Совместная плотность распределения. Смотреть страницы где упоминается термин совместная плотность. Совместная плотность распределения вероятности двух случайных величин

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.

Матрицей размера m ? n называется прямоугольная таблица чисел, содержащих m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными буквами латинского алфавита (A,B,C…) , а для обозначения элементов матрицы используются строчные буквы с двойной индексацией:

Где i - номер строки, j - номер столбца.

Например, матрица

Или в сокращённой записи, A=(); i =1,2…, m ; j=1,2, …, n.

Используются другие обозначения матрицы например: , ? ?.

Две матрицы А и В одного размера называются равными , если они совпадают поэлементно,т.е. = , где i= 1, 2, 3, …, m , а j = 1, 2, 3, …, n.

Рассмотрим основные типы матриц:

1. Пусть m = n, тогда матрица А - квадратная матрица, которая имеет порядок n:

Элементы образуют главную диагональ, элементы образуют побочную диагональ.

Квадратная матрица называется диагональной , если все ее элементы, кроме, возможно, элементов главной диагонали, равны нулю:

Диагональная, а значит квадратная, матрица называется единичной , если все элементы главной диагонали равны 1:

Заметим, что единичная матрица является матричным аналогом единицы во множестве действительных чисел, а также подчеркнем, что единичная матрица определяется только для квадратных матриц.

Приведем примеры единичных матриц:

Квадратные матрицы


называются верхней и нижней треугольными соответственно.

  • 2. Пусть m = 1, тогда матрица А - матрица-строка, которая имеет вид:
  • 3. Пусть n =1, тогда матрица А - матрица-столбец, которая имеет вид:

4. Нулевой матрицей называется матрица порядка mn, все элементы которой равны 0:

Заметим, что нулевая матрица может быть квадратной, матрицей-строкой или матрицей-столбцом. Нулевая матрица есть матричный аналог нуля во множестве действительных чисел.

5. Матрица называется транспонированной к матрице и обозначается, если ее столбцы являются соответствующими по номеру строками матрицы.

Пример . Пусть

Заметим, если матрица А имеет порядок mn , то транспонированная матрица имеет порядок nm .

6. Матрица А называется симметричной, если А=, и кососимметричной, если А = .

Пример . Исследовать на симметричность матрицы А и В .

следовательно, матрица А - симметричная, так как А = .

следовательно, матрица В - кососимметричная, так как В = - .

Заметим, что симметричная и кососимметричная матрицы всегда квадратные. На главной диагонали симметричной матрицы могут стоять любые элементы, а симметрично относительно главной диагонали должны стоять одинаковые элементы, то есть На главной диагонали кососимметричной матрицы всегда стоят нули, а симметрично относительно главной диагонали

матрица квадратный лаплас аннулирование




Top