Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы. Контакт полупроводников с разным типом проводимости

Наиболее интересные явления происходят при контакте полупроводников n- и р-типов. Эти явления используются в большинстве полупроводниковых приборов. В них происходит рекомбинация электронов и дырок. При образовании контакта электроны частично переходят из полупроводника n-типа в полупроводник р-типа, а дырки - в обратном направлении. В результате полупроводник n-типа заряжается положительно, а р-типа - отрицательно. Диффузия прекращается после того, как электрическое поле, возникающее в зоне перехода, начинает препятствовать дальнейшему перемещению электронов и дырок.

Полупроводниковые диоды

Основой полупроводникового диода является р-n-переход, определяющий его свойства, характеристики и параметры. По своему назначению полупроводниковые диоды подразделяются на выпрямительные, импульсные, высокочастотные и сверхвысокочастотные, стабилитроны, трехслойные переключающие, туннельные, варикапы, фото- и светодиоды. В зависимости от исходного полупроводникового материала диоды подразделяются на германиевые и кремниевые. Германиевые диоды работают при температурах не выше +80 °С, а кремниевые до +140 °С.По конструктивно-технологическому признаку диоды делятся на плоскостные и точечные. Наиболее распространены плоскостные сплавные диоды, применение которых затруднительно лишь на повышенных частотах. Преимуществом точечных диодов является низкое значение емкости p-n-перехода, дающая возможность их работы на высоких сверхвысоких частотах. Высокочастотные диоды являются приборами универсального назначения. Они могут работать в выпрямителях переменного тока широкого диапазона частот, а также в модуляторах, детекторах и других нелинейных преобразователях электрических сигналов. Высокочастотные диоды содержат, как правило, точечный р-n-переход и поэтому называются точечными. Импульсные диоды являются разновидностью высокочастотных диодов и предназначены для использования в качестве ключевых элементов в быстродействующих импульсных схемах. Стабилитроны – это кремниевые плоскостные диоды, предназначенные для стабилизации уровня постоянного напряжения в схеме при изменении в некоторых пределах тока через диод. Варикапом называется специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Фотодиод – полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Светодиоды (электролюминесцентные диоды) преобразуют энергию электрического поля в нетепловое оптическое излучение, называемое электролюминесценцией. Туннельный диод – это полупроводниковый диод, в котором используется явление туннельного пробоя при включении в прямом направлении.



ЦЕПНАЯ ЯДЕРНАЯ РЕАКЦИЯ.

Это процесс, в котором одна проведенная реакция вызывает последующие реакции такого же типа. При делении одного ядра урана образовавшиеся нейтроны могут вызвать деления других ядер урана, при этом число нейтронов нарастает лавинообразно.
Цепная реакция сопровождается выделением большого количества энергии. Для осуществления цепной реакции не получается использовать любые ядра, делящиеся под влиянием нейтронов. Используемый в качестве топлива для атомных реакторов химический элемент уран состоит в природе из двух изотопов: урана-235 и урана - 238.
В природе изотопы урана-235 составляют всего лишь 0,7% от всего запаса урана, однако именно они пригодны для проведения цепной реакции, т.к. делятся под влиянием медленных нейтронов. Первая управляемая цепная реакция - США в 1942 г. (Э.Ферми)
В СССР - 1946 г. (И.В.Курчатов).

ЯДЕРНЫЙ РЕАКТОР - это устройство на атомной электростанции для получения атомной энергии.
Назначение ядерного реактора: преобразование внутренней энергии атомного ядра в электрическую энергию.
В ядерном реакторе осуществляется управляемая цепная реакция деления ядер. Ядерными реакторами оснащены все АЭС (атомные электростанции).
Работа реактора:

Реактор работает на медленных нейтронах. Активная зона реактора, содержит ядерное топливо - урановые стержни и замедлитель - воду. Вода вокруг урановых стержней является не только замедлителем нейтронов, но и служит для отвода тепла, т.к. внутренняя энергия разлетающихся осколков переходит во внутреннюю энергию окружающей среды - воды. Активная зона окружена отражателем для возвращения нейтронов и защитным слоем бетона.
Достижение критической массы топлива осуществляется введением регулирующих стержней (до достижения массы урана = критической массе).
Активная зона посредством труб соединена в кольцо (1-ый контур).
Вода прокачивается по трубам контура насосом и отдает свою энергию змеевику в теплообменнике, нагревая воду в змеевике (во 2-м контуре).
Вода в змеевике превращается в пар, температура которого может достигать 540 градусов.
Пар вращает турбину, энергия пара превращается в механическую энергию.
Ось турбины вращает ротор электрогенератора, превращая механическую энергию в электрическую.
Отработанный (охлажденный) пар поступает в конденсатор, где превращается в воду, возвращающуюся в 1-ый контур.Первая АЭС была построена в г. Обнинске (СССР).
Преимущества АЭС: ядерные реакторы не потребляют кислород и органическое топливо. Не загрязняют окружающую среду золой и вредными для человека продуктами органического топлива. Биосфера надежно защищена от радиоактивного воздействия при нормальном режиме эксплуатации АЭС.
Недостатки АЭС: необходимость захоронения радиоактивных отходов и демонтаж отслуживших свой срок реакторов. Опасность радиоактивного заражения местности при аварийных выбросах. Опасность экологических катастроф (1986 г. - Чернобыльская АЭС).



Билет 19

1.ТРАНЗИСТОР , полупроводниковый прибор, предназначенный для усиления электрического тока и управления им. Транзисторы выпускаются в виде дискретных компонентов в индивидуальных корпусах или в виде активных элементов т.н. интегральных схем, где их размеры не превышают 0,025 мм. В связи с тем что транзисторы очень легко приспосабливать к различным условиям применения, они почти полностью заменили электронные лампы. Одно из первых промышленных применений транзистор нашел на телефонных коммутационных станциях. Первым же товаром широкого потребления на транзисторах были слуховые аппараты, появившиеся в продаже в 1952. Сегодня транзисторы и многотранзисторные интегральные схемы используются во всём от радиоприемников до систем наземного и воздушного наблюдения в ракетных войсках. Перечень видов применения транзисторов почти бесконечен и продолжает увеличиваться. В 1954 было произведено немногим более 1 млн. транзисторов. Сейчас эту цифру невозможно даже указать. Первоначально транзисторы стоили очень дорого. Сегодня транзисторные устройства для обработки сигнала можно купить за несколько центов.

Термистор - полупроводниковый резистор, электрическое сопротивление которого существенно зависит от температуры. Для термистора характерны большой температурный коэффициент сопротивления (ТКС) (в десятки раз превышающий этот коэффициент у металлов), простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени. Термистор был изобретён Самюэлем Рубеном (Samuel Ruben) в 1930 году и имеет патент

ФОТОРЕЗИСТОР

Полупроводниковый резистор, изменяющий своё электричества. сопротивление под действием внеш. эл.-магн. излучения. Относятся к фотоэлектричества приёмникам излучения, их принцип действия основан на внутр. фотоэффекте в полупроводниках. Для расширения функцией, возможностей Ф. дополняют фильтрами, линзами, растрами, предварит. усилителями, термостатами, подсветкой, системами охлаждения и др. Основные параметры фоторезистора: темновое сопротивление (10 1 -10 14 Ом); спектральный диапазон чувствительности (0,5-120 мкм); постоянная времени (10 -2 - 10 -9 с); вольтовая чувствительность (10 3 -10 6 В/Вт); обнаружительная способность (10 8 -10 16 см Гц 1/2 Вт -1); температурный коэф. чувствительности (0,1-5%/К); рабочее напряжение (0,1 -100 В).

Термоядерные реакции

В 1939 г. известный американский физик Бете дал количественную теорию ядерных источников звёздной энергии. Как известно, звёзды по большей части состоят из водорода, (правда есть и исключения) поэтому вероятность столкновения двух протонов очень велика. При столкновении протона с другим протоном он может притянуться к ядру за счёт ядерных сил. Ядерные силы действуют на расстояниях порядка размеров самого ядра (т. е. 10 м). Для того чтобы приблизится к ядру на столь малое расстояние, протону необходимо преодолеть весьма значительную силу электростатического отталкивания. Ведь ядро тоже заряжено положительно.

Билет 20

ЭЛЕКТРИЧЕСКИЙ ТОК В ВАКУУМЕ

создать эл. ток в вакууме можно, если использовать источник заряженных частиц.
Действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии: это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.
Вакуумный диод

Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа.
Внутри стеклянного баллона создается очень низкое давление.
Н - нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

Применение атомной энергии.

Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра, человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоранивать, и хранить продолжительное время в безопасных условиях.

Плюсы и минусы, польза и вред от использования ядерной энергии

Рассмотрим плюсы и минусы применения атомной-ядерной энергии, их пользу, вред и значение в жизни Человечества. Очевидно, что атомная энергия сегодня нужна лишь промышленно развитым странам. То есть, основное применение мирная ядерная энергия находит в основном, на таких объектах, как заводы, перерабатывающие предприятия, и т.п. Именно энергоемкие производства, удаленные от источников дешевой электроэнергии (вроде гидроэлектростанций) задействуют ядерные станции для обеспечения и развития своих внутренних процессов.

Аграрные регионы и города не слишком нуждаются в атомной энергии. Ее вполне можно заместить тепловыми и другими станциями. Получается, что овладение, получение, развитие, производство и использование ядерной энергии по большей части направлено на удовлетворение наших потребностей в промышленной продукции. Посмотрим, что это за производства: автомобильная промышленность, военные производства, металлургия, химическая промышленность, нефтегазовый комплекс, и т.д.

Современный человек хочет ездить на новой машине? Хочет одеваться в модную синтетику, кушать синтетику и упаковывать все в синтетику? Хочет ярких товаров разных форм и размеров? Хочет все новых телефонов, телевизоров, компьютеров? Хочет много покупать, часто менять оборудование вокруг себя? Хочет вкусно питаться химической едой из цветных упаковок? Хочет жить спокойно? Хочет слышать сладкие речи с телеэкрана? Хочет, чтобы танков было много, а также ракет и крейсеров, а еще снарядов и пушек?
Хочет?
И он все это получает. Неважно, что в конце расхождение между словом и делом приводит к войне. Неважно, что для его утилизации также нужна энергия. Пока что человек спокоен. Он ест, пьет, ходит на работу, продает и покупает.

А для всего этого нужна энергия. А еще для этого нужно очень много нефти, газа, металла и т.п. И все эти промышленные процессы нуждаются в атомной энергии. Поэтому кто бы что ни говорил, до тех пор, пока не будет запущен в серию первый промышленный реактор термоядерного синтеза, атомная энергетика будет только развиваться.

В плюсы ядерной энергии мы можем смело записать все то, к чему мы привыкли. К минусам – печальную перспективу скорой смерти в коллапсе исчерпания ресурсов, проблемах ядерных отходов, росте численности населения и деградации пахотных площадей. Иначе говоря, атомная энергетика позволила человеку еще сильнее начать овладевать природой, насилуя ее сверх меры настолько, что он за несколько десятилетий преодолел порог воспроизводства основных ресурсов, запустив между 2000 и 2010 годами процесс схлопывания потребления. Этот процесс объективно уже не зависит от человека. Всем придется меньше есть, меньше жить и меньше радоваться окружающей природе. Здесь кроется еще один плюс-минус атомной энергии, который заключается в том, что страны, овладевшие атомом, смогут эффективнее перераспределять под себя скудеющие ресурсы тех, кто атомом не овладел. Более того, только развитие программы термоядерного синтеза позволит человечеству элементарно выжить. Теперь поясним на пальцах, что же это за «зверь» - атомная (ядерная) энергия и с чем ее едят.

Билет 21

1. Закон электролиза
1833г. - Фарадей

Закон электролиза определяет массу вещества, выделяемого на электроде при электролизе за время прохождения эл.тока.
k - электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.
Зная массу выделившегося вещества, можно определить заряд электрона.

2. Получение радиоактивных изотопов и их применение.
Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2H и 3H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1H называют иногда протием).
Применение изотопов одним из наиболее выдающихся исследований, проведенных с помощью «меченых атомов», явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми. Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа было установлено, что свободный кислород, выделяемый при фотосинтезе, первоначально входил в состав воды, а не углекислого газа. Радиоактивные изотопы применяются в медицине, как для постановки диагноза, так и для терапевтических целей.

Билет 22

1.ПЛАЗМА – частично или полностью ионизованный газ, образованный из нейтральных атомов и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Газ переходит в состояние плазмы, если некоторые из составляющих его атомов по какой-либо причине лишились одного или нескольких электронов, т.е. превратились в положительные ионы. В некоторых случаях в плазме в результате «прилипания» электронов к нейтральным атомам могут возникать и отрицательные ионы. Плазма – четвертое состояние вещества, она подчиняется газовым законам и во многих отношениях ведет себя как газ. Сам термин «плазма» применительно к квазинейтральному ионизованному газу был введен американскими физиками Лэнгмюром и Тонксом в 1923 при описании явлений в газовом разряде. До той поры слово «плазма» использовалось лишь физиологами и обозначало бесцветный жидкий компонент крови, молока или живых тканей, однако вскоре понятие «плазма» прочно вошло в международный физический словарь, получив самое широкое распространение.

2. Биологическое действие радиоактивных излучений было установлено не сразу. Беккерель, открывший радиоактивность в 1896 году даже не подозревал о биологическом действии этого вида излучений. В 1898 году Мария Складовская – Кюри и Пьер Кюри открыли радий и Беккерель взял несколько миллиграмм в стеклянную пробирку для исследования, положив в нагрудный карман. Через некоторое время на теле напротив кармана образовалась болезненная незаживающая язва. Он был вынужден обратиться к врачу, язву залечили, но через некоторое время она открылась вновь.У всех ученых, работавших с радиоактивными элементами, руки были покрыты незаживающими язвами. Прежде чем было установлено биологическое действие проникающего излучения, наука понесла невосполнимые утраты. От лучевой болезни умирают Мария и Пьер Кюри, Ирен и Фредерик Кюри и В. Курчатов. На сегодняшний день наука установила достаточно фактов в этой области. Но до конца механизм воздействия проникающего излучения на клетку не установлен.Воздействие излучения на живые организмы характеризуется дозой излучения. Естественный фон радиации составляют за год 2*10 -3 Гр на человека (1 Гр=1Дж/кг). Доза излучения 3-10 Гр, полученная за короткое время смертельна.

Билет 23

1. Строение газообразных, жидких и твердых тел
Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул. Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул. Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но форма молекулы не изменяется. Молекулы с огромными скоростями - сотни метров в секунду - движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут не ограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа. Жидкости. Молекулы жидкости расположены почти вплотную друг к другу, поэтому молекула жидкости ведет себя иначе, чем молекула газа. В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Твердые тела. Атомы или молекулы твердых тел, в отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии.

2.Три этапа в развитии физики элементарных частиц
1 . От электрона до позитрона: 1897-1932гг. Когда греческий философ Демокрит назвал простейшие, нерасчленимые далее частицы атомами, то ему все представлялось в принципе не очень сложным. Но в конце XIX века было открыто сложное строение атомов и был выделен электрон как составная часть атома. Затем, уже в XX веке, были открыты протон и нейтрон - частицы, входящие в состав атомного ядра.
2 . От позитрона до кварков: 1932-1970гг (Все элементарные частицы превращаются друг в друга)
Всё оказалось намного сложнее: как выяснилось, неизменных частиц нет совсем. В самом слове элементарная частица заключается двоякий смысл. С одной стороны, элементарный простейший. С другой стороны, под элементарным понимается нечто фундаментальное, лежащее в основе вещей.
3 . От гипотезы о кварках (1964г) до наших дней. В 60-е годы возникли сомнения в том, что все частицы, называемые сейчас элементарными, полностью оправдывают это название. Открытие элементарной частицы всегда составляла и сейчас составляет выдающийся триумф науки. Триумфы стали следовать буквально друг за другом. Были открыта группа так называемых "странных" частиц: К-мезонов и гиперонов с массами, превышающими массу нуклонов. В 70-е годы к ним прибавилась большая группа "очарованных" частиц с еще большими массами. Кроме того, были открыты короткоживущие частицы с временем жизни порядка 10-22-10-23 с. Эти частицы были названы резонансами, и их число перевалило за двести. Вот тогда-то в 1964г М. Гелл-Манном и Дж. Цвейгом была предложена модель, согласно которой все частицы, участвующие в сильных взаимодействиях, построены из более фундаментальных частиц - кварков. В настоящее время в реальности кварков почти никто не сомневается, хотя в свободном состоянии они не обнаружены.

Билет 24

1.Газовые законы Изотермический процесс (закон Бойля Мариотто). Процесс изменения состояния системы макроскопических тел при постоянной температуре. Для поддержания температуры газа постоянной необходимо, чтобы он мог обмениваться теплотой с большой системой - термостатом. Иначе при сжатии или расширении температура газа будет меняться. Для газа данной массы при постоянной температуре произведение давления газа на его объем постоянно. Этот закон экспериментально был открыт (1627-1691). Закон Бойля - Мариотта справедлив обычно для любых газов, а также и для их смесей, например для воздуха.
Лишь при давлениях, в несколько сотен раз больших атмосферного, отклонения от этого закона становятся существенными. Зависимость давления газа от объема при постоянной температуре графически изображают кривой, которую называют изотермой.

Изобарный процесс. Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.
Для газа данной массы при постоянном давлении отношение объема к температуре постоянно. Этот закон был установлен экспериментально в 1802 г. французским ученым Ж. Гей-Люссаком (1778-1850). Эта зависимость графически изображается прямой, которая называется изобарой, разным давлениям соответствуют разные изобары. С ростом давления объем газа при постоянной температуре согласно закону Бойля - Мариотта уменьшается. Поэтому изобара, соответствующая более высокому давлению p 2 , лежит ниже изобары, соответствующей более низкому давлению p 1 .
Изохорный процесс. Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Для газа данной массы отношение давления к температуре постоянно, если объем не меняется. Этот газовый закон был установлен в 1787 г. французским физиком Ж.Шарлем (1746-1823) и носит название закона Шарля. Эта зависимость изображается прямой, называемой изохорой. Разным объемам соответствуют разные изохоры. С ростом объема газа при постоянной температуре давление его согласно закону Бойля - Мариотта падает. Поэтому изохора, соответствующая большему объему V 2 , лежит ниже изохоры, соответствующей меньшему объему V 1 .

ОТКРЫТИЕ ПОЗИТРОНА. АНТИЧАСТИЦЫ

Существование двойника электрона - позитрона - было предсказано теоретически английским физиком П. Дираком в 1931 г. Одновременно он предсказал, что при встрече позитрона с электроном обе частицы должны исчезнуть, породив фотоны большой энергии. Может протекать и обратный процесс - рождение электронно-позитронной пары, например: при столкновении фотона достаточно большой энергии с ядром. Спустя два года позитрон был обнаружен с помощью камеры Вильсона, помещенной в магнитное поле. Направление искривления трека частицы указывало знак ее заряда. По радиусу кривизны и энергии частицы было определено отношение ее заряда к массе. Оно оказалось по модулю таким же, как и у электрона. В свое время открытие рождения и аннигиляции электронно-позитронных пар вызвало настоящую сенсацию в науке. До того никто не предполагал, что электрон, старейшая из частиц, важнейший строительный материал атомов, может оказаться не вечным. Впоследствии двойники - античастицы - были найдены у всех частиц. Античастицы противопоставляются частицам именно потому, что при встрече любой частицы с соответствующей античастицей происходит их аннигиляция. Обе частицы исчезают, превращаясь в кванты излучения или другие частицы. Сравнительно недавно обнаружены: антипротон и антинейтрон. Электрический заряд антипротона отрицателен. Атомы, ядра которых состоят из антинуклонов, а оболочка - из позитронов, образуют антивещество. В 1969 г. в нашей стране был впервые получен антигелий.

Билет 25

1.Математическая запись универсального газового закона проста:

pV = nRT. Она содержит основные характеристики поведения газов: p, V и T - соответственно давление, объем и абсолютная температура газа, R - универсальная газовая постоянная, общая для всех газов, а n - число, пропорциональное числу молекул или атомов газа. Этот закон представляет собой то, что в физике принято называть уравнением состояния вещества, поскольку он описывает характер изменения свойств вещества при изменении внешних условий. Строго говоря, этот закон в точности выполняется только для идеального газа. Эта формула была получена в 1874 году Д. И. Менделеевым путем объединения закона Авогадро и общего газового закона (pV/T = const), сформулированного в 1834 году Б. П. Э. Клапейроном. Поэтому этот закон принято называть законом Менделеева-Клапейрона. По существу, этот закон позволил ввести все ранее сделанные эмпирические заключения о характере поведения газов в рамки новой молекулярно-кинетической теории.

P-n переходом или электронно-дырочным переходом называется контакт двух полупроводников с электронной и дырочной проводимостью. Эти переходы играют важную роль в современной электронике. Обладая односторонней проводимостью p-n переходы используются для выпрямления переменного тока в качестве самостоятельных изделий(диоды), позволяют создавать приборы для управления электрическим током (транзисторы), а так же используются в интегральных микросхемах для изоляции ее элементов.

На рис.4.3. приведена схема p-n перехода.

Рис.4.3. Схема p-n перехода: распределение объемного заряда (а) и примесей (б), зонная диаграмма в полупроводниках n и p –типа (в) и в p-n переходе (г).

Объемные заряды, образующиеся в области p-n перехода, создают потенциальный барьер для прохождения подвижных носителей. Управляя величиной барьера можно изменять величину тока в электрической цепи.

Возникающая контактная разность потенциалов (величина потенциального барьера) определяется из выражения

где p p , n n – равновесная концентрация основных носителей;

n i – концентрация собственных носителей.

Электрическое поле в области объемного заряда (d=d p +d n) определяется законом распределения этих зарядов и находиться из решения уравнения Пуассона.

Для d p x 0 (4.9)

для 0 x d n (4.10)

Учитывая, что E=dφ/dx можно получить выражение для φ(x)

при 0≤x≤d n ; (4.11)

при d p ≤x≤0 (4.12)

Толщина области объемного заряда (d=d p +d n)

где U – приложенное внешнее напряжение.

Для несимметричного перехода, когда N D >>N A уравнение упрощается

При обратном включении перехода (- к p - области, + к n - области) слой объемного заряда можно рассматривать как некий конденсатор, обладающий емкостью (С б), называемой барьерной.

Вольт-амперная характеристика. Рассмотрим вольт-амперную характеристику р-n-перехода. Как и в случае контакта металл - полупроводник, вид вольт-ампер­ной характеристики существенно зависит от структуры р-n-перехода, точнее говоря, от его толщины. Так, если толщина р-n-перехода меньше длины свободного пробега носителей (тонкий переход), то электроны или дырки пролетают через переход, не испытывая столкновений с решеткой. В случае же толстого перехода, когда его ширина значи­тельно превышает длину свободного пробега, перенос носителей заряда имеет диффузионный характер. Однако поскольку в отличие от контак­та металл - полупроводник в p-n-переходе перенос тока осуществля­ется неосновными носителями заряда, то главным является не характер переноса, а интенсивность генерации и рекомбинации носителей в об­ласти р-n-перехода. В случае тонкого перехода рекомбинация в слое объемного заряда незначительна. Напротив, в толстом р-n-переходе значительная часть неосновных носителей рекомбинирует, что должно заметно сказаться на виде вольт-амперной характеристики.



Рассмотрим вначале вольт-амперную характеристику тонкого пере­хода. Тонкий переход носители заряда проходят, не успевая рекомбинировать, поэтому как дырочные токи, так и электронные токи по обе стороны р-я-перехода равны. Дырочный ток на границе слоя объемного заряда со стороны электрон­ного полупроводника при x = -L n полностью определяется диффу­зионной составляющей, поскольку в этой точке напряженность элект­рического поля равна нулю.

Плотность дырочного тока в этом случае

Аналогичное выражение можно получить для плотности электронного тока:

Полный ток, протекающий через р-n-переход, можно рассчитать в любом сечении (S) образца. Проще всего его вычислить на границе р-n-пере­хода,

I =S(J p + J p) (4.18)

Из полученной формулы видно, что в прямом направлении ток возрас­тает по экспоненциальному закону с ростом напряжения, а в запорном направлении стремится к току насыщения I S , обусловленному тепловой генерацией неосновных носителей на границе p-n перехода и не зависящему от внеш­него напряжения:

Если р-л-переход является резко несимметричным, то одно из сла­гаемых в формуле (4.20) будет исчезающе малым. Действительно, пусть, например, n-область легирована значительно сильнее, чем р-область. Тогда в соответствии с законом действующих масс имеем p no <. Поскольку диффузионные длины L p и L n не сильно отли­чаются, друг от друга, то получим

В общем случае степень асимметрии р-n перехода характеризуется параметром, получившим название коэффициента инжек­ции . Коэффициент инжекции равен отношению большей составляю­щей тока к полному току. В случае, когда n n >>p p коэффициент инжек­ции равен

Рассмотрим далее вольт-амперную характеристику толстого пере­хода на примере так называемого p-i-n-диода. Структура такого диода представляет собой два слоя n- и р-типа, разделенных высокоомным слоем собственной проводимости толщиной d. В таком диоде уже нельзя пренебрегать процессами гене­рации и рекомбинации внутри p-n перехода. В случае, когда внешняя разность потенциалов включена в запорном направлении, в промежу­точном i-слое идет генерация носителей заряда со скоростью n i /τ i . При напряжении, включенном в прямом направлении, в этом слое идет рекомбинация инжектируемых носителей и плотность тока, связанная с генерацией и рекомбинацией носителей в промежуточном слое толщиной d равна

где τ i – время жизни собственных носителей;

n i – собственная концентрация носителей.

Полный ток, протекающий через p-i-n переход, можно рассматривать как сумму тока, рассчитанного без учета генерации и реком­бинации внутри перехода и генерационно-рекомбинационной составляющей:

Полученная формула справедлива не только в случае явно выраженного i-слоя, но и при плавном изменении концентрации примесей в области обычного р-n перехода. В этом случае роль параметра d играет общая ширина р-п- перехода. Из формулы (4.24) следует условие для определения принад­лежности данного р – n перехода к категории тонкого или толстого: если третье слагаемое в круглых скобках значительно меньше суммы первых двух, то переход можно считать тонким. В противном случае р-n переход необходимо рассматривать как толстый.

Пробой p-n перехода. С увеличением обратного напряжения на р-n пере-ходе при достижении некоторого значения напряжения U проб начинается резкое увеличе­ние тока через диод, приводящее к пробою. Средняя напряженность элек­трического поля в области объ­емного заряда р-n перехода может быть записана как

E=V/d = (q/2εε 0) 1/2 (UN D) 1/2 (4.25)

Так как пробой начинается при достижении определенного (для каждых конкретных условий) значения напряженности электрического поля E проб, то чем больше d (меньше N D), тем при большем напряже­нии U проб начинается пробой. Очевидно, наибольшее U проб имеет р-i-n переход, так как N D в его базе наи­меньшая, а ширина области объемного заряда d наи­большая.

Гетеропереходы. В отличие от р-n перехода, образованного измене­нием концентрации примесей в одном полупроводнико­вом материале (гомопереход), гетеропереходом называ­ют переход, образованный полупроводниками различной физико-химической природы. Примерами гетероперехо­дов могут быть переходы германий - кремний, герма­ний -арсенид галлия, арсенид галлия - форсфид гал­лия и т. д. Для получения гетеропереходов с мини­мальным количеством дефектов на границе раздела кристаллическая решетка одного полупроводника дол­жна с минимальными нару­шениями переходить в кристаллическую решетку дру­гого. В связи с этим полу­проводники, используемые для создания гетероперехо­да, должны иметь близкие значения постоянной решет­ки и идентичные кристалли­ческие структуры. Наиболь­ший практический интерес представляют в настоящее время гетеропереходы, об­разованные полупроводни­ками с различной шириной запрещенной зоны, причем интересными свойствами для полупроводниковых приборов обладают не только гетеропереходы между полупроводниками р- и n-типа, но также и гетеропереходы между полупроводниками с одним типом проводимости: n-n или р-р.

Рассмотрим энергетическую диаграмму гетеропере­хода между полупроводником n-типа с широкой запрещенной зоной и полупроводником р-типа с уз­кой запрещенной зоной (рис. 4.4). За начало отсчета (0) принята энергия электрона, находящегося в ваку­уме. Величина χ в данном случае - истинная работа выхода электрона. из полупроводника в вакуум. Термодинамическая рабо­та выхода обозначена А.

При создании контакта между двумя полупроводни­ками уровни Ферми выравниваются. Отличия гетероперехода от энерге­тической диаграммы р-n перехода заключаются в наличии разрывов в зоне проводимости (ΔE C )и в валент­ной зоне (ΔE V). В зоне. проводимости величина разры­ва обусловлена разностью истинных работ выхода элек­тронов из р и n полупроводников:

ΔE C = χ 2 – χ 1 (4.26)

а в валентной зоне, кроме этого, еще и неравенством значений энергий E V .

Поэтому потенциальные барьеры для электронов и дырок будут различными: потенциаль­ный барьер для электронов в зоне проводимости мень­ше, чем для дырок в валентной зоне. При подаче напря­жения в прямом направлении потенциальный барьер для электронов уменьшится и электроны из n -полупро-водника инжектируются в р -полупроводник. Потенци­альный барьер для дырок в р -области также уменьшит­ся, но все же останется достаточно большим для того, чтобы инжекции дырок из р -области в n -область прак­тически не было. В этом случае коэффициент инжекции (γ) может быть равным единице.

Рис. 4.4. Энергетическая диа­грамма двух полупроводников р- и n-типа с различной шири­ной запрещенной зоны (а) и р –n гетероперехода (б)

Для достижения лучших параметров прибора эта вели­чина должна быть максимальной. В гомопереходе это достигается более сильным легиро­ванием примесями n-области относительно р-области. Однако по этому пути нельзя идти бесконеч­но, так как, с одной стороны, существует предел рас­творимости примеси в полупроводнике и, с другой, при сильном легировании полупроводника в него одновре­менно с примесью вносится множество различных де­фектов, которые ухудшают параметры р-n перехода. В этом направлении перспективным является использо­вание гетероперехода.

Если гетеро­переход образован полупроводниками с равным количе­ством примесей (п п =p p ) и для простоты считать, что эффективные массы и другие параметры носителей за­ряда равны, то можно написать

I p /I n =exp[-(E gn –E g p )/kT] (4.27)

При использовании, например, n-кремния и р-германия E gn –E gp =0,4 эВ. Так как kT/q=0,025 В, то 1 р /1 п = е - 16 , что практически равно нулю, т. е. ток через гетеропере­ход состоит только из электронов, инжектированных из n- области в р -область. В гомопереходе при этих же условиях I р /I n =:1, т. е. токи электронов и дырки равны.

Таким образом, гетеропереход позволяет осуществ­лять практически одностороннюю инжекцию носителей заряда. Существенно отметить, что односторонняя ин-жекция сохраняется и при увеличении тока через гете­ропереход, тогда как в гомопереходе она нарушается.

«Физика - 10 класс»

Какие носители тока в полупроводнике являются основными, а какие - неосновными?
Чем отличается примесная проводимость от собственной проводимости?

Наиболее интересные явления происходят при контакте полупроводников n- и p-типов. Эти явления используются в большинстве полупроводниковых приборов.


р-n-Переход.


Рассмотрим, что будет происходить, если привести в контакт два одинаковых полупроводника, но с разным типом проводимости: слева полупроводник n-типа, а справа полупроводник р-типа (рис. 16.10).

Контакт двух полупроводников с разным типом проводимости называют р-n- или n-р-переходом .

Электроны на рисунке изображены голубыми кружочками, дырки - серыми.

В левой части много свободных электронов, а в правой их концентрация очень мала. В правой части, наоборот, много дырок, т. е. вакантных мест для электронов. Как только полупроводники приводят в контакт, начинается диффузия электронов из области с проводимостью n-типа в область с проводимостью p-типа и соответственно переход дырок в обратном направлении. Перешедшие в полупроводник p-типа электроны занимают свободные места, происходит процесс рекомбинации электронов и дырок, а попавшие в полупроводник n-типа дырки также исчезают благодаря электронам, занимающим вакантное место. Таким образом, вблизи границы раздела полупроводников с разным типом проводимости возникает слой, обеднённый носителями тока (его называют контактным слоем). Этот слой фактически представляет собой диэлектрик, его сопротивление очень велико. При этом полупроводник n-типа заряжается положительно, а полупроводник р-типа - отрицательно. В зоне контакта возникает стационарное электрическое поле напряжённостью к, препятствующее дальнейшей диффузии электронов и дырок.

Суммарное сопротивление приведённых в контакт полупроводников складывается из сопротивления полупроводника л-типа, р-n-перехода и полупроводника p-типа: R = R n + R pn + R р. Так как сопротивления областей с n- и p-типами проводимости малы (там много носителей заряда - электронов и дырок), то суммарное сопротивление определяется в основном сопротивлением р-n-перехода: R ≈ R pn .

Включим полупроводник с р-n-переходом в электрическую цепь так, чтобы потенциал полупроводника p-типа был положительным, а n-типа - отрицательным (рис. 16.11). В этом случае напряжённость внешнего поля будет направлена в сторону, противоположную напряжённости контактного слоя.

Модуль суммарной напряжённости E = E к - E внеш. Так как поле, удерживающее носители тока, ослабевает, то у электронов уже достаточно энергии, чтобы его преодолеть.

Через переход пойдёт ток, при этом он будет создан основными носителями - из области с n-типом проводимости в область с p-типом проводимости идут электроны, а из области с p-типом в область с n-типом - дырки. В этом случае р-n-переход называется прямым .


Отметим, что электрический ток идёт во всей цепи: от положительного контакта через область p-типа к р-n-переходу, затем через область n-типа к отрицательному контакту (рис. 16.12). Проводимость всего образца велика, а сопротивление мало. Чем больше подаваемое на контакт напряжение, тем больше сила тока.

Зависимость силы тока от разности потенциалов - вольт-амперная характеристика прямого перехода - изображена на рисунке (16.13) сплошной линией.

Отметим, что изменение подаваемого напряжения приводит к резкому увеличению силы тока. Так, увеличение напряжения на 0,25 В может привести к увеличению силы тока в 20 000 раз.

При прямом переходе сопротивление запирающего слоя мало, и оно также зависит от подаваемого напряжения, с увеличением которого сопротивление уменьшается.

Изменим теперь полярность подключения батареи. В этом случае напряжённости внешнего и контактного полей направлены в одну сторону (рис. 16.14) и модуль суммарной напряжённости E = E к - E внеш. Внешнее поле оттягивает электроны и дырки от контактного слоя, в результате чего он расширяется. В связи с этим у электронов уже не хватает энергии для того, чтобы преодолеть этот слой. Теперь переход через контакт осуществляется неосновными носителями, число которых мало.

Сопротивление контактного слоя очень велико. Ток через р-n-переход не идёт. Образуется так называемый запирающий слой. Такой переход называется обратным .

Вольт-амперная характеристика обратного перехода изображена на рисунке 16.13 штриховой линией.

р-n-Переход по отношению к току оказывается несимметричным: в прямом направлении сопротивление перехода значительно меньше, чем в обратном. Таким образом, р-n-переход можно использовать для выпрямления электрического тока.

Устройство, содержащее р-n-переход и способное пропускать ток в одном направлении и не пропускать в противоположном, называется полупроводниковым диодом .

Если на контакты полупроводникового диода подать переменное напряжение, то ток по цепи пойдёт только в одну сторону.

Полупроводниковые диоды изготовляют из германия, кремния, селена и других веществ.

Рассмотрим, как создают р-n- переход, используя германий, обладающий проводимостью n-типа, с небольшой добавкой донорной примеси. Этот переход не удаётся получить путём механического соединения двух полупроводников с различными типами проводимости, так как при этом получается слишком большой зазор между полупроводниками. Толщина же р-n-перехода должна быть не больше межатомных расстояний, поэтому в одну из поверхностей образца вплавляют индий. Для создания полупроводникового диода полупроводник с примесью p-типа, содержащий атомы индия, нагревается до высокой температуры. Пары примеси n-типа (например, мышьяка) осаждаются на поверхность кристалла. Вследствие диффузии они внедряются в кристалл, и на поверхности кристалла с проводимостью р-типа образуется область с электронным типом проводимости (рис. 16.15).

Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметичный металлический корпус.

Полупроводниковые диоды применяют в детекторах приёмников для выделения сигналов низкой частоты, для защиты от неправильного подключения источника к цепи.

В светофорах используются специальные полупроводниковые диоды. При прямом подключении такого диода происходит активная рекомбинация электронов и дырок. При этом выделяется энергия в виде светового излучения.

Схематическое изображение диода приведено на рисунке 16.16. Полупроводниковые выпрямители обладают высокой надёжностью и имеют большой срок службы. Однако они могут работать лишь в ограниченном интервале температур (от -70 до 125 °С)


Транзисторы.


Ещё одно применение полупроводников с примесным типом проводимости - транзисторы - приборы, используемые для усиления электрических сигналов.

Рассмотрим один из видов транзисторов из германия или кремния с введёнными в них донорными и акцепторными примесями. Распределение примесей таково, что создаётся очень тонкая (толщиной порядка нескольких микрометров) прослойка полупроводника n-типа между двумя слоями полупроводника p-типа (рис. 16.17). Эту тонкую прослойку называют основанием или базой .

В кристалле образуются два р-n-перехода, прямые направления которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изображённую на рисунке 16.17. В данной схеме при подключении батареи Б1 левый р-n-переход является прямым . Левый полупроводник с проводимостью p-типа называют эмиттером . Если бы не было правого р-n-перехода, в цепи эмиттер - база существовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напряжения) и сопротивления цепи, включая малое сопротивление прямого перехода эмиттер - база.

Батарея Б2 включена так, что правый n-р-переход в схеме (см. рис. 16.17) является обратным . Правая область с проводимостью p-типа называется коллектором . Если бы не было левого р-n-перехода, сила тока в цепи коллектора была бы близка к нулю, так как сопротивление обратного перехода очень велико. При существовании же тока в левом р-n-переходе появляется ток и в цепи коллектора, причём сила тока в коллекторе лишь немного меньше силы тока в эмиттере. (Если на эмиттер подано отрицательное напряжение, то левый р-n-переход будет обратным, и ток в цепи эмиттера и в цепи коллектора будет практически отсутствовать.)

Это объясняется следующим образом. При создании напряжения между эмиттером и базой основные носители полупроводника p-типа (дырки) проникают в базу, где они являются уже неосновными носителями . Поскольку толщина базы очень мала и число основных носителей (электронов) в ней невелико, попавшие в неё дырки почти не объединяются (не рекомбинируют) с электронами базы и проникают в коллектор за счёт диффузии. Правый р-n-переход закрыт для основных носителей заряда базы - электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см. рис. 16.17) плоскости много меньше сечения в вертикальной плоскости.


Сила тока в коллекторе почти равная силе тока в эмиттере, изменяется вместе с током через эмиттер. Сопротивление резистора R мало влияет на ток в коллекторе, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника переменного напряжения, включённого в его цепь, мы получим синхронное изменение напряжения на резисторе R.

При большом сопротивлении резистора изменение напряжения на нём может в десятки тысяч раз превышать изменение напряжения сигнала в цепи эмиттера. Это означает усиление напряжения. Поэтому на нагрузке R можно получить электрические сигналы, мощность которых во много раз превышает мощность, поступающую в цепь эмиттера.


Применение транзисторов.


Современная электроника базируется на микросхемах и микропроцессорах, включающих в себя колоссальное число транзисторов.

Первая интегральная схема поступила в продажу в 1964 г. Она содержала шесть элементов - четыре транзистора и два резистора. Современные микросхемы содержат миллионы транзисторов.

Компьютеры, составленные из микросхем и микропроцессоров, фактически изменили окружающий человека мир. В настоящее время не существует ни одной области человеческой деятельности, где компьютеры не служили бы активными помощниками человека. Например, в космических исследованиях или высокотехнологичных производствах работают микропроцессоры, уровень организации которых соответствует искусственному интеллекту.

Транзисторы (рис. 16.18, 16 19) получили чрезвычайно широкое распространение в современной технике. Они заменили электронные лампы в электрических цепях научной, промышленной и бытовой аппаратуры. Портативные радиоприёмники, в которых используются такие приборы, в обиходе называются транзисторами. Преимуществом транзисторов (так же как и полупроводниковых диодов) по сравнению с электронными лампами является прежде всего отсутствие накалённого катода, потребляющего значительную мощность и требующего времени для его разогрева. Кроме того, эти приборы в десягки и сотни раз меньше по размерам и массе, чем электронные лампы.


План – конспект

урока по физике

Тема урока: Электрический ток через контакт полупроводников р и n типа.

Полупроводниковый диод.

Тема урока . Электрический ток через контакт

полупроводников p и n типов.

Полупроводниковый диод.

Цель урока : объяснить механизм прохождения электрического тока через контакт полупроводников р и n типов, рассмотреть прямой и обратный переход, изучить устройство и принцип действия полупроводникового диода, повторить ранее изученный материал используя опорные конспекты и ТСО.

Задачи урока:

    Образовательные - создать условия для усвоения нового учебного материала, используя проблемное обучение;

    Ввести понятия прямой и обратный переход, полупроводниковый диод;

    Развивающие – развивать творческую и мыслительную деятельность учащихся на уроке с помощью решения задач исследовательского характера, интеллектуальные качества личности школьника такие, как самостоятельность, способность к оценочным действиям, обобщению, быстрому переключению; способствовать формированию навыков самостоятельной работы; формировать умения чётко и ясно излагать свои мысли.

    Воспитательные - прививать культуру умственного труда, прививать учащимся интерес к предмету с помощью применения информационных технологий(с использованием компьютера); формировать умения аккуратно и грамотно выполнять математические записи.

Оборудование : опорные конспекты, набор полупроводниковых

диодов, компьютеры с программой

«Открытая физика».

Этапы урока

Время,

мин

Приемы и методы

1.Повторение ранее изученного материала

2. Изучение нового материала: электрический ток через контакт полупроводников

р и n типа. Полупроводниковый диод.

3. Формирование умений и навыков.

4. Первичная проверка усвоения знаний. Рефлексия.

5.Пвторение материала.

5. Подведение итогов.

6.Домашнее задание.

Беседа. Опрос по опорным конспектам.

Рассказ учителя. Беседа. Опорные конспекты. Показ пошаговой анимации.

Ответы на вопросы учащихся.

Опрос по опорным конспектам.

Программа «Открытая физика»

Сообщение учителя.

Запись на доске.

План урока

Ход и содержание урока.

    Вводное слово учителя.

    Проверка усвоения изученного материала.

    1. Обзор темы « Законы постоянного тока » -- опорный конспект.

      Электрический ток в полупроводниках.

2.2.1 Строение полупроводников.

2.2.2 Электронная проводимость.

2.2.3 Дырочнач проводимость.

2.2.4 Примесная проводимость.

2.2.5 Донорные примеси.

2.2.6 Акцепторные примеси.

Опрос учащихся проводится с использованием опорных конспектов.

2.2.7 Физический диктант.

1. Что называется собственной проводимостью полупроводников?

2. При каких условиях чистые полупроводники становятся электропроводными?

3. Как зависит проводимость полупроводников от температуры?

4. Какую проводимость полупроводников называют электронной?

5. Как в чистом полупроводнике возникают "дырки"?

6. Какова природа тока в полупроводнике?

7. Как влияет на проводимость полупроводников наличие в них примесей?

8. При каком условии в примесном полупроводнике возникает электронная проводимость?

9. При каком условии в примесном полупроводнике возникает дырочная проводимость?

10. Как называются полупроводники, у которых основными носителями заряда являются электроны?

11. Как называются полупроводники, у которых основными носителями заряда являются дырки?

    Изучение нового материала .

3.1Электрический ток через контакт полупроводников p и n типов (по опорному конспекту)

3.1.1 Электрические свойства "p-n" переходов.

"p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).
В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой.Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.


Внешнее электрическое поле влияет на сопротивление запирающего слоя.
При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела.Электроны, переходя границу заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.


При запирающем (обратном направлении внешнего эл.поля эл.ток через область контакта двух полупроводников проходить не будет.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны.. Запирающий слой утолщается, его сопротивление увеличивается.

3.2 Полупроводниковый диод (опорный конспект).

Полупроводник с одним "p - n" переходом называется полупроводниковым диодом.

При наложении эл. поля в одном направлении сопротивление полупроводника велико,
в обратном - сопротивление мало.


Полупроводниковые диоды основные элементы выпрямителей переменного тока.

3.3 Область применения полупроводниковых диодов .

Объяснение материала сопровождается демонстрацией полупроводниковых диодов. Слайд презентации.

....................

    Закрепление материала.

Опорные конспекты.

Компьютеры – программа «Открытая физика».

    Задание на дом : $73,74.

    Подведение итогов.






























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Урок в 10-м классе.

Тема: р- и n - типов. Полупроводниковый диод. Транзисторы».

Цели:

  • образовательные : сформировать представление о свободных носителях электрического заряда в полупроводниках при наличии примесей с точки зрения электронной теории и опираясь на эти знания выяснить физическую сущность p-n-перехода; научить учащихся объяснять работу полупроводниковых приборов, опираясь на знания о физической сущности p-n-перехода;
  • развивающие : развивать физическое мышление учащихся, умение самостоятельно формулировать выводы, расширять познавательный интерес, по­знавательную активность;
  • воспитательные : продолжить формирование научного мировоззрения школьников.

Оборудование: презентация по теме: «Полупроводники. Электрический ток через контакт полупроводников р- и n - типов. Полупроводниковый диод. Транзистор», мультимедийный проектор.

Ход урока

I. Организационный момент.

II. Изучение нового материала.

Слайд 1.

Слайд 2. Полупроводник – вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры, а это значит, что электрическая проводимость (1/R) увеличивается.

Наблюдается у кремния, германия, селена и у некоторых соединений.

Слайд 3.

Механизм проводимости у полупроводников

Слайд 4.

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние Слайд 5. электроны связаны с соседними атомами ковалентными связями.

При низких температурах у чистых полупроводников свободных электронов нет и они ведут себя как диэлектрики.

Полупроводники чистые (без примесей)

Если полупроводник чистый(без примесей), то он обладает собственной проводимостью, которая невелика.

Собственная проводимость бывает двух видов:

Слайд 6. 1) электронная (проводимость "n " – типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны – сопротивление уменьшается.

Свободные электроны перемещаются противоположно вектору напряженности электрического поля.

Электронная проводимость полупроводников обусловлена наличием свободных электронов.

Слайд 7.

2) дырочная (проводимость " p" – типа)

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном – "дырка".

Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.

Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей. Поэтому полупроводники обладают ещё и дырочной проводимостью.

Общая проводимость чистого полупроводника складывается из проводимостей "p" и "n" -типов и называется электронно-дырочной проводимостью.

Полупроводники при наличии примесей

У таких полупроводников существует собственная + примесная проводимость.

Наличие примесей проводимость сильно увеличивает.

При изменении концентрации примесей изменяется число носителей электрического тока – электронов и дырок.

Возможность управления током лежит в основе широкого применения полупроводников.

Существуют:

Слайд 8. 1) донорные примеси (отдающие) – являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.

Слайд 9. Это проводники " n " – типа , т.е. полупроводники с донорными примесями, где основной носитель заряда – электроны, а неосновной – дырки.

Такой полупроводник обладает электронной примесной проводимостью. Например – мышьяк.

Слайд 10. 2) акцепторные примеси (принимающие) – создают "дырки" , забирая в себя электроны.

Это полупроводники " p "- типа , т.е. полупроводники с акцепторными примесями, где основной носитель заряда – дырки, а неосновной – электроны.

Такой полупроводник обладает дырочной примесной проводимостью . Слайд 11. Например – индий. Слайд 12.

Рассмотрим, какие физические процессы происходят при контакте двух полупроводников с различным типом проводимости, или, как говорят, в р-n-переходе.

Слайд 13-16.

Электрические свойства "p-n" перехода

"p-n" переход (или электронно-дырочный переход) – область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.

При прямом (пропускном) направлении внешнего электрического поля электрический ток проходит через границу двух полупроводников.

Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.

Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода :

Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковые диоды

Полупроводник с одним "p-n" переходом называется полупроводниковым диодом.

– Ребята, запишите новую тему: «Полупроводниковый диод».
– Какой там ещё идиот?», – с улыбкой переспросил Васечкин.
– Не идиот, а диод! – ответил учитель, – Диод, значит имеющий два электрода, анод и катод. Вам ясно?
– А у Достоевского есть такое произведение – «Идиот», – настаивал Васечкин.
– Да, есть, ну и что? Вы на уроке физики, а не литературы! Прошу больше не путать диод с идиотом!

Слайд 17–21.

При наложении эл.поля в одном направлении сопротивление полупроводника велико, в обратном – сопротивление мало.

Полупроводниковые диоды основные элементы выпрямителей переменного тока.

Слайд 22–25.

Транзисторами называют полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Полупроводниковые транзисторы – также используются свойства" р-n "переходов, - транзисторы используются в схемотехнике радиоэлектронных приборов.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как – то отличить их от вторых, часто называют обычными транзисторами. Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем. Термин «транзистор» образован из двух английских слов: transfer – преобразователь и resistor – сопротивление. В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р – n перехода. Две крайние области обладают электропроводностью одного типа, средняя – электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p – n – р. У транзистора структуры n – p – n, наоборот, по краям расположены области с электронной электропроводностью, а между ними – область с дырочной электропроводностью (рис. 1, б).

При подаче на базу транзистора типа n-p-n положительного напряжения он открывается, т. е. сопротивление между эмиттером и коллектором уменьшается, а при подаче отрицательного, наоборот – закрывается и чем сильнее сила тока, тем сильнее он открывается или закрывается. Для транзисторов структуры p-n-p все наоборот.

Основой биполярного транзистора (рис. 1) служит небольшая пластинка германия или кремния, обладающая электронной или дырочной электропроводимостью, то есть n-типа или p-типа. На поверхности обеих сторон пластинки наплавляют шарики примесных элементов. При нагревании до строго определенной температуры происходи диффузия (проникновение) примесных элементов в толщу пластинки полупроводника. В результате в толще пластинки возникают две области, противоположные ей по электропроводимости. Пластинка германия или кремния p-типа и созданные в ней области n-типа образуют транзистор структуры n-p-n (рис. 1,а), а пластинка n-типа и созданные в ней области p-типа - транзистор структуры p-n-p (рис. 1,б).

Независимо от структуры транзистора его пластинку исходного полупроводника называют базой (Б), противоположную ей по электропроводимости область меньшего объема - эмиттером (Э), а другую такую же область большего объема - коллектором (К). Эти три электрода образуют два p-n перехода: между базой и коллектором - коллекторный, а между базой и эмиттером - эмиттерный. Каждый из них по своим электрическим свойствам аналогичен p-n переходам полупроводниковых диодов и открывается при таких же прямых напряжениях на них.

Условные графические обозначения транзисторов разных структур отличаются лишь тем, что стрелка, символизирующая эмиттер и направление тока через эмиттерный переход, у транзистора структуры p-n-p обращена к базе, а у транзистора n-p-n - от базы.

Слайд 26–29.

III. Первичное закрепление.

  1. Какие вещества называются полупроводниками?
  2. Какую проводимость называют электронной?
  3. Какая проводимость наблюдается ещё у полупроводников?
  4. О каких примесях теперь вам известно?
  5. В чем заключается пропускной режим p-n- перехода.
  6. В чем заключается запирающий режим p-n- перехода.
  7. Какие полупроводниковые приборы вам известны?
  8. Где и для чего используют полупроводниковые приборы?

IV. Закрепление изученного

  1. Как меняется удельное сопротивление полупроводников: при нагревании? При освещении?
  2. Будет ли кремний сверхпроводящим, если его охладить до температуры, близкой к абсолютному нулю? (нет, с понижением температуры сопротивление кремния увеличивается).



Top