Дмв волны. Как сделать дециметровую антенну своими руками? Свойства различных типов антенн

Распространение сантиметровых, дециметровых и метровых радиоволн

Радиоволны длиной короче 10 м называются ультракороткими. Эти волны охватывают очень широкий диапазон частот. Ширина диапазона частот только сантиметровых волна составляет 27000 МГц, что в тысячу раз превышает ширину диапазона частот декаметровых волн (см. табл. 1.1). Поэтому на УКВ возможна передача намного больших потоков информации, чем на более длинных волнах. Только на УКВ возможно телевидение и высококачественное радиовещание с использованием частотной модуляции (ЧМ).

Земная волна на УКВ обеспечивает связь практически только в пределах прямой видимости (рис.1.7). За ее пределами в естественных условиях УКВ могут устойчиво распространяться только за счет рассеяния в ионосфере и в тропосфере. Однако для обеспечения связи за счет рассеяния требуются очень мощные радиопередатчики с сложные антенные сооружения.

Для увеличения расстояния прямой видимости антенны радиотелевизионных передающих станций и станций звукового ЧМ вещания устанавливают на высоких башнях. Для передачи радиосигналов на большие расстояния в диапазоне УКВ используют наземные радиорелейные линии и ретрансляторы, расположенные на искусственных спутниках Земли.

Предельное расстояние прямой видимости между антеннами получается тогда, когда луч, соединяющий антенны, касается земной поверхности. Эмпирически установлено, что в километрах определяется выражением

где и – соответственно высоты передающей и приемной антенн, м. Напряженность поля при связи в пределах прямой видимости можно определить по формуле акад. Б.А. Введенского:

,

где – действующее (эффективное) значение напряженности поля, мВ/м; - мощность радиопередатчика, кВт; – расстояние между приемной и передающей антеннами, км ( ; – длина волны электромагнитных колебаний, м; – коэффициент направленного действия антенны.

Рис. 1.7. Распространение радиоволн в пределах прямой видимости

Рассмотрим влияние тропосферы на распространение УКВ. Коэффициент преломления воздуха n очень мало отличается от единицы. У поверхности Земли в среднем = 1,003. На практике преломляющие свойства воздуха оценивают индексом преломления

пользоваться которым удобнее, чем . Индекс преломления зависит от влажности, давления и температуры воздуха: с увеличением давления и влажности увеличивается, а при повышении температуры = уменьшается. Параметры воздуха зависят от высоты и от метеорологических условий. Зависимость от высоты оценивают градиентом индекса преломления

Зависимость коэффициента преломления от высоты приводит к искривлению траектории радиоволн в тропосфере, которое называется тропосферной рефракцией. Такое искривление характеризуют радиусом кривизны луча

Радиус привязки положителен, так как . При этом фазовая скорость волны с высотой возрастает, верхняя граница фронта распространяется быстрее нижней и луч искривляется в сторону поверхности Земли. Такая рефракция называется положительной . Тропосферная рефракция изменяет расстояние прямой видимости, оно несколько увеличивается. С учетом рефракции значение постоянного коэффициента в формуле (1.2) должно быть увеличено до значения, равного 4,52.

Если при положительной рефракции радиус кривизны траектории ( - радиус Земли), то возникает критическая рефракция (рис. 1.8, а). При наступает сверхрефракция (рис.1.8,б). В этих случаях электромагнитная волна может распространяться далеко за пределы прямой видимости. Сверхрефракция возникает при выполнении условия 1/м. При этом индекс преломления должен очень быстро уменьшаться с высотой, что бывает в том случае, когда температура воздуха с высотой не падает, как обычно, а возрастает. Такие условия называют температурной инверсией. Область тропосферы, в которой возникает свехрефракция, называют тропосферным волноводом. Наиболее часто тропосферные волноводы возникают в приморских районах, когда существует большая разница температур воздуха над сушей и над морем. В этих случаях ветер может переместить теплый воздух, который расположится над холодным, и возникнет температурная инверсия. Поскольку тропосферные волноводы возникают нерегулярно, их нельзя использовать для построения радиолиний. Возможность возникновения тропосферных волноводов необходимо учитывать при распределении частот на радиолиниях, чтобы избежать взаимных помех.


Рис. 1.8. Траектории распространения радиоволн в тропосфере:

а - при критической рефракции; б - при сверхрефракции

Другим механизмом сверхдальнего распространения УКВ является тропосферное рассеяние. Тропосферные неоднородности, вызывающие рассеяние, представляют собой области, в которых давление, влажность и температура воздуха отличаются от средних значений, наблюдаемых в окружающей среде. Примером неоднородностей являются облака. Неоднородности возникают и при отсутствии облачности за счет завихрений, образующихся при перемещении воздушных масс. Эти вихри присутствуют при любых метеорологических условиях. Наиболее интенсивно неоднородности образуются на высотах 1…2 км. Каждая неоднородность отличается своей диэлектрической проницаемостью от окружающей среды. Это отличие невелико (не более 20%), поэтому радиоволна, падающая на неоднородность, в основном, проходит сквозь нее. Однако часть энергии радиоволны при этом рассеивается в разные стороны. Зеркальное отражение неоднородность не вызывает, так как не имеет четкой границы.

Поле в точке приема образуется за счет сложения (интерференции) множества волн, рассеянных отдельными неоднородностями в некотором объеме тропосферы. Сдвиги фаз между интерферирующими волнами постоянно хаотически изменяются. В результате значение суммарной напряженности изменяется по случайному закону. Эти флуктуации поля называются интерферирующими замираниями. Сдвиги фаз между интерферирующими волнами зависят от частоты. При широком спектре частот сигнала сдвиги фаз для отдельных составляющих спектра оказываются различными: одни составляющие в данный момент могут иметь максимальный уровень, другие - минимальный. Если отдельные участки спектра замирают неодновременно, замирания называют селективными. Селективные замирания не позволяют передавать по тропосферным линиям широкополосные сигналы, например, телевизионные.

Замирания сигнала при тропосферном рассеянии можно разделить на быстрые и медленные Интерференционные замирания являются быстрыми. Период замираний составляем секунды и их десятые доли. Чем короче длина волны, тем сильнее изменяется сдвиг фаз между интерферирующими волнами при движении рассеивающих неоднородностей, тем меньше период замираний. Медленные замирания с периодом в несколько часов связаны с изменениями метеорологических условий, от которых зависят параметры неоднородностей и условия рефракции радиоволн.



Для повышения устойчивости связи на линиях тропосферного рассеяния применяют разнесенный прием. В этом случае формируют несколько сигналов, несущих одно и то же сообщение, но замирающих независимо друг от друга. Используют разнесение по частоте и пространственное разнесение. При этом увеличивают коэффициент направленного действия и площадь антенн. На тропосферных радиолиниях обычно применяют зеркальные антенны, имеющие площадь 400…900 .

Большое ослабление поля при связи за счет тропосферного рассеяния заставляет принять радиопередатчики большой мощности – до нескольких десятков киловатт (на УКВ радиорелейных линиях прямой видимости мощность радиопередатчиков обычно не превышает 10 ВТ). Расстояние между соседними станциями тропосферного рассеяния составляет 300…600 км. Применение радиолиний тропосферного рассеяния целесообразно в малонаселенных районах, где не имеет смысла часто располагать ретрансляционные станции или прокладывать кабель.

Сверхдальнее распространение метровых волн возможно и за счет влияния ионосферы. Это объясняется возникновением на высоте регулярного слоя E спорадического слоя E s с повышенной электронной концентрацией, обусловленного сгоранием метеоров на высотах 80... 120 км. Протяженные области с повышенной электронной концентрацией, способные рассеивать метровые волны, существуют в течение долей секунды, а иногда и в течение минуты. Регулярную связь путем отражений от E s слоя организовать невозможно.

Регулярное сверхдальнее распространение метровых волн происходит за счет рассеяния на неоднородностях электронной кон­центрации, существующих в слое D и в нижних областях слоя Е . Механизм этого распространения подобен тому, который наблюдается при рассеянии в тропосфере. Большая высота области, в которой происходит ионосферное рассеяние, обеспечивает связь одним скачком на расстояниях до 2000 км. Регулярную связь путем отражений от E s слоя организовать невозможно.

Сверхдальнее распространение метровых волн происходит также за счет отражения от ионизированных метеорных следов. В атмосферу Земли ежегодно с космическими скоростями вторгаются десятки миллиардов метеоров, образующих ионизированные столбы воздуха - метеорные следы. Некоторые из этих следов вызывают зеркальное отражение метровых волн, другие обеспечивают их интенсивное рассеяние. Вследствие движения ионизированного газа метеорные следы обычно расплываются в течение нескольких секунд. В среднем сильное отражение радиоволн от метеорного следа длится 0,2...0,4 с и повторяется несколько раз в минуту. Из-за вращения Земли вокруг своей оси условия попадания метеоров в атмосферу зависят от времени суток. Максимальное их число наблюдается утром, минимальное - вечером.

Метеорная связь прерывиста, так как уровень сигнала, достаточный для передачи информации, существует только во время появления на трассе метеорного следа. Для передачи информации по метеорной линии связи информацию на передающем конце накапливают в промежутках между метеорными вспышками, а во время вспышки быстро передают по радиолинии. В среднем передается несколько килобит в секунду при мощности передатчика около 1 кВт. Дальность метеорной связи составляет около 2000 км. Организация связи за счет ионосферного рассеяния и отражения от метеоров целесообразна в полярных районах, где ионосферные бури часто нарушают распространение гектометровых волн, а прокладка проводных линий и организация тропосферной связи из-за малой плотности населения экономически нецелесообразны.

ДМВ-терапия - лечебная методика, основанная на применении электромагнитных волн дециметрового диапазона. Микротоки глубоко проникают в ткани и органы, влияя на протекающие в них физиологические процессы.

Как действует

В организме поглощенная электромагнитная энергия преобразуется в тепловую. Выделение тепла в облучаемых областях достигает максимума на 10-15 минуте терапии, затем прекращается. Наибольшему нагреванию подвергаются ткани и органы, богатые водой (кровь, лимфа, легкие, мышцы). Их температура может подниматься на 3-4 градуса. В меньшей степени прогреваются кожа и жировые отложения.

Под влиянием тепла в тканях расширяются мелкие сосуды, усиливаются обменные процессы. Снижение сосудистого сопротивления приводит к улучшению кровообращения и благотворно отражается на работе сердечной мышцы. У пациентов повышается сократительная активность миокарда, усиливается кровоснабжение всех, в том числе ишемизированных, участков сердца. Немного снижается артериальное давление.

Прогревание мышц способствует устранению спастических состояний. Происходит высвобождение зажатых спазмированными волокнами сосудов и нервов. Такой эффект проявляется ослаблением болевых синдромов и восстановлением нормальной работы органов.

Вследствие расширения бронхов более глубоким становится дыхание. Облегчается состояние больных с бронхиальной астмой, купируется астматический статус.

Установлено, что под влиянием дециметровых волн также усиливаются функции эндокринных желез. В первую очередь это касается надпочечников и щитовидной железы. В надпочечниках повышается образование глюкокортикоидов, блокирующих развитие в организме воспалительных процессов. Деятельность щитовидной железы может усиливаться или подавляться в зависимости от исходного состояния органа.

В целом прохождение курса ДМВ-терапии позволяет пациентам избавиться от болевых ощущений, улучшить общее самочувствие и восстановить нарушенную вследствие заболевания функциональную активность.

Показания и противопоказания


ДМВ-терапия поможет уменьшить боль в спине или суставах.

Основаниями для назначения процедур могут служить:

  • корешковые синдромы;
  • артрозы;
  • артриты (в том числе ревматоидный);
  • бронхиальная астма (вне стадии обострения);
  • хроническая или острая пневмония;
  • состояния после инфаркта миокарда (к лечению приступают не ранее, чем через 30 дней после приступа);
  • стенокардия напряжения 1 степени;
  • порок митрального клапана сердца;
  • атеросклероз;
  • язвенная болезнь пищеварительного тракта;
  • воспалительные заболевания ЖКТ (гастрит, дуоденит, колит и др.);
  • почечные или печеночные колики;
  • спазмы мочеточников;
  • почечная или печеночная недостаточность;
  • дыхательная недостаточность;
  • болезнь Рейно;
  • искривления позвоночника;
  • климактерические расстройства;
  • вегетососудистая дистония;
  • фурункулез;
  • паркинсонизм.

Противопоказано ДМВ-лечение при следующих состояниях:

  • нарушения свертываемости крови;
  • онкологические заболевания;
  • кровотечения;
  • открытая форма туберкулеза;
  • наличие кардиостимулятора;
  • эпилепсия;
  • стеноз желудочного клапана (при язвенной болезни);
  • тиретоксикоз;
  • стенокардия покоя;
  • артериальная гипертония выше 2 степени;
  • ишемическая болезнь 2-3 степени.

При беременности запрещены воздействия на область живота.

Порядок проведения процедур

Процедура проводится в положении лежа или сидя. Перед ее началом больного просят снять с себя все металлические украшения. Оголяют только ту область, которая подлежит электромагнитному облучению.

ДМВ-излучатели прижимают непосредственно к коже (контактная методика) или располагают на расстоянии 3-4 см от тела (дистантная методика). При полостной методике излучатель стерилизуют и вводят в прямую кишку или влагалище.

Процедуру дозируют по выходной мощности микротоков и ощущениям больного. При контактной и полостной методике мощность не должна превышать 10 Вт, при дистантной - 20 Вт. Пациент должен чувствовать только умеренное тепло. При возникновении неприятных ощущений потоки энергии снижают.

Процедура длится 8-15 минут. После ее завершения больного просят отдохнуть еще 20 минут. Сеансы проводятся ежедневно или через день. На курс назначают 5-12 процедур. Повторную терапию рекомендуют не ранее, чем через 2 месяца.

Облучение дециметровыми волнами хорошо сочетается с , и . Совмещение методик позволяет повысить эффективность лечения и продлить период ремиссии заболевания.

Когда-то хорошая телевизионная антенна была дефицитом, покупные качеством и долговечностью, мягко говоря, не отличались. Сделать антенну для «ящика» или «гроба» (старого лампового телевизора) своими руками считалось показателем мастерства. Интерес к самодельным антеннам не угасает и в наши дни. Ничего странного тут нет: условия приема ТВ кардинально изменились, а производители, полагая, что в теории антенн ничего существенно нового нет и не будет, чаще всего приспосабливают к давно известным конструкциям электронику, не задумываясь над тем, что главное для любой антенны – ее взаимодействие с сигналом в эфире.

Что изменилось в эфире?

Во-первых, почти весь объем ТВ-вещания в настоящее время осуществляется в диапазоне ДМВ . Прежде всего из экономических соображений, в нем намного упрощается и удешевляется антенно-фидерное хозяйство передающих станций, и, что еще более важно – потребность в его регулярном обслуживании высококвалифицированными специалистами, занятыми тяжелым, вредным и опасным трудом.

Второе – ТВ-передатчики теперь покрывают своим сигналом практически все более-менее населенные места , а развитая сеть связи обеспечивает подачу программ в самые глухие углы. Там вещание в обитаемой зоне обеспечивают маломощные необслуживаемые передатчики.

Третье, изменились условия распространения радиоволн в городах . На ДМВ промышленные помехи просачиваются слабо, но железобетонные многоэтажки для них – хорошие зеркала, многократно переотражающие сигнал вплоть до его полного затухания в зоне, казалось бы, уверенного приема.

Четвертое – ТВ-программ в эфире сейчас очень много, десятки и сотни . Насколько это множество разнообразно и содержательно – другой вопрос, но рассчитывать на прием 1-2-3 каналов ныне бессмысленно.

Наконец, получило развитие цифровое вещание . СигналDVB T2 – штука особенная. Там, где он еще хоть чуть-чуть, на 1,5-2 дБ, превышает шумы, прием отличный, как ни в чем ни бывало. А чуть дальше или в стороне – нет, как отрезало. К помехам «цифра» почти не чувствительна, но при рассогласовании с кабелем или фазовых искажениях в любом месте тракта, от камеры до тюнера, картинка может рассыпаться в квадратики и при сильном чистом сигнале.

Требования к антеннам

В соответствии с новыми условиями приема, изменились и основные требования к ТВ-антеннам:

  • Такие ее параметры, как коэффициент направленного действия (КНД) и коэффициент защитного действия (КЗД) ныне определяющего значения не имеют: современный эфир очень грязный, и по малюсенькому боковому лепестку диаграммы направленности (ДН), хоть какая-то помеха, да пролезет, и бороться с ней нужно уже средствами электроники.
  • Взамен особое значение приобретает собственный коэффициент усиления антенны (КУ). Антенна, хорошо «облавливающая» эфир, а не смотрящая на него сквозь маленькую дырочку, даст запас мощности принятого сигнала, позволяющий электронике очистить его от шумов и помех.
  • Современная телевизионная антенна, за редчайшими исключениями, должна быть диапазонной, т.е. ее электрические параметры должны сохраняться естественным образом, на уровне теории, а не втискиваться в приемлемые рамки путем инженерных ухищрений.
  • ТВ-антенна должна согласовываться в кабелем во всем своем рабочем диапазоне частот без дополнительных устройств согласования и симметрирования (УСС).
  • Амплитудно-частотная характеристика антенны (АЧХ) должна быть возможно более гладкой. Резким выбросам и провалам непременно сопутствуют фазовые искажения.

Последние 3 пункта обусловлены требованиями приема цифровых сигналов. Настроенные, т.е. работающие теоретически на одной частоте, антенны можно «растянуть» по частоте, напр. антенны типа «волновой канал» на ДМВ с приемлемым отношением сигнал/шум захватывают 21-40 каналы. Но их согласование с фидером требует применения УСС, которые либо сильно поглощают сигнал (ферритовые), либо портят фазовую характеристику на краях диапазона (настроенные). И «цифру» такая антенна, отлично работающая на «аналоге», будет принимать плохо.

В связи с этим, из всего великого антенного многообразия, в данной статье будут рассмотрены антенны для телевизора, доступные для самостоятельного изготовления, следующих типов:

  1. Частотнонезависимая (всеволновая) – не отличается высокими параметрами, но очень проста и дешева, ее можно сделать буквально за час. За городом, где эфир почище, она вполне сможет принимать цифру или достаточно мощный аналог не небольшом удалении от телецентра.
  2. Диапазонная логопериодическая. Ее, образно выражаясь, можно уподобить рыболовецкому тралу, уже при облавливании сортирующему добычу. Она тоже довольно проста, идеально согласуется с фидером во всем своем диапазоне, абсолютно не меняет в нем параметры. Техпараметры – средние, поэтому более подойдет для дачи, а в городе в качестве комнатной.
  3. Несколько модификаций зигзагообразной антенны , или Z-антенны. В диапазоне МВ это весьма солидная конструкция, требующая немалого умения и времени. Но на ДМВ она вследствие принципа геометрического подобия (см. далее), настолько упрощается и съеживается, что вполне может быть использована как высокоэффективная комнатная антенна при почти любых условиях приема.

Примечание: Z-антенна, если использовать предыдущую аналогию – частый бредень, сгребающий все, что есть в воде. По мере замусоривания эфира она было вышла из употребления, но с развитием цифрового ТВ вновь оказалась на коне – во всем своем диапазоне она так же отлично согласована и держит параметры, как «логопедка».

Точное согласование и симметрирование почти всех описанных далее антенн достигается благодаря прокладке кабеля через т.наз. точку нулевого потенциала. К ней предъявляются особые требования, о которых подробнее будет сказано далее.

О вибраторных антеннах

В полосе частот одного аналогового канала можно передать до нескольких десятков цифровых. И, как уже сказано, цифра работает при ничтожном отношении сигнал/шум. Поэтому в очень удаленных от телецентра, куда сигнал одного-двух каналов еле добивает, местах, для приема цифрового ТВ может найти применение и старый добрый волновой канал (АВК, антенна волновой канал), из класса вибраторных антенн, так что в конце уделим несколько строк и ей.

О спутниковом приеме

Делать самому спутниковую антенну нет никакого смысла. Головку и тюнер все равно нужно покупать, а за внешней простотой зеркала кроется параболическая поверхность косого падения, которую с нужной точностью может выполнить далеко не всякое промышленное предприятие. Единственное, что под силу самодельщикам — настроить спутниковую антенну, об этом .

О параметрах антенн

Точное определение упомянутых выше параметров антенн требует знания высшей математики и электродинамики, но понимать их значение, приступая к изготовлению антенны, нужно. Поэтому дадим несколько грубые, но все же поясняющие смысл определения (см. рис. справа):

  • КУ – отношение принятой антенной на основной (главный) лепесток ее ДН мощности сигнала, к его же мощности, принятой в том же месте и на той же частоте ненаправленной, с круговой, ДН, антенной.
  • КНД – отношение телесного угла всей сферы к телесному углу раскрыва главного лепестка ДН, в предположении, что его сечение – круг. Если главный лепесток имеет разные размеры в разных плоскостях, сравнивать нужно площадь сферы и площадь сечения ею главного лепестка.
  • КЗД – отношение принятой на главный лепесток мощности сигнала к сумме мощностей помех на той же частоте, принятой всеми побочными (задним и боковыми) лепестками.

Примечания:

  1. Если антенна диапазонная, мощности считаются на частоте полезного сигнала.
  2. Поскольку совершенно ненаправленных антенн не бывает, за такую принимают полуволновой линейный диполь, ориентированный по направлению электрического вектора поля (по его поляризации). Его КУ считается равным 1. ТВ программы передаются с горизонтальной поляризацией.

Следует помнить, что КУ и КНД не обязательно взаимосвязаны. Есть антенны (напр. «шпионская» – однопроводная антенна бегущей волны, АБВ) с высокой направленностью, но единичным или меньшим усилением. Такие смотрят вдаль как бы сквозь диоптрический прицел. С другой стороны, существуют антенны, напр. Z-антенна, у которых невысокая направленность сочетается со значительным усилением.

О тонкостях изготовления

Все элементы антенн, по которым протекают токи полезного сигнала (конкретно – в описаниях отдельных антенн), должны соединяться между собой пайкой или сваркой. В любом сборном узле на открытом воздухе электрический контакт скоро нарушится, и параметры антенны резко ухудшатся, вплоть до полной ее негодности.

Особенно это касается точек нулевого потенциала. В них, как говорят специалисты, наблюдается узел напряжения и пучность тока, т.е. его наибольшее значение. Ток при нулевом напряжении? Ничего удивительного. Электродинамика ушла от закона Ома на постоянном токе так же далеко, как Т-50 от воздушного змея.

Места с точками нулевого потенциала для цифровых антенн лучше всего выполнять гнутыми из цельного металла. Небольшой «ползучий» ток на сварке при приеме аналога на картинке, скорее всего, не скажется. Но, если принимается цифра на границе шумов, то тюнер из-за «ползучки» может не увидеть сигнала. Который при чистом токе в пучности дал бы стабильный прием.

О пайке кабеля

Оплетка (да и центральная жила нередко) современных коаксиальных кабелей делаются не из меди, а из стойких к коррозии и недорогих сплавов. Паяются они плохо и, если долго греть, можно пережечь кабель. Поэтому паять кабели нужно 40-Вт паяльником, легкоплавким припоем и с флюс-пастой вместо канифоли или спиртоканифоли. Пасты жалеть не нужно, припой сразу же растекается по жилкам оплетки только под слоем кипящего флюса.

Виды антенн

Всеволновая

Всеволновая (точнее, частотнонезависимая, ЧНА) антенна показана на рис. Она – две треугольных металлических пластинки, две деревянных рейки, да много медных эмалированных проволок. Диаметр проволоки значения не имеет, а расстояние между концами проволок на рейках – 20-30 мм. Зазор между пластинами, к которым припаяны другие концы проволок – 10 мм.

Примечание: вместо двух металлических пластин лучше взять квадрат из одностороннего фольгированного стеклотекстолита в вырезанными по меди треугольниками.

Ширина антенны равна ее высоте, угол раскрыва полотен – 90 градусов. Схема прокладки кабеля показана там же на рис. Точка, отмеченная желтым – точка квази-нулевого потенциала. Припаивать в ней оплетку кабеля к полотну не нужно, достаточно туго подвязать, для согласования хватит емкости между оплеткой и полотном.

ЧНА, растянутая в окне шириной 1,5 м, принимает все метровые и ДЦМ каналы почти со всех направлений, кроме провала около 15 градусов в плоскости полотна. В этом ее преимущество в местах, где возможен прием сигналов от разных телецентров, не нужно вращать. Недостатки – единичный КУ и нулевой КЗД, поэтому в зоне действия помех и вне зоны уверенного приема ЧНА не годится.

Примечание : есть и другие типы ЧНА, напр. в виде двухвитковой логарифимической спирали. Она компактнее ЧНА из треугольных полотен в том же диапазоне частот, поэтому иногда используется в технике. Но в быту это преимуществ не дает, сделать спиральную ЧНА сложнее, с коаксиальным кабелем согласовать труднее, поэтому не рассматриваем.

На основе ЧНА был создан очень популярный когда-то веерный вибратор (рога, рогулька, рогатка), см. рис. Его КНД и КЗД что-то около 1,4 при довольно гладкой АЧХ и линейной ФЧХ, так что для цифры он подошел бы и сейчас. Но – работает только на МВ (1-12 каналы), а цифровое вещание идет на ДМВ. Впрочем, на селе, при подъеме на 10-12 м, может сгодиться для приема аналога. Мачта 2 может быть из любого материала, но крепежные планки 1 – из хорошего ненамокающего диэлектрика: стеклотекстолита или фторопласта толщиной не менее 10 мм.

Пивная всеволновка

Всеволновая антенна из пивных банок явно не плод похмельных галлюцинаций спившегося радиолюбителя. Это действительно очень хорошая антенна на все случаи приема, нужно только сделать ее правильно. Причем исключительно простая.

В основе ее конструкции следующее явление: если увеличивать диаметр плеч обычного линейного вибратора, то рабочая полоса его частот расширяется, а прочие параметры остаются неизменными. В дальней радиосвязи с 20-х годов используется т.наз. диполь Надененко, основанный на этом принципе. А пивные банки по размерам как раз подходят в качестве плеч вибратора на ДМВ. В сущности, ЧНА и есть диполь, плечи которого неограниченно расширяются до бесконечности.

Простейший пивной вибратор из двух банок годится для комнатного приема аналога в городе даже без согласования с кабелем, если его длина не более 2 м, слева на рис. А если собрать из пивных диполей вертикальную синфазную решетку с шагом в полволны (справа на рис.), согласовать ее и отсимметрировать с помощью усилителя от польской антенны (о нем речь еще пойдет), то благодаря сжатию главного лепестка ДН по вертикали такая антенна даст и хороший КУ.

Усиление «пивнухи» можно еще увеличить, добавив заодно КЗД, если сзади нее поместить экран из сетки на расстоянии, равном половине шага решетки. Монтируется пивная решетка на мачте из диэлектрика; механические связи экрана с мачтой – тоже диэлектрические. Остальное ясно из след. рис.

Примечание: оптимальное количество этажей решетки – 3-4. При 2-х выигрыш в усилении будет небольшим, а большее трудно согласовать с кабелем.

Видео: изготовление простейшей антенны из пивных банок

«Логопедка»

Логопериодическая антенна (ЛПА) представляет собой собирающую линию, к которой попеременно подключаются половинки линейных диполей (т.е. куски проводника длиной в четверть рабочей волны), длина и расстояние между которыми меняются в геометрической прогрессии с показателем меньше 1, в центре на рис. Линия может быть как настроенной (с КЗ на противоположном от места подключения кабеля конце), так и свободной. ЛПА на свободной (ненастроенной) линии для приема цифры предпочтительнее: она выходит длиннее, но ее АЧХ и ФЧХ гладкие, а согласование с кабелем не зависит от частоты, поэтому на ней мы и остановимся.

ЛПА может быть изготовлена на любой, до 1-2 ГГц, наперед заданный диапазон частот. При изменении рабочей частоты ее активная область из 1-5 диполей смещается вперед-назад по полотну. Поэтому, чем ближе показатель прогрессии к 1, и соответственно меньше угол раскрыва антенны, тем большее усиление она даст, но при этом возрастает ее длина. На ДМВ от наружной ЛПА можно добиться 26 дБ, а от комнатной – 12 дБ.

ЛПА, можно сказать, по совокупности качеств идеальная цифровая антенна , поэтому остановимся на ее расчете несколько подробнее. Основное, что нужно знать, что увеличение показателя прогрессии (тау на рис.) дает прирост усиления, а уменьшение угла раскрыва ЛПА (альфа) увеличивает направленность. Экран для ЛПА не нужен, он на ее параметры почти не влияет.

Расчет цифровой ЛПА имеет особенности:

  1. Начинают его, ради запаса по частоте, со второго по длине вибратора.
  2. Затем, взяв обратную величину от показателя прогрессии, рассчитывают самый длинный диполь.
  3. После самого короткого, исходя из заданного диапазона частот, диполя, добавляют еще один.

Поясним на примере. Допустим, наши цифровые программы лежат в диапазоне 21-31 ТВК, т.е. в 470-558 МГц по частоте; длины волн соответственно – 638-537 мм. Также допустим, что нам нужно принимать слабый зашумленный сигнал вдали от станции, поэтому берем максимальный (0,9) показатель прогрессии и минимальный (30 градусов) угол раскрыва. Для расчета понадобится половина угла раскрыва, т.е. 15 градусов в нашем случае. Раскрыв можно еще уменьшить, но длина антенны непомерно, по котангенсу, возрастет.

Считаем В2 на рис: 638/2 = 319 мм, а плечи диполя будут по 160 мм, до 1 мм можно округлять. Расчет нужно будет вести, пока не получится Bn = 537/2 = 269 мм, и затем просчитать еще один диполь.

Теперь считаем А2 как В2/tg15 = 319/0,26795 = 1190 мм. Затем, через показатель прогрессии, А1 и В1: А1 = А2/0,9 = 1322 мм; В1 = 319/0,9 = 354,5 = 355 мм. Далее последовательно, начиная с В2 и А2, умножаем на показатель, пока не дойдем до 269 мм:

  • В3 = В2*0,9 = 287 мм; А3 = А2*0,9 = 1071 мм.
  • В4 = 258 мм; А4 = 964 мм.

Стоп, у нас уже меньше 269 мм. Проверяем, уложимся ли по усилению, хотя и так ясно, что нет: чтобы получить 12 дБ и более, расстояния между диполями не должны превышать 0,1-0,12 длины волны. В данном случае имеем для В1 А1-А2 = 1322 – 1190 = 132 мм, а это 132/638 = 0,21 длины волны В1. Нужно «подтянуть» показатель к 1, до 0,93-0,97, вот и пробуем разные, пока первая разница А1-А2 не сократится вдвое и более. Для максимума в 26 дБ нужно расстояние между диполями в 0,03-0,05 длины волны, но не менее 2-х диаметров диполя, 3-10 мм на ДМВ.

Примечание: остаток линии за самым коротким диполем, обрезаем, он нужен только для расчета. Поэтому реальная длина готовой антенны получится всего около 400 мм. Если наша ЛПА наружная, это очень хорошо: можно уменьшить раскрыв, получив большую направленность и защиту от помех.

Видео: антенна для цифрового ТВ DVB T2

О линии и мачте

Диаметр трубок линии ЛПА на ДМВ – 8-15 мм; расстояние между их осями – 3-4 диаметра. Учтем еще, что тонкие кабели-«шнурки» дают на ДМВ такое затухание на метр, что все антенно-усилительные ухищрения сойдут на нет. Коаксиал для наружной антенны нужно брать хороший, диаметром по оболочке от 6-8 мм. Т.е., трубки для линии должны быть тонкостенными цельнотянутыми. Подвязывать кабель к линии снаружи нельзя, качество ЛПА резко упадет.

Крепить наружную ЛПА к мачте нужно, разумеется, за центр тяжести, иначе малая парусность ЛПА превратится в огромную и трясущуюся. Но соединять металлическую мачту прямо с линией тоже нельзя: нужно предусмотреть диэлектрическую вставку не менее 1,5 м длиной. Качество диэлектрика большой роли тут не играет, пойдет проолифленное и покрашенное дерево.

Об антенне «Дельта»

Если ДМВ ЛПА согласуется с кабелем усилителем (см. далее, о польских антеннах), то к линии можно пристроить плечи метрового диполя, линейные или веерные, как у «рогатки». Тогда получим универсальную МВ-ДМВ антенну отличного качества. Такое решение использовано в популярной антенне «Дельта», см. рис.

Антенна «Дельта»

Зигзаг в эфире

Z-антенна с рефлектором дает усиление и КЗД такие же, как ЛПА, но главный лепесток ее ДН более чем вдвое шире по горизонтали. Это может быть важно на селе, когда есть прием ТВ с разных направлений. А дециметровая Z-антенна имеет небольшие в плане размеры, что существенно для комнатного приема. Но ее рабочий диапазон теоретически не безграничен, перекрытие по частоте при сохранении приемлемых для цифры параметров – до 2,7.

Конструкция Z-антенны МВ показана на рис; красным выделен путь прокладки кабеля. Там же слева внизу – более компактный кольцевой вариант, в просторечии – «паук». По нему хорошо видно, что Z-антенна родилась как комбинация ЧНА с диапазонным вибратором; есть в ней кое-что и от ромбической антенны, которая в тему не вписывается. Да, кольцо «паука» не обязательно должно быть деревянным, это может быть обруч из металла. «Паук» принимает 1-12 МВ каналы; ДН без рефлектора – почти круговая.

Классический же зигзаг работает или на 1-5, или на 6-12 каналах, но для его изготовления нужны только деревянные рейки, медный эмалированный провод c d = 0,6-1,2 мм да несколько обрезков фольгированного стеклотекстолита, поэтому даем размеры, через дробь для 1-5/6-12 каналов: А = 3400/950 мм, Б, С = 1700/450 мм, b = 100/28 мм, В = 300/100 мм. В точке Е – нулевой потенциал, здесь нужно оплетку спаять с металлизированной опорной пластиной. Размеры рефлектора, тоже 1-5/6-12: А = 620/175 мм, Б = 300/130 мм, Г = 3200/900 мм.

Диапазонная Z-антенна с рефлектором дает усиление в 12 дБ, настроенная на один канал – 26 дБ. Чтобы на основе диапазонного зигзага построить одноканальный, нужно взять сторону квадрата полотна по середине ее ширины в четверть длины волны и пересчитать пропорционально все прочие размеры.

Народный зигзаг

Как видим, Z-антенна МВ – довольно сложное сооружение. Но ее принцип показывает себя во всем блеске на ДМВ. Z-антенну ДМВ с емкостными вставками, сочетающая в себе достоинства «классики» и «паука», сделать настолько просто, что она еще в СССР заслужила звание народной, см. рис.

Материал – медная трубка или алюминиевый лист толщиной от 6 мм. Боковые квадратики цельные из металла или затянутые сеткой, или закрытые жестянкой. В двух последних случаях их нужно пропаять по контуру. Коаксиал резко гнуть нельзя, поэтому ведем его так, чтобы он дошел до бокового угла, а затем не выходил за пределы емкостной вставки (бокового квадратика). В т. А (точка нулевого потенциала) оплетку кабеля электрически соединяем с полотном.

Примечание: алюминий не паяется обычными припоями и флюсами, поэтому алюминиевая «народная» годится для наружной установки только после герметизации электрических соединений силиконом, в ней ведь все на винтах.

Видео: пример двойной треугольной антенны

Волновой канал

Антенна волновой канал (АВК), или антенна Удо-Яги из доступных для самостоятельного изготовления способна дать наибольшие КУ, КНД и КЗД. Но принимать цифру на ДМВ она может только на 1 или 2-3 соседних каналах, т.к. относится к классу остро настроенных антенн. Ее параметры за пределами частоты настройки резко ухудшаются. АВК рекомендуется применять с очень плохих условиях приема, причем для каждого ТВК делать отдельную. К счастью, это не очень сложно – АВК проста и дешева.

В основе работы АВК – «сгребание» электромагнитного поля (ЭМП) сигнала к активному вибратору. Внешне небольшая, легкая, с минимальной парусностью, АВК может иметь эффективную апертуру в десятки длин волн рабочей частоты. Укороченные и поэтому имеющие емкостный импеданс (полное сопротивление) директоры (направители) направляют ЭМП к активному вибратору, а рефлектор (отражатель), удлиненный, с индуктивным импедансом, отбрасывает к нему то, что проскочило мимо. Рефлектор в АВК нужен всего 1, но директоров может быть от 1 до 20 и более. Чем их больше, тем выше усиление АВК, но уже полоса ее частот.

От взаимодействия с рефлектором и директорами волновое сопротивление активного (с которого снимается сигнал) вибратора падает тем больше, чем ближе к максимуму усиления настроена антенна, и согласование с кабелем теряется. Поэтому активный диполь АВК делают петлевым, его исходное волновое сопротивление не 73 Ом, как у линейного, а 300 Ом. Ценой его снижения до 75 Ом АВК с тремя директорами (пятиэлементную, см. рис. справа) удается настроить почти что на максимум усиления в 26 дБ. Характерная для АВК ДН в горизонтальной плоскости приведена на рис. в начале статьи.

Элементы АВК соединяются со стрелой в точках нулевого потенциала, поэтому мачта и стрела могут быть любыми. Очень хорошо подходят пропиленовые трубы.

Расчет и настройка АВК под аналог и цифру несколько различны. Под аналог волновой канал нужно рассчитывать на несущую частоту изображения Fи, а под цифру – на середину спектра ТВК Fс. Почему так – здесь объяснять, к сожалению, нет места. Для 21-го ТВК Fи = 471,25 МГц; Fс = 474 МГц. ДМВ ТВК расположены вплотную друг к другу через 8 МГц, поэтому их настроечные частоты для АВК рассчитываются просто: Fn = Fи/Fс(21 ТВК) + 8(N – 21), где N – номер нужного канала. Напр. для 39 ТВК Fи = 615,25 МГц, а Fс = 610 МГц.

Чтобы не записывать множество цифр, удобно размеры АВК выражать в долях длины рабочей волны (она считается как Л = 300/F, МГц). Длину волны принято обозначать малой греческой буквой лямбда, но, поскольку в интернете греческого алфавита по умолчанию нет, мы условно обозначим ее большой русской Л.

Размеры оптимизированной под цифру АВК, по рис., таковы:

  • Р = 0,52Л.
  • В = 0,49Л.
  • Д1 = 0,46Л.
  • Д2 = 0,44Л.
  • Д3 = 0,43л.
  • a = 0,18Л.
  • b = 0,12Л.
  • c = d = 0,1Л.

Если не нужно большого усиления, но важнее уменьшение габаритов АВК, то Д2 и Д3 можно убрать. Все вибраторы выполняются из трубки или прутка диаметром 30-40 мм для 1-5 ТВК, 16-20 мм для 6-12 ТВК и 10-12 мм на ДМВ.

АВК требует точного согласования с кабелем. Именно небрежным выполнением устройства согласования и симметрирования (УСС) объясняется большинство неудач любителей. Самое простое УСС для АВК – U-петля из того же коаксиального кабеля. Ее конструкция ясна из рис. справа. Расстояние между сигнальными клеммами 1-1 140 мм для 1-5 ТВК, 90 мм для 6-12 ТВК и 60 мм на ДМВ.

Теоретически длина колена l должна быть в половину длины рабочей волны, так и значится в большинстве публикаций в интернете. Но ЭМП в U-петле сосредоточено внутри заполненного изоляцией кабеля, поэтому нужно обязательно (для цифры – особенно обязательно) учитывать его коэффициент укорочения. Для 75-омных коаксиалов он колеблется в пределах 1,41-1,51, т.е. l нужно брать от 0,355 до 0,330 длины волны, и брать точно, чтобы АВК была АВК, а не набором железок. Точное значение коэффициента укорочения всегда есть в сертификате на кабель.

В последнее время отечественная промышленность начала выпускать перенастраиваемые АВК для цифры, см. рис. Идея, надо сказать, отличная: передвигая элементы по стреле, можно точно настроить антенну под местные условия приема. Лучше, конечно, чтобы это делал специалист – поэлементная настройка АВК взаимозависима, и дилетант непременно запутается.

О «полячках» и усилителях

У многих пользователей польские антенны, ранее прилично принимавшие аналог, цифру брать отказываются – рвется, а то и вовсе пропадает. Причина, прошу прощения, похабно-коммерческий подход к электродинамике. Стыдно порой бывает за коллег, сляпавших такое «чудо»: АЧХ и ФЧХ похожи то ли на ежа-псориазника, то ли лошадиный гребень с выломанными зубьями.

Единственно, что хорошо в «полячках» – их усилители для антенны. Собственно, они и не дают сим изделиям бесславно помереть. Усилители «поячек», во-первых, широкополосные малошумящие. И, что еще важнее – с высокоомным входом. Это позволяет при той же напряженности ЭМП сигнала в эфире подать на вход тюнера в несколько раз большую его мощность, что дает возможность электронике «выдрать» цифру из совсем уж безобразных шумов. Кроме того, вследствие большого входного сопротивления польский усилитель – идеальное УСС для любых антенн: что ни цепляй ко входу, на выходе – точно 75 Ом без отраженки и ползучки.

Однако при очень плохом сигнале, вне зоны уверенного приема, польский усилитель уже не тянет. Питание на него подается по кабелю, и развязка по питанию отнимает 2-3 дБ отношения сигнал/шум, которых может как раз и не хватить, чтобы цифра пошла в самой глубинке. Тут нужен хороший усилитель ТВ сигнала с раздельным питанием. Располагаться он будет, скорее всего, возле тюнера, а УСС для антенны, если оно требуется, придется делать отдельно.

Схема такого усилителя, показавшая почти 100% повторяемость даже при выполнении начинающими радиолюбителями, приведена на рис. Регулировка усиления – потенциометром Р1. Дроссели развязки L3 и L4 – стандартные покупные. Катушки L1 и L2 выполняются по размерам на монтажной схеме справа. Они входят в состав полосовых фильтров сигнала, поэтому небольшие отклонения их индуктивности не критичны.

Раньше готовую качественную телевизионную антенну приобрести было сложно. Умельцы, пользуясь радиотехническими знаниями, конструировали самостоятельно приличные образцы, добротно принимающие эфирный сигнал. Времена изменились, цифровое телевидение потеснило аналоговое, но проблема наличия хорошей дециметровой антенны в местах со сложными условиями остаётся актуальной.

Эволюция телевещания

В эфирном телевещании произошёл ряд перемен, которые необходимо учитывать перед тем, как сделать дециметровую антенну своими руками:

  1. Сейчас почти всё ТВ-вещание производится в ДМВ-диапазоне. Одна из причин – экономический фактор. Оборудование передающих станций: антенны, фидера значительно удешевляются. Снижается потребность в их профилактическом обслуживании специалистами высокой квалификации;
  2. ТВ-сигнал покрывает все места, бывшие ранее недоступными. В «глухих углах» покрытие обеспечивается передатчиком без обслуживающего персонала;
  3. Цифровой телевизионный сигнал имеет свои характерные черты. Он мало чувствует помехи, но если рассогласован кабель, или имеются искажения по фазе в каком-либо месте приёмно-передающего тракта, изображение может «рваться» даже при высоком качестве сигнала;
  4. Телевидение имеет огромное количество программ, и не имеет смысла настраивать антенну ДМВ-диапазона на несколько каналов;
  5. Городские условия для передачи волн трансформировались из-за бурного строительства многоэтажных зданий, железобетонные корпуса которых способны неоднократно их отражать до постепенного затухания.

Длина ДВ-волны находится в пределах 0,1-1 м. Отсюда её наименование. Электромагнитные волны могут распространяться только в прямом направлении, не огибая препятствий. Поэтому для дальнего расстояния такая связь проблемна. Её радиус покрытия – 100 км. Антенна дециметрового диапазона должна быть изготовлена с учётом изменившихся требований.

Современные требования

  1. Раньше определяющее значение отводилось коэффициентам направленного и защитного действия. Сейчас это не так. Эфир стал сильно загрязнённым, и преодолевать помехи необходимо электронными средствами;
  2. На первое место выходит индивидуальный усиливающий коэффициент антенны. Такая ДМВ-антенна может создать необходимый запас прочности сигналу, который впоследствии будет обработан электроникой;
  3. Важно обеспечить гладкость амплитудно-частотной характеристики. Резкие пики и падения вызовут искажения по фазе;
  4. Согласование с кабелем на всём частотном диапазоне должно быть полным без применения дополнительных устройств;
  5. Параметры антенны должны соответствовать требованиям во всём диапазоне частот изначально. Диапазонную антенну не требуется искусственно адаптировать с помощью инженерных ухищрений.

Свойства различных типов антенн

Антенны, приемлемые для самостоятельного изготовления:

  1. Всеволновая. Не зависит от частоты. ДМВ-антенна с самыми низкими параметрами. Зато сделать её наиболее просто и дёшево. Хорошо использовать для телевизора в загородном доме, где в условиях относительно чистого эфира устройство может принимать цифровой сигнал. Отлично справляется с приёмом аналогового сигнала недалеко от телецентра;
  2. Логопериодическая диапазонная. Тоже является несложным вариантом. Точно согласуется с отходящим фидером в своём диапазоне. Она отсеивает определенные частоты. Обладает средними характеристиками. Хорошо служит как комнатная антенна в городском доме или квартире;
  3. Зигзагообразная или Z-типа. Если это антенна МВ, то сделать её значительно сложнее. Требуется произвести сложные расчёты и затратить на изготовление немалое время. В дециметровом диапазоне все габариты уменьшаются, расчёты упрощаются, получается эффективная антенна для комнатного или наружного использования фактически при любом качестве сигнала.

Важно! Идеальное согласование и симметрия антенны могут быть достигнуты при прокладке кабеля через «ноль» (точка с нулевым потенциалом, где токи максимальны, а напряжение – ноль).

Параметры антенны

Дециметровая антенна своими руками может быть сделана при минимуме теоретических знаний, но практически понимать значение её параметров необходимо.

  1. Коэффициент усиления (КУ) – это относительное возрастание излучения в момент пика, величина которого (дБ) выше эталонного (диполь в 0,5 длины волны);
  2. Коэффициент направленного действия (КНД) – в численном выражении отношение входящей мощности, поступающей на телевизор от антенны направленной к такой же мощности от ненаправленного диполя в 0,5 длины волны;
  3. Коэффициент защитного действия (КЗД) – отношение мощности, которую выделяет антенна, принимая боковой или задний сигнал, к мощности с основного направления.

Диаграмма направленности для антенн воспроизводится в виде лепестков. Направленность антенны определяется шириной основного лепестка, а защищённость от помех – уровнем боковых, задних.

Подобная самодельная антенна уличного использования, известная как «рога» (веерный вибратор), часто использовалась для приёма телевещательного сигнала не так давно. По параметрам она подошла бы для «цифры». Но используется только для приёма МВ с 1-го по 12-й канал. По такому же принципу можно сделать ДМВ-антенну.

Простейшая конструкция представляет собой металлические пластинки в виде равнобедренных треугольников. Треугольники нужно расположить так, чтобы их прямые углы были навстречу друг другу с зазором примерно в 1 см. По гипотенузам нужно укрепить две рейки и установить медные провода (эмалированные) любого диаметра на удалении 2-2,5 см друг от друга. Ширина и высота дециметровой антенны совпадают. При креплении кабеля в точке с нулевым потенциалом его можно привязать без припаивания.

Если растянуть такую антенну в районе окна, шириной полтора метра, то она будет принимать телесигнал с любого направления, без дополнительного поворачивания. Недостатком конструкции является низкий коэффициент усиления, а КЗД и вовсе равен нулю. Так что в местах с сильными помехами и очень слабым сигналом использование антенны проблемно.

Важно. Иногда радиолюбители пытаются изготовить всенаправленную антенну, используя спираль вместо треугольника, так как она меньше в размере для аналогичных частот. Но сконструировать такого типа антенну ДМВ своими руками труднее. Сложности вызывает и согласование с кабелем.

Разновидность всеволновой антенны, лёгкая в изготовлении, позволяющая получить приличное изображение. Хорошо подходит для использования в условиях сильного, но прерывающегося сигнала. Устройство – схема классического диполя. Своими размерами 0,5-литровые алюминиевые банки идеально подойдут для применения в качестве плеч вибратора диапазона ДМВ. Если взять банки больших или меньших габаритов, то изменятся частоты приёма. За основу берётся принцип, что при увеличении диаметра плеч вибратора (линейного) расширяется рабочий диапазон частот с сохранением прочих характеристик.

Самая простая антенна из двух банок подойдёт в качестве комнатной для приёма аналогового сигнала. Кабель даже не подлежит согласованию при не более чем двухметровой длине.

Последовательность действий:

  1. На один конец кабеля закрепить штекер для соединения с телевизором, другой зачистить, удалив изоляционный слой, сантиметров на 10 от начала. Жилы кабеля расплести, убрать фольгу;
  2. К одной банке прикрепить центральную жилу кабеля, к другой – провода экранирующей оплётки;
  3. С помощью скотча или изоленты установить банки на изолирующий каркас открытой частью навстречу друг другу. Это может быть деревянная планка или обычная вешалка для одежды.

Расстояние между банками задаётся приблизительно – 7-8 см.

Важно! Необходимо обеспечить плотное прилегание проводов к металлу банки.

Из банок можно собрать целую решётку, усилив защиту от помех при помощи установленного сзади сетчатого экрана. Эта конструкция используется вне помещения, закрепляется на мачте из диэлектрика. Экран должен присоединяться к мачте также диэлектрическими материалами. Если сделать более 4 перекладин, то появятся трудности в согласовании кабеля, 2 – не обеспечат достаточного усиления. Расстояние между перекладинами равно половине средней длины волны каналов, на которые нужно настроить приём. При наличии усилителя, его можно смонтировать дополнительно.

Ещё одна простая . Цель – получить рамку в виде круга, способную принимать сигнал узкого диапазона. Антенна для цифрового ТВ должна обладать высокой защитой от помех. Эта конструкция является ещё и избирательным фильтром, который снижает помехи. Хорошо работает она внутри квартир со стенами из железобетона.

Недостатком этой антенны является то, что входное сопротивление рамки будет около 300 Ом, а для фидера 75 Ом – волновое сопротивление. Необходимо устанавливать согласующееся устройство или изготавливать рамку со входным сопротивлением в 75 Ом. Она имеет форму прямоугольника (соотношение длин сторон 1:2). Оба варианта не слишком удобны. Существует третье оригинальное решение – для согласующегося устройства взять этот же кабель, сделав из него специальную петлю.

Исходя из расчётов, по дециметровому диапазону для кольца нужно взять отрезок коаксиального кабеля 5,3 м, для петли – 1,75 м

Изготовление рамочной антенны:

  1. Отрезать кусок кабеля для кольца и для петли;
  2. Выгибается часть кабеля кольцом и устанавливается на фанеру, плексиглас или другой изоляционный материал;
  3. Из другого куска делается петля, концы которой должны находиться на одном уровне с концом кабеля, направляющегося к телевизору или ресиверу. Можно зафиксировать скотчем;
  4. Провода трёх экранирующих оплёток соединяются друг с другом пайкой. Жилы экрана от петли должны быть двусторонне соединены с экранизирующими жилами кольца. Центральный провод кабеля к телевизору – с одной стороной.

Обратите внимание! Конструкция, размещаемая на улице, защищается от непогоды пластиковым корпусом.

Волновой канал

Максимальный коэффициент усиления, КНД и защиту от помех для самостоятельно сделанного устройства даёт антенна волновой канал. Подходит для применения на значительном удалении от телевещательного центра. В городе способна снизить помехи, так как обладает точной направленностью. Это же свойство ограничивает количество принимаемых каналов, так как за границами выбранной для настройки частоты характеристики антенны резко снижаются.

Чертежи антенны представляют устройство, которое состоит из укороченных директоров, или направителей, имеющих ёмкостное сопротивление, активного вибратора и рефлектора. Электромагнитный сигнал ориентируется директорами в направлении активного вибратора. Находящийся позади него рефлектор большей длины с индуктивным сопротивлением отражает к нему же прошедшие мимо волны.

Важно! Отражателя достаточно одного, а директоров может быть разное количество: до 10 и выше. С большим числом директоров возрастает коэффициент усиления, но диапазон принимаемых частот падает.

Телевизионный кабель подключается к активному вибратору. От его взаимосвязи с директорами и отражателем снижается собственное волновое сопротивление. Сила падения зависит от коэффициента усиления. В результате происходит рассогласование с телевизионным кабелем. По этой причине активный вибратор делается в виде петли, имея исходное сопротивление, равное 300 Ом. После взаимодействия с несколькими директорами и рефлектором сопротивление становится 75 Ом. Это соотношение справедливо для пятиэлементного устройства.

Для ДМВ вибраторы нужно изготавливать из металлической трубки от 6 до 10 мм в диаметре. Общее количество элементов дециметрового устройства 16. Все элементы смыкаются со стрелой фактически в точках с нулевым потенциалом. Значит, материал стрелы, как и мачты можно брать любой. Например, трубы из полипропилена.

Важно! Антенна должна быть строго согласована с кабелем. В качестве согласующего устройства можно применить петлю из коаксиального кабеля.

В теории длина петли составляет половину волновой длины (волна берётся рабочая). Но надо учитывать поправку на изоляцию кабеля. При использовании коаксиального кабеля 75 Ом, размер петли будет 0,35 от длины волны. Межклеммное расстояние – 6 см.

Зигзаг

Зигзаг – это схема антенны Харченко, относится к широкополосным устройствам. Размеры конструкции для дециметрового диапазона компактны и с легкостью позволяют её применять внутри помещений. Особенно эффективна в удалённых населённых пунктах при приёме в различных направлениях. Пределы принимаемых частот с сохранением параметров перекрываются с коэффициентом 2,6-2,7.

Классический зигзаг сложен в изготовлении, требует точных расчётов. Широко применялся для приема аналоговых телепрограмм. Для цифрового сигнала всё значительно упрощается.

Ромб

Конструкция ромб – разновидность зигзага. Наилучший материал для основного контура – медные трубки, другой возможный – листы алюминия (толщина 6 мм и выше), нарезанные на полосы. С целью создания ёмкости применяются вставки из жести, металлической сетки или фольги в границах малых боковых ромбов. Сзади укрепляется отражатель. Вставки-ёмкости и рефлектор дополняют сооружение, чтобы повысить чувствительность. При хорошем сигнале без этих элементов можно обойтись.

Важно! Сетчатые или жестяные вставки пропаиваются по контуру. При использовании листов тонкого металла это не обязательно.

Коаксиальный кабель нельзя сгибать сильно. Он доводится до боковой вершины ромба, а потом направляется к центру и припаивается.

В точке с нулевым потенциалом (нижняя вершина ромба) нужно произвести электрическое соединение с проводами экранирующей оплётки.

Логопериодическая

Если с аналоговым сигналом антенна не всегда справляется без подстройки, то для приёма цифрового телевизионного сигнала является идеальной. Она состоит из длинного стержня, к которому прикреплены половины диполей разной длины. Промежутки между вибраторами и их длина изменяются по геометрической прогрессии. Рассчитать антенну достаточно сложно. Существует несколько методик, представленных в интернете.

Особенности логопериодической антенны:

  1. Центральный стержень питает по отдельности правые и левые вибраторы. Они должны находиться в противофазе;
  2. Стержень состоит из двух несущих. Левые-правые вибраторы по очереди меняются несущими. Первый левый – верхняя несущая, первый правый – нижняя. Следующий ряд наоборот;
  3. Число вибраторов определяется конструкцией антенны. Самые протяжённые, находящиеся сзади, в длину равны длине полуволны нижней границы диапазона;
  4. Коаксиальный кабель прокладывается к середине конструкции, проходя внутри одной из направляющих. На выходе из носа центральную жилу необходимо соединить со второй несущей. Такая линия, состоящая из двух проводов, будет выполнять роль симметрирующего трансформатора. Есть другой вариант прокладки;
  5. Для лучшего согласования линия закорачивается сзади наиболее протяжённого вибратора (расстояние 1/8 длины волны нижней границы диапазона);
  6. Диаметр трубок нужно взять 10-15 мм для дециметровой волны.
  7. Тонкие кабели вызовут сильное затухание, потребуется провод не менее 6 мм диаметром. Кабель подвязывается только с внутренней стороны, иначе падает качество антенны.

  1. Все элементы конструкции с протекающим током сигнала должны припаиваться или привариваться. Особенно это касается уличных антенн;
  2. Коаксиальные кабели плохо подлежат обычной пайке, а продолжительное нагревание может повредить кабель. Лучше всего паять, пользуясь легкоплавким припоем, канифоль заменить флюс-пастой.

Существуют простейшие варианты изготовления самодельных антенн и более сложные. В зависимости от знаний и накопленного опыта каждый пользователь может выбрать приемлемый лично для него вариант.

Видео

Волны короче 10м назыв.УКВ. Из-за прямолинейности распростр.УКВ для их использ. требов. прямая види­мость м/у антеннами передатчика и приемника. Ди­фракция УКВ почти не свойст., они не могут огиб. вы­пуклости зем.поверх.,а ионизация ионосферы не­достат. для их отраж. Для осущ.связи на большие расст. м/у п.связи устанав.промежуточ.станции (ретрансляторы) или поднимают ан­тенны на большие высоты. Связь в пределах прямой видимости характер-ся возможно­стью одноврем.прихода в т.приема не только прямой вол­ны, но и волны, отраженной от зем.поверх. Интер­ференция приводит к ↓ напряженности поля в т.приема, но ее можно свести к min правиль. подбором высот антенн, рас­стояния м/у ними и длины волны. УКВ явл.наиб. использ.участком радиодиапаз. Большая частотная емкость этого диапа­з.и ограниченный пределами прямой видимости радиус дейст.позвол. разместить большое кол-во одноврем.работ-х станций и осущ-ть передачу информации в широкой полосе частот. УКВ позвол.одноврем. передав.больш.кол-во ТВ программ, организ-ть тысячи телеф.каналов и цифр.с-м связи. УКВ исп.для радиолокации, радионавигации, связи с искусст.спутни­ками, ЗВ, ТВ и в радиоастрономии. Метр.и дециметр.волны исп.для ТВ, РВ и РС с подвижными объек­тами. Сантиметр.волны исп.для многоканаль.связи. Иногда метр.волны исп.для связи вне пре­делов прямой видимости, т.к. они способ.огиб.неболь.преграды на зем. поверх. Дальность такой связи ис­числ. км, реже десятками км. Наиб.слож.явл.связь на метр.волнах в больш.городах, где использ.ретрансляция ч/з центр. станцию, антенна которой устан.на высотном доме.

Бываются случаи дальнего распростр.метр.и более КВ. Это объяс.возмож­ностью сост. атмосферы, при котором измен. коэффиц.преломления по мере подъема вверх происх.в большей степени, чем в норм.усл. Искривл.траек­тории радиолуча из-за рефракции увелич-ся, станов. возможным распростр.радиоволн ||-но зем.по­верх. или попадание их после преломл.на поверх земли (сверхфракция). Падающие на землю волны отраж-ся, распростр-ся вверх, опять прелом-ся и т.д. В пространстве м/у поверх.земли и преломляющими верх.слоями, вдоль которого волны распростр.на рас­ст.в десятки раз больше расст.прямой видимости. Это создает возм-ть приема ТВ программ из др.городов и стран. Для появл.волноводных каналов в атмо­сфере треб. увеличение t 0 воздуха по мере подъема вверх и сильное уменьш.влажности с высотой.

В тропосфере постоянно присут.колебания t 0 и влажности. От них завис.коэффиц.прелом­л.воздуха, поэт.радиоволны рассеи­в-ся неоднородностями ионосферы. Это рассеян.поле наблю­д.далеко за горизонтом. Небольш. напря­ж-сть поля за горизонтом отлич-ся постоянством. Рассеяния волн тропосфер.неоднородностями назыв.дальним тропосфер.распростр.радиоволн. Созд.линии тропосфер.связи сложно, т.к. напряж-сть поля отраж-х от тропосферы волн уменьш.с расстоянием очень быстро. Треб.очень мощ­ные передатчики(1-50кВт), антенны высокой направл-сти и высокочувствит.приемники. По тропосфер.линиям связи осущ.орг-ция многоканаль.с-м связи. Эта связь не требует сме­ны длины волны в течение суток. Тропосфер.линии связи конкурируют в труднодоступ.местности с кабельными линиями. Тропосфер.станции образ-ют радиорелейные с-мы передачи с интервалом м/у станциями 300-500км. Дальнее распростр.УКВ происх.за счет их рассеяния на неоднородностях ионосферы. Рассеяние происх.в с.D или в нижней части с.Е за счет неоднородно­сти электронной концентрации. Для ионосфер.линий связи харак-ны замирания, сезон.и суточ.измен.уровня. Искажения сигнала огранич-ют шири­ну спектра передав-х сигналов полосой в неск.кГц, поэт. ТВ и групповые сигналы многоканаль.с-м по ним не могут передаваться.

Связь на метр.волнах за счет ионосфер.рассеяния позвол.раб-ть круглосут.на одной час­тоте. Ионосфер.рассеяние можно исп.для связи с труднодоступ.районами. В периоды ионосфер. возмущений неод­нородности в нижних обл.ионосферы и ионосфер.связь улучш.

Фидеры и волноводы.

Электрич. цепь и вспомогат. устройства, с помощью которых энергия радиочаст. канала подводится от радиоПРД к антенне или от антенны к радиоПР, назыв. фи­дером .

Фидеры – это линии питания, которые передают энергию от генератора к антенне (в передающем режиме) или от антенны к ПР (в режиме приёма). Основ. требования к фидеру сводятся к его электрогерметичности (отсутствию излучения энергии из фидера) и малым тепловым потерям. В передающем режиме волновое сопротивление фидера должно быть согласовано с входным сопротивлением антенны (что обеспечивает в фидере режим бегущей волны) и с выходом ПРД-ка (для max-ой отдачи мощности). В приёмном режиме согласование входа ПР-ка с волновым сопротивлением фидера обеспечивает в последнем режиме бегущей волны, согласование же волнового сопротивления фидера с сопротивлением нагрузки – условие max-ой отдачи мощности в нагрузку ПР-ка. В зависим. от диапаз. радиоволн примен. различные типы фидеров: двух или много-проводные воздушные фидеры; волноводы прямоугольного, круглого или эллиптического сечений; линии с поверхностной волной и др. Конструкция фидера зависит от диапазона передаваемых по нему частот. При передаче эл.маг. энергии по линии стре­мятся уменьш. излучение самой линии. Для этого провода линии располаг. //-но и по возмож­. ближе друг к другу. При этом поля 2-х одинак. по значе­нию, но противоположно направленных токов взаимно компенсируют­ся и излучения энергии в окружающее пространство не происходит. При создании антенны ставится противоположная задача: получение возможно большего излучения. Для этого использ. те же длинные линии, устранив одну из причин, лишающих фидер излу­чающих св-тв. Можно, например, раздвинуть провода линии на не­который ے, в результате чего их поля не будут компенсировать друг друга. На этом основана раб. V-образных и ромбических ан­тенн, излучающие провода кот. располож. под острым ے один к другому, и симметричного вибратора, полу­чающегося при разведении проводов на 180°. Компенсирующее действие одного из проводов фидера можно устранить, исключив его из с-мы. Это приводит к по­луч. несимметрич. виб­ратора. Все антен­ны, использ. этот принцип работы, относятся к классу не­симметрич. антенн. К ним также принадл. Г-образные и Т-образные антенны. Фидер излучает, если соседние участки его двух проводов обтека­ются токами, совпадающими по фазе, поля которых усиливают друг друга. Для этого необходимо создать фазовый сдвиг в половину дли­ны волны, например за счет неизлучающего шлейфа. На таком принципе основаны синфазные антенны. Фидер будет излучать, если расс-ия м/у проводами по неко­торым направлениям приобретают значит. разность хода. Можно так подобрать расс-ие м/у проводами, что по некоторым направлениям произойдет сложение волн от обоих прово­дов. Это использ. в противофазных ан­теннах.

Волновод – искусствен. или естествен. канал, способный поддерживать распространяющиеся вдоль него волны, поля которых сосредоточены внутри канала или в примыкающей к нему области. Типы волноводов:

1) Экранированные. Различают экранир. волноводы с хорошо отражающими стенками, к кот. относят волноводы металлические, направляющие эл.маг. волны, а также коаксиальные и многожильные экранирован. кабели, хотя последние обычно относят к линиям передачи (длинным линиям). К экранир. волноводам относят также волноводы акустические с достаточно жёсткими стенками.

2) Неэкранированные. В открытых (неэкранир.) волноводах локализация поля обычно обусловлена явлением полного внутрен. отражения от границ раздела 2-х сред (в волноводах диэлектрических и простейших световодах) либо от областей с плавно изменяющимися параметрами среды (ионосферный волновод, атмосферный волновод, подводный звук. канал). К открытым волноводам принадл. и с-мы с поверхност. волнами, направляемыми границами раздела сред.

Основ. св-во волновода – существ. в нём дискретного (при не очень сильном поглощении) набора нормальных волн (мод), распространяющихся со своими фазовыми и групповыми скоростями. Почти все моды облад. дисперсией, т.е. их фазовые скорости зависят от частоты и отлич. от групповых скоростей. В экранир. волноводе фазовые скорости обычно превыш. скорость распространения плоской однородной волны в заполняющей среде (скорость света, скорость звука), эти волны назыв. быстрыми. При неполном экранировании они могут просачиваться сквозь стенки волновода, переизлучаясь в окружающее пространство. Эти волны назыв. утекающими. В открытых волноводах распростр. медленные волны, амплитуды кот. быстро убывают при удалении от направляющего канала.




Top