t )

При передаче по линейному тракту сигнал S гр (t ) претерпевает линейные и нелинейные искажения и на него накладывается помеха n(t), т.о., в приемную часть поступает искаженный сигнал .

В приемной части производится разделение канальных сигналов с помощью канальных полосовых разделительных фильтров КПФ-1, КПФ-2, КПФ-n, т.е. из группового сигнала выделяют канальные сигналы .

Первичные сигналы восстанавливаются демодуляторами Д 1 , Д 2 , … Д n с использованием частот, равными частотам несущих на передаче.

Планы частот в ее характерных точках (см. схему)

В ЧРК доминирующее положение занимает вид модуляции АМ-ОБП, поскольку является наиболее компромиссным.

Рисунок – Варианты полосой фильтрации при АМ-ОБП

Формирование сигнала АМ-ОБП в технике связи осуществляется двумя способами:

1) Фильтровой способ

2) Фазоразностный способ

Фильтровой способ чаще используется в технике МСП, в то время как фазоразностный как правило в малоканальных системах передачи.

Фильтровой способ

На передающей стороне

Пример:

Спектр сигнала 0,3 – 3,4 кГц. Определить результат АМ-ОБП, если в качестве несущей используется гармоническое колебание с частотой 100 кГц.

На приемной стороне

Примечание: Нестабильность по частоте (рассогласование) между генераторным оборудованием передающей и приемной сторон для первичной группы сигнала (12x КТЧ) должно составлять не более 1,5 Гц.

Фазоразностный способ

Принцип работы: схема состоит из двух плеч, объединяемых на входе и выходе с помощью развязывающих устройств (РУ). На модулятор (M 2) одного плеча исходный сигнал и несущая частота подаются сдвинутыми по фазе на π/2 относительно сигнала и несущей частоты, подаваемых на модулятор (M 1) другого плеча. В результате на выходе схемы будет колебание только одной боковой полосы. Фазовые контуры (ФК 1 , ФК ФК 2) обеспечивают сдвиг по фазе на π/2.

Условием разделимости канальных сигналов в МСП с ЧРК является их ортогональность , т.е.

где энергетический спектр i-го канального сигнала;

границы полосы частот, отводимой в линейном тракте для i-го канального сигнала.

Ширина частотного спектра группового сигнала Df S определяется числом каналов в системе передачи (N); шириной спектра канальных сигналов Df i , а также частотными характеристиками затухания канальных полосовых разделительных фильтров КПФ-1, КПФ-2, КПФ-n.

Разделительные фильтры обеспечивают малое затухание в полосе пропускания (апр ) и необходимую величину затухания в диапазоне эффективного задерживания (апод ). Между этими полосами находятся полосы расфильтровки разделительных фильтров. Следовательно, канальные сигналы должны быть разделены защитными промежутками (D), величины которых должны быть не меньше полос расфильтровки фильтров.

Следовательно, ширина группового сигнала может быть определена по формуле

Df гр = N × (Dfi + Df з )

так как затухание разделительных фильтров в полосе задерживания конечно (апод ), то полное разделение канальных сигналов невозможно. Вследствие этого появляются межканальные переходные помехи .

В современных МСП телефонной связи каждому КТЧ выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых звуковых сигналов ограничивается полосой от 300 до 3400 Гц, т.е. ширина спектра составляет 3,1 кГц. Между полосами частот соседних каналов предусмотрены интервалы шириной по 0,9 кГц, предназначенные для снижения уровня взаимных помех при расфильтровке сигналов. Это означает, что в многоканальных системах связи с частотным разделением сигналов эффективно используется лишь около 80% полосы пропускания линии связи. Кроме того, необходимо обеспечить высокую степень линейности всего тракта группового сигнала.

Рисунок – Структурная схема аппаратуры формирования

Тема 5. Методы разделения каналов

5.1 Методы разделения каналов: пространственное, линейное (частотное, временное), по форме. Условие линейного разделения каналов. Сигналы переносчики и модуляция их параметров.

5.2 Многоканальные системы телекоммуникаций с частотным разделением каналов. Методы формирования канальных сигналов.

5.3 Многоканальные системы телекоммуникаций с временным разделением каналов. Сравнительный анализ аналого-импульсных методов модуляции.

Принцип временного разделения каналов (ВРК) состоит в том, что групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы

При передаче используется дискретизация во времени (импульсная модуляция). Сначала передается импульс 1-го канала, затем следующего канала и т.д. до последнего канала за номером N, после чего опять передается импульс 1-го канала и процесс повторяется периодически. На приеме устанавливается аналогичный коммутатор, который поочередно подключает групповой тракт к соответствующим приемникам. В определенный короткий промежуток времени к групповой линии связи оказывается подключена только одна пара приемник/передатчик.

Это означает, что для нормальной работы многоканальной системы с ВРК необходима синхронная и синфазная работа коммутаторов на приемной и передающей сторонах. Для этого один из каналов занимают под передачу специальных импульсов синхронизации.

На рис. приведены временные диаграммы, поясняющие принцип ВРК. На рис. а-в приведены графики трех непрерывных аналоговых сигналов u 1 (t), u 2 (t) и u 3 (t) и соответствующие им АИМ-сигналы. Импульсы разных АИМ-сигналов сдвинуты друг относительно друга по времени. При объединении индивидуальных каналов в канале (линии) связи образуется групповой сигнал с частотой следования импульсов в N раз большей частоты следования индивидуальных импульсов.

Интервал времени между ближайшими импульсами группового сигнала T K называется канальным интервалом . Промежуток времени между соседними импульсами одного индивидуального сигнала называется циклом передачи Т Ц. От соотношения Т Ц и T K зависит число импульсов, которое можно разместить в цикле, т.е. число временных каналов.

При временном разделении существуют взаимные помехи, в основном обусловленные двумя причинами.

Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характеристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. При временном разделении сигналов это приведет к тому, что импульсы одного канала будут накладываться на импульсы других каналов. Между каналами возникают взаимные переходные помехи или межсимвольная интерференция .

В общем случае для снижения уровня взаимных помех приходится вводить "защитные" временные интервалы, что соответствует некоторому расширению спектра сигналов. Системы с временным разделением имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов разных каналов отсутствуют переходные помехи нелинейного происхождения.




Top