Продление активации windows 7. Обнуление триала. Как продлить жизнь Windows

В классической механике состояние материальной точки (классической частицы) определяется заданием значений координат, импульса, энергии и т. д. Перечисленные величины называются динамическими переменными. Строго говоря, микрообъекту не могут быть приписаны указанные динамические переменные. Однако информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами, представляющими собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, т. е. через значения динамических переменных. В соответствии с этим измеренные значения динамических переменных приписываются микрочастицам. Например, говорят о состоянии электрона, в котором он имеет такое-то значение энергии, и т. д.

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Так, например, электрон (и любая другая микрочастица) не может иметь, одновременно точных значений координаты х и компоненты импульса . Неопределенности значений удовлетворяют соотношению

( - постоянная Планка). Из (20.1) следует, что чем меньше неопределенность одной из переменных или тем больше неопределенность другой. Возможно такое состояние, в котором одна из переменных имеет точное значение, другая переменная при этом оказывается совершенно неопределенной (ее неопределенность равна бесконечности).

Соотношение, аналогичное (20.1), имеет место для у и , для z и , а также для ряда других пар величин (в классической механике такие пары величин называются канонически сопряженными). Обозначив канонически сопряженные величины буквами А и В, можно написать

(20.2)

Соотношение (20.2) называется соотношением неопределенности для величин А и Б. Это соотношение открыл В. Гейзенберг в 1927 г.

Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка , называется принципом неопределенности Гейзенберга.

Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенности:

Это соотношение означает, что определение энергии с точностью должно занять интервал времени, равный но меньшей мере .

Соотношение неопределенности было установлено из рассмотрения, в частности, следующего примера. Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель ширины , расположенную перпендикулярно к направлению движения частицы (рис. 20.1). До прохождения частицы через щель ее составляющая импульса имеет точное значение, равное нулю (щель по условию перпендикулярна к импульсу), так что , зато координата х частицы является совершенно неопределенной. В момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность , но это достигается ценой утраты определенности значения Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла , где - угол, соответствующий первому дифракционному минимуму (максимумами высших порядков можно пренебречь, поскольку их интенсивность мала по сравнению с интенсивностью центрального максимума). Таким образом, появляется неопределенность:

Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели ширины соответствует угол для которого

{см. формулу (129.5) 2-го тома). Следовательно,

Отсюда с учетом (18.1) получается соотношение

согласующееся с (20.1).

Иногда соотношение неопределенности получает следующее толкование: в действительности у микрочастицы имеются точные значения координат и импульсов, однако ощутимое для такой частицы воздействие измерительного прибора не позволяет точно определить эти значения. Такое толкование является совершенно неправильным. Оно противоречит наблюдаемым на опыте явлениям дифракции микрочастиц.

Соотношение неопределенности указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц. Движение по траектории характеризуется вполне определенными значениями координат и скорости в каждый момент времени. Подставив в (20.1) вместо произведение тих, получим соотношение

Мы видим, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости и, следовательно, с тем большей точностью применимо понятие траектории. Уже для макрочастицы размером всего 1 мкм неопределенности значений оказываются за пределами точности измерения этих величин, так что практически ее движение будет неотличимо от движения по траектории.

При определенных условиях даже движение микрочастицы может приближенно рассматриваться как происходящее по траектории. В качестве примера рассмотрим движение электрона в электронно-лучевой трубке. Оценим неопределенности координаты и импульса электрона для этого случая. Пусть след электронного пучка на экране имеет радиус порядка , длина трубки порядка 10 см (рис. 20.2). Тогда Импульс электрона связан с ускоряющим напряжением U соотношением

Отсюда При напряжении . В энергия электрона равна Оценим величину импульса:

Следовательно, , наконец, согласно соотношению (20.1):

Полученный результат указывает на то, что движение электрона в электронно-лучевой трубке практически неотличимо от движения по траектории.

Соотношение неопределенности является одним из фундаментальных положений квантовой механики. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Если бы электрон упал на точечное ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности. Этот принцип требует, чтобы неопределенность координаты электрона и неопределенность импульса были связаны условием (20.1), Формально энергия была бы минимальна при Поэтому, производя оценку наименьшей возможной энергии, нужно положить . Подставив эти значения в (20.1), получим соотношение

Принципы неопределенности Гейзенберга являются одной из проблем квантовой механики, однако прежде мы обратимся к развитию физической науки в целом. Еще в конце XVII века Исааком Ньютоном была заложена современная классическая механика. Именно он сформулировал и описал ее основные законы, при помощи которых можно предсказать поведение окружающих нас тел. К концу XIX века эти положения казались нерушимыми и применимыми ко всем законам природы. Задачи физики как науки, казалось, были решены.

Нарушение законов Ньютона и рождение квантовой механики

Но, как выяснилось, на тот момент о свойствах Вселенной было известно существенно меньше, чем казалось. Первым камнем, нарушившим стройность классической механики, стало неподчинение ее законам распространения световых волн. Таким образом, совсем молодая на тот момент наука электродинамика была вынуждена выработать совершенно иной свод правил. А для физиков-теоретиков возникла проблема: как привести две системы к единому знаменателю. Кстати, наука и сегодня работает над ее решением.

Миф о всеобъемлющей ньютоновской механике был окончательно разрушен с более глубоким изучением строения атомов. Британец Эрнест Резерфорд обнаружил, что атом не является неделимой частицей, как считалось ранее, а сам имеет в своем составе нейтроны, протоны и электроны. Более того, их поведение также совершенно не вязалось с постулатами классической механики. Если в макромире гравитация в значительной степени определяет природу вещей, то в мире квантовых частиц она является крайне малой силой взаимодействия. Так были заложены основы квантовой механики, в которой тоже действовали собственные аксиомы. Одним из показательных отличий этих мельчайших систем от привычного нам мира стал принцип неопределенности Гейзенберга. Он наглядно продемонстрировал необходимость отличного подхода к этим системам.

Принцип неопределенности Гейзенберга

В первой четверти XX века квантовая механика совершала свои первые шаги, а физики всего мира лишь осознавали, что же вытекает для нас из ее положений, и какие она открывает перспективы. Немецкий физик-теоретик Вернер Гейзенберг свои знаменитые принципы сформулировал в 1927 г. Заключаются принципы Гейзенберга в том, что невозможно просчитать одновременно и пространственное положение, и скорость квантового объекта. Основной причиной этому является тот факт, что при измерении мы уже воздействуем на измеряемую систему, тем самым нарушая ее. Если в знакомом нам макромире мы оцениваем объект, то, бросая на него даже взгляд, мы видим отражение света от него.

Но принцип неопределенности Гейзенберга говорит о том, что хоть в макромире свет никак не влияет на измеряемый объект, а в случае с квантовыми частицами фотоны (или любые другие производные измерения) оказывают значительное влияние на частицу. При этом интересно отметить, что отдельно скорость или отдельно положение тела в пространстве квантовая физика измерить вполне может. Но чем более точными будут наши показания скорости, тем меньше нам будет известно о пространственном положении. И наоборот. То есть принцип неопределенности Гейзенберга создает известные сложности в предсказании поведения квантовых частиц. Буквально это выглядит так: они меняют свое поведение, когда мы пытаемся за ними наблюдать.

По своему принципу рентгеновские методы анализа делятся на рентгеноабсорбционные, рентгеноэмиссионные и рентгенофлуоресцентные. Первые применяют довольно редко, хотя они удобны для определения, например, тяжелых атомов в матрице из легких атомов (свинец в бензине). Вторые весьма широко используют в варианте микроанализа – электронного зонда. Но наибольшее значение в настоящее время имеют, по-видимому, рентгенофлуоресцентные методы.

Рис. 6. Схема аппаратуры для рентгено-флуоресцентного анализа.

Рентгеноэмиссионный микроанализ – важное средство изучения минералов, горных пород, металлов, сплавов и многих других твердых объектов, прежде всего многофазных. Метод позволяет проводить анализ «в точке» (диаметр – до 500 нм и глубина вплоть до 1–2 микронов) или на участке поверхности за счет сканирования. Пределы обнаружения в этом случае обычно невелики, точность анализа оставляет желать лучшего, но как прием качественного и полуколичественного исследования включений и других неоднородностей электронный зонд давно завоевал общее признание. Несколько фирм производили и производят соответствующие приборы, в том числе приборыкомбайны, обеспечивающие анализ и другими методами – ЭСХА,

оже-электронной спектроскопией, масс-спектрометрией вторичных ионов. Аппаратура эта обычно сложная и дорогая.

Рентгенофлуоресцентный метод (РФА) – массовый, повсеместно применяемый, отличающийся важными достоинствами. Это анализ без разрушения; многоэлементность в сочетании с экспрессностью, что обеспечивает высокую производительность; довольно высокая точность; возможность создания небольших и не очень дорогих приборов, в том числе упрощенных анализаторов, например для быстрого определения драгоценных металлов в изделиях. Однако применяют также универсальные и непростые спектрометры, особенно для научно-исследовательских работ. Основная рубрикация рентгенофлуоресцентных приборов, однако, иная: их делят на энергодисперсионные и с дисперсией по длинам волн.

Рентгенофлуоресцентный метод решает задачи определения основных компонентов в геологических объектах, цементах, сплавах, и в последнее время – в объектах окружающей среды. Можно определять почти все элементы, кроме элементов начала периодической системы. Пределы обнаружения не слишком низкие (обычно до 10–3 –10–4 %), но зато погрешность вполне допустима даже при определении основных компонентов.

Частицами вызванная эмиссия рентгеновского излучения – аналитический метод, основанный на флуоресценции под действием рентгеновских лучей. Строго говоря, это не ядерная, а атомная техника. Однако вакансия в электронной оболочке атома, заполнение которой сопровождается рентгеновским излучением, создаётся пучком ионов, ускоренных на ускорителе, да и для регистрации рентгена используются типичный для измерения ионизирующей радиации полупроводниковый Si(Li) –

детектор.

Рис. 7. Рентгеновский спектр дождевой воды.

Аппаратура для этого метода схематически представлена на Рис. 6 . Пучок заряженных частиц, обычно – протонов, разогнанных на ускорителе до энергий 2 – 4 МэВ, бомбардирует тонкий образец, расположенный в вакуумной камере. Протоны соударяются с электронами материала, и выбивают некоторых из них с внутренних оболочек атомов. Сосуд Фарадея собирает заряженные протоны и тем самым измеряет ток пучка. Образец обычно – анализируемый материал, отложенный тонким слоем

на подложке. Характеристические рентгеновские лучи из образца регистрируются Si(Li) детектором. Типичный спектр представлен на Рис. 7. Спектр состоит из дискретных рентгеновских пиков, наложенных на фон рассеяния. Видны линииК а иK b лёгких элементов, возникшие при заполнении вакансий наК оболочке,

и L линии тяжёлых элементов. Пики, соответствующие данному элементу, интегрируют и по площади пика рассчитывают количество элемента или по известному абсолютному сечению ионизации (1 – 104 барн), выходу флюоресценции (0,1 – 0,9), току пучка и геометрии, или путём сравнения с результатами измерений эталона. Термин выход флуоресценции отражает долю заполняемых электронных вакансий при эмиссии рентгена от испущенных Оже-электронов.

Типичные пределы регистрации различных элементов в биологических образцах представлены на Рис. 8 . Для многих элементов чувствительность составляет часть на миллион. Этот метод в основном применяется в биологии и медицине. Использование матрицы из лёгких элементов уменьшает непрерывный фон и удаётся регистрировать многие примесные и токсичные элементы. (Здесь нет «дыр» в пределах детектирования, которые имеют место в активационном анализе, т.к. все элементы какое-нибудь изучение да испускают). Сложности возникают при приготовлении тонких репрезентативных образцов. Заметим, что рассматриваемый здесь метод чувствителен к элементному, а не к изотопному составу.

Самое успешное применение рентгеновского анализа – исследование загрязнения аэрозолей воздуха. Аэрозоли собирают на фильтровальную бумагу, которая представляет собой идеально тонкий образец для анализа. Основное преимущество – возможность анализа большого количества образцов за короткий период времени. Анализ осуществляется за минуту, причём все процедуры могут быть автоматизированы.

Рис. 8. Пределы детектирования в рентгено-флуоресцентном анализе биологических образцов.

Важный вариант – локальный микроанализ. Используя пучок протонов с диаметром 0,5 мм можно определить содержание следовых элементов в небольшой части образца, представляющего интерес для медицины.

3. РЕЗЕРФОРДОВСКОЕ ОБРАТНОЕ РАССЕЯНИЕ

Одним из первых экспериментов в ядерной физике была демонстрация большого углового рассеяния α -частиц от ядер золота. Эти эксперименты доказали существование в атоме маленького ядра. Силы, действующие в этом процессе, названном резерфордовским рассеянием, - кулоновские силы отталкивания положительно заряженных ядер. Схема явления представлена наРис. 9 .

Рис. 9. Схема метода обратного резерфордовского рассеяния.

Спектроскопия резерфордовского обратного рассеяния (спектроскопия рассеяния быстрых ионов, спектроскопия ионного рассеяния) - разновидность спектроскопии ионного рассеяния, основанная на анализе энергетических спектров ионов He + или протонов с энергией ~1-3 МэВ, рассеянных в обратном направлении по отношению к исследуемому образцу.

Ядерно-физический метод исследования твёрдых тел - метод обратного резерфордовского рассеяния - основан на применении физического явления – упругого рассеяния ускоренных частиц на большие углы при их взаимодействии с атомами вещества. Этот

метод используется для определения состава мишеней путем анализа энергетических спектров обратно рассеянных частиц. Аналитические возможности резерфордовского рассеяния лёгких частиц наши применение в различных областях физики и техники, от от электронной промышленности до исследований структурных фазовых переходов в высокотемпературных соединениях.

В спектроскопии резерфордовского обратного рассеяния пучок моноэнергетичных (обычно 1-2 МэВ) коллимированных легких ионов (Н+ , Не+ ) сталкивается с мишенью, после чего частично проникает вглубь образца, а частично отражается. В ходе анализа регистрируют число и энергию частиц, рассеявшихся на уголθ >90° (Рис. 10 ) и тем самым получают информацию о составе и структурных характеристиках исследуемого материала.

Энергия обратно рассеянных частиц:

Е 1 =КЕ 0 , (9)

где Е 0 - начальная энергия частиц пучка, аК - кинематический фактор, определяющий долю энергии, переданной ионом атомам твёрдого тела.

Рис. 10. Схема экспериментальной установки резерфордовского обратного рассеяния. 1- пучок первичных ионов; 2-коллиматоры; 3- исследуемый образец; 4- обратно рассеянный пучок ионов; 5- детектор.

Рассмотрим принципиальные особенности метода обратного резерфордовского рассеяния. Возможная схема применения метода показана на Рис. 11 . Коллимированный пучок ускоренных частиц с массойМ 1 , порядковым номеромZ 1 и энергиейЕ 0 направляется на поверхность объекта исследования. В качестве объекта исследования может быть достаточно тонкая пленка, масса и порядковый номер атомов которой равны, соответственно,М 2 иZ 2 .

Рис. 11 . Схема применения метода обратного резерфордовского рассеяния

Часть ионов в пучке отражается от поверхности с энергией К М 2 Е 0 , а часть проходит вглубь, рассеиваясь затем на атомах мишени. ЗдесьК М 2 - кинематический фактор, определяемый как отношение энергии частицыК М Е после упругого рассеяния частицы на уголθ на атоме мишениМ к её значению до столкновенияЕ . Кинематический фактор - функция угла

рассеяния. Рассеянные частицы, имеющие определенную энергию, выходят из мишени в разных направлениях, в одном из которых под углом θ к направлению первоначального движения регистрируется их число и энергия. Если энергии частиц анализирующего пучка достаточно для того, чтобы достичь задней поверхности мишени, то рассеянные атомами этой поверхности частицы будут иметь энергиюЕ 1 . Общая картина рассеянных от плёнки ионов представляет собой энергетический спектр обратно рассеянных частиц. В случае присутствия на поверхности пленки примеси, масса атомов которой равнаМ 3 , на энергетических спектрах обратного рассеяния появится пик в области энергийК М 3 Е 0 . Пик будет расположен в низкоэнергетической области спектра, если М3 M 2 .

Метод обратного резерфордовского рассеяния предполагает передачу энергии при процессах упругих взаимодействий двух тел, причём энергия налетающей частицы Е 0 должна быть намного больше энергии связи атомов в твердых телах. Поскольку последняя составляет величину порядка 10 – 20 эВ, то это условие всегда выполняется, когда для анализа используются ускоренные ионы с энергией в диапазоне от нескольких сотен кэВ до 2 – 3 МэВ. Верхняя граница энергии анализирующего пучка определяется таким образом, чтобы избежать возможных резонансных ядерных реакций при взаимодействии пучка с атомами мишени и примеси.

Резерфордовское обратное рассеяние является упругим и не приводит к возбуждению ни бомбардирующей частицы, ни ядра мишени. Однако, из-за сохранения энергии и момента взаимодействия, кинетическая энергия обратно рассеянного иона, меньше, чем у начального иона. Соотношение между этими энергиями есть кинетический факторК , задаваемый выражением:

cosθ + M 2

− M 2sin 2

M 1+ M 2

где М 1 иМ 2 – массы атомов снаряда и мишени, соответственно, иθ - угол между падающим и рассеянном пучками ионов.

Относительный сдвиг в энергии при соударениях зависит только от масс ионов и угла детектора. Если измерить угол рассеяния и энергетический сдвиг, можно рассчитать массу (идентифицировать) рассеивающий атом.

Величина К определяет разрешение по массе: чем большеК , тем больше разрешение. Это реализуется для угловθ близких к 1800 и для большихМ 1 (посколькуМ 1 < М 2 ).

Из угловой зависимости кинематического фактора (1) следует, что

1) измеряя угол рассеяния и энергию рассеянных частиц, можно определить массу рассеивающих

2) для достижения хорошей чувствительности метода угол рассеяния должен быть достаточно большим, а масса налетающих частиц не слишком малой.

Поскольку энергетическое разрешение используемых детекторов обычно не менее 20 кэВ, то для наиболее оптимальных условий экспериментов выбирают угол рассеяния порядка 160о , а в качестве анализирующего пучка обычно используют ускоренные ионы гелия.

Наибольшее изменение энергии происходит для θ =180о , где

− M 1

Обычно выбирается геометрия, которая позволяет детектировать рассеяние α -частиц (или протонов) при очень больших углах.

Дифференциальное сечение рассеяния dσ /dΩ для упругих столкновений лабораторной системе

координат, описывающее процесс атомноатомного рассеяния имеет вид:

Z1 Z2 e2

(cosθ + x 2 sin2

θ ) 2

d Ω=

sin4 θ

1− x 2 sin2 θ

где х =М 1 /М 2 , е2 – квадрат заряда электрона, иЕ – энергия бомбардирующей частицы (снаряда). Вероятность рассеяния задаётся как (Z 1 Z 2 )2 и как 1/E 2 . Спектр обратного рассеяния частиц соответствует пику для каждого элемента в образце с относительной высотой (площадью)Z 2 .

Дифференциальное сечение рассеяния сильно уменьшается с увеличением угла рассеяния (~1/Sin4 θ ) и увеличивается с уменьшением энергии пучка (~1/Е 2 ). Оно квадратично растет с увеличением номеровZ 1 иZ 2 сталкивающихся атомов. Для достижения высокого разрешения по массе, необходимо, чтобы налетающая частица рассеивалась на уголθ как можно более близкий к 1800 - требование, которое сильно уменьшает величину регистрируемого сигнала и повышает требования к чувствительности канала регистрации.

F ∫

где N – число атомов мишени,D – число зарегистрированных событий,F поток бомбардирующих ионов. Формула справедлива для очень тонкой плёнки или если рассеивающие частицы отражаются от поверхности толстого образца.

E= KE0 - E=[ ε ] BS Nx

[ε ]

cosθ

cosθ

где ε in иε ou t зависящие от энергии сечения торможения на входном и выходном пути иона.

Рис. 12. Шкала энергетической глубины в обратном резерфордовском рассеянии.

На практике ситуация обычно более сложная, поскольку потеря энергии начальных ионов при проникновении в образец сопровождается непрерывным изменением вероятности рассеяния и энергии рассеянных частиц. Возникшие спектры для рассеяния от

одного элемента на различных глубинах показаны на Рис. 12 , где начальная энергия ионовE 0 , энергия ионов, рассеянных от поверхности,KE 0 , а энергия ионов, рассеянных на глубинеx естьE 1 . В этой ситуации, потеря энергии при пересечении фольги толщинойN x туда и обратно:

Рис. 13. Тандемный ускоритель ионов.

Рис. 14. Резерфордовское обратное рассеяние 2,0 МэВ 4 Не ионов на образце Si(Co). Точки – экспериментальные данные, линия – модельный спектр. Угол рассеянияΘ =170о сθ 1 =θ 2 =5о .

Для экспериментальных исследований используются различные ускорители ионов, например ускорители Ван-де- Графа. В качестве примера наРис. 13 показана установка для исследования обратного рассеяния с использованием тандемного ускорителя ионов.

Резерфордовское обратное рассеяние – важный метод определения состава и строения поверхностей и тонких плёнок. На Рис. 14 показаны результаты применения метода обратного резерфордовского рассеяния ионной4 Не с

энергией 2 МэВ на поверхности кремния, допированного кобальтом, путём диффузии вглубь материала. Легко регистрируется кобальт и его распределение по глубине исследуемого материала.

Выше мы рассмотрели возможности метода обратного резерфордовского рассеяния в элементной избирательности и чувствительности к малым количествам примесных атомов. Речь шла об атомах, локализованных на поверхности мишени. Метод, однако, может быть применён и для измерения характера распределения примеси по объёму образца – концентрационного профиля. Определение пространственного распределения примесей и дефектов основано на регистрации разницы в энергии частиц Е , рассеянных атомами, находящимися на разной глубине. Частица, попадающая в детектор, претерпев акт упругого рассеяния на некоторой глубине x, имеет меньшую энергию, чем частица, рассеянная атомами вблизи поверхности. Это связано как с потерями энергии на пути в мишень и из неё, а, так и с различиями в потерях энергии при упругом взаимодействии частицы с атомами, находящимися на поверхности и на глубинеx .

Таким образом, спектроскопия резерфордовского обратного рассеяния позволяет получать информацию о химическом составе и кристалличности образца как функции расстояния от поверхности образца (глубины), а также о структуре приповерхностного слоя монокристаллического образца.

Рис. 15. Схематическая диаграмма спектра ионов с массой m 1 и первичной энергией E 0 , рассеянных от образца, состоящего из подложки из атомов с массой m 2 и пленки из атомов с массой m 3 толщиной d . Для простоты и пленка, и подложка считаются аморфными, чтобы избежать структурных эффектов.

Химический анализ с разрешением по глубине основан на том, что лёгкий высокоэнергетический ион может проникнуть глубоко внутрь твердого тела и рассеяться обратно от глубоко лежащего атома. Энергия, потерянная ионом в этом процессе, представляет собой сумму двух вкладов. Во-первых, это непрерывные потери энергии при движении иона вперед и назад в объеме твердого тела (т.н. потери на торможение). Скорость потери энергии на торможение (тормозная

способность, dE /dx) табулирована для большинства материалов, что позволяет перейти от шкалы энергий к шкале глубин. Во-вторых, это разовая потеря энергии в акте рассеяния, величина которой определяется

массой рассеивающего атома. В качестве примера на Рис. 15 приведена схема формирования спектра от образца, представляющего собой тонкую пленку на подложке. Пленка толщинойd проявляет себя на спектре в виде плато ширинойE . Правый край плато соответствует ионам, упруго рассеянным от поверхности, левый край – ионам, рассеянным от атомов пленки на границе раздела пленка-подложка. Рассеяние от атомов подложки на границе раздела соответствует правому краю сигнала подложки.

Рассмотрим процесс рассеяния частиц на большой угол на глубине и на поверхности в соответствии с Рис. 16. Пусть на мишень падает частица с энергиейЕ 0 под угломθ 1 . Детектор, расположенный под угломθ 2 , регистрирует частицы, рассеянные на поверхности и на глубине x. Частицы, рассеянные на поверхности, попадают в детектор, имея энергиюК М 2 Е 0 . Частицы же, рассеянные на глубинеx , будут иметь энергиюЕ 1 , которая определяется соотношением:

K M 2 E −

cosθ 2

dx out

где (dE /dx )out - линейные потери энергии частицы при ее движении от точки рассеяния на глубинеx до выхода из мишени,Е - энергия, с которой частица подойдет от поверхности к точке рассеяния на глубинеx :

E = E0

cosθ 1

dx in

где (dE /dx )in - линейные потери энергии частицы при ее движении от поверхности до точки рассеяния на глубинеx . Таким образом:

E = x KM 2

E 1 =E 0 -E ,

1 dE

1 dE

cosθ 1

dx in

cosθ 2

dx out

Рис. 16. Геометриярассеяния частиц от мишени

Выражение в квадратных скобках в (19) обычно называют фактором энергетических потерь и обозначают как

S . Рассматривая для простоты геометрию эксперимента,

когда θ 1 =0, т.е. θ 2 =π -θ , получим следующее выражение для фактора энергетических потерь:

S = K

cosθ

dx in

dx out

и, соответственно,

E = S x.

Последнее соотношение

лежит в основе перевода энергетической шкалы в спектрах обратного рассеяния в шкалу глубины. При этом глубинное разрешение определяется энергетическим разрешением детектора и может составлять величину до

Для определения энергетических потерь частицы (dE /dx ) используют квантовую теорию торможения. Формула торможения для быстрых нерелятивистских частиц с массой, значительно большей электронной массы, имеет вид:

4 π e4 Z2 Z N

2 mv2

− dx

где v - скорость частицы,N - концентрация атомов мишени,e, m - заряд и масса электрона,I - средний ионизационный потенциал. Средний ионизационный потенциал, входящий в формулу (21), - подгоночный параметр, определяемый из экспериментов по торможению заряженных частиц. Для оценки среднего ионизационного потенциала используют формулу Блоха:

I= ε Ry Z2

где ε Ry =13,6 эВ - постоянная Ридберга.

A i = q Ωσ i (Nx ) i ,

Рис. 17 . Энергетический спектр ионов гелия с энергией 2 МэВ обратно рассеянных от кремниевой мишени

На Рис. 17 приведен пример энергетического спектра обратного рассеянных ионов. Стрелками отмечены положения пиков тех элементов, которые содержатся на поверхности исследуемого образца. Обнаружение той или иной примеси связано не только с энергетическим разрешением детектора, но и с количеством этой примеси в мишени, т. е. с величиной сигнала от данной примеси на энергетическом спектре. Величина сигнала от i -го элемента примеси в мишени, или площадь под пикомА i , определяется выражением:

где (Nx )i - слоевое содержание i -го элемента (1/см2 ),σ i - среднее дифференциальное сечение рассеяния анализирующих частиц на атомах в детектор с телесным угломΩ (см2 /ср),q - полное число анализирующих частиц, попавших в мишень за время измерения спектра. Из соотношения (23) следует, что стандартных условиях эксперимента (т.е. при постоянныхΩ иq ) величина сигнала пропорциональнаσ i . Для вычисления среднего дифференциального сечения можно воспользоваться формулой:

cosθ +

1−

sin2 θ

Mi 2

Z1 Zi e

σ i=

2E sin

1−

sin2

Mi 2

Из последней формулы следует, что величина сигнала в спектрах обратного рассеяния зависит от порядкового номера элемента как Z i 2 .

Рис. 18 . Схема процесса рассеяния.

Таким образом, обратно рассеянные частицы с энергией ниже той, что соответствует рассеянию с поверхности моноатомной мишени, несут информацию о глубине, на которой произошло рассеяние. Действительно, до столкновения, которое произошло на глубине х от поверхности мишени, первичная частица должна пройти расстояниех в твёрдом теле, теряя энергию как на пути вперед, так и после столкновения при выходе мишени в направлении детектора. НаРис. 18 представлены обозначения, используемые для вычисления разницы

между энергией налетающей частицы, которая рассеялась на поверхностном атоме на угол θ ,kE 0 и энергиейЕ 1 (х ) частицы, достигшей детектора после столкновения на глубинех от поверхности мишени:

1 dE

− E 1

(x )=

cosθ 1

dx in

cosθ 2

dx out

В качестве величины dE /dx в (25) берут среднее значение энергии частицы на пути до и после столкновения. Формула (25) преобразует шкалу энергий регистрируемых частиц в шкалу глубин; максимальное значение энергии соответствует рассеянию с поверхности мишени (Е 1 (0) =kE 0 , минимальная энергия соответствует наибольшей глубине рассеяния.Рис. 19 схематически иллюстрирует спектр пучка легких ионов (Не) обратно рассеянных с мишениС , в которую имплантирован As.

Рис. 19 . Типичный спектр обратного резерфордовского рассеяния гелия для углерода с поверхностно легированным и имплантированным мышьяком

Необходимо отметить следующее:

1. Конечность спектра подложки и её шкалы глубин;

2. Положение и ширину пика от имплантированного As, который смещен вниз по энергии и уширен в сравнении с положением и шириной пика от тонкого слоя As на поверхности С подложки (пунктирная кривая);

3. Высоту пика от имплантированного As ( h ) по отношению к высоте спектраС вблизи поверхности (Н ).

Первое объясняется следствием энергетической зависимости сечения резерфордовского рассеяния, связанной с потерями энергии налетающих частиц в мишени. Второе отражает тот факт, что вследствие большей массы атомов имплантированного As, обратно рассеянные на As ионы будут иметь бoльшую энергию, чем ионы, рассеянные на атомах С , поэтому профиль As примеси может быть измерен независимо от наличия атомовС в объеме. Энергия, при которой появляется пик от примеси по отношению к энергии, которая наблюдалась, если бы эта примесь была на поверхности (25) даёт информацию о глубине имплантированной примеси, а ширина пика с поправкой на разрешение детектора обеспечивает информацию о диффузии и распределении имплантированной примеси. Третье иллюстрирует тот факт, что спектр обратного рассеяния дает плотность числа конкретного вида атомов на глубинех исходя из измерений

где Q - общее число частиц, попадающих в мишень,N - объемная плотность атомов мишени,σ (Ω ) - среднее дифференциальное сечение рассеяния,Ω - телесный угол, регистрируемый детектором. Отношение высотыh пика от As к высотеН спектра атомов мишениС отражает отношение между числом атомов As и С в мишени с поправкой на различное сечение рассеяния для двух элементов и на различие энергий частиц до столкновения в соответствии с глубиной имплантированного As.

Для исследования структуры монокристаллических образцов с помощью спектроскопии резерфордовского обратного рассеяния используется эффект каналирования . Эффект заключается в том, что при ориентации пучка ионов вдоль основных направлений симметрии монокристаллов те ионы, которые избежали прямого столкновения с атомами поверхности, могут проникать глубоко в кристалл на глубину до сотен нм, двигаясь по каналам, образованным рядами атомов. Сравнивая спектры, полученные при ориентации пучка ионов вдоль направлений каналирования и вдоль направлений, отличных от них, можно получить информацию о кристаллическом совершенстве исследуемого образца. Из анализа величины поверхностного пика, являющегося следствием прямого столкновения ионов с атомами поверхности, можно получить информацию о структуре поверхности, например, о наличии на ней реконструкций, релаксаций и адсорбатов.

Если направление распространения пучка ионов устанавливается почти параллельно плотно упакованным цепочкам атомов, ионы пучка будут направляться потенциальным полем цепочки атомов в кристалле, результатом этого будет волнообразное движение частиц, при котором каналированные ионы не могут близко подойти к атомам в цепочках. Поэтому вероятность обратного рассеяния ионов резко уменьшается (примерно на два порядка). Повышается и чувствительность рассеяния к незначительному содержанию примеси на поверхности. Очень важно, что происходит полное взаимодействие пучка с первыми монослоями твердого тела. Это “поверхностное взаимодействие” приводит к улучшению разрешения по глубине. На Рис. 20 представлены спектры обратного рассеяния для случаев, когда пучок ионов параллелен главной кристаллографической оси и когда пучок ионов имеет “случайное” (не параллельное кристаллографической оси) направление.

Даже когда “случайный” и “каналированный” спектры получены для идентичных ионных пучков (с одинаковым числом падающих частиц), число событий обратного рассеяния, регистрируемых детектором значительно меньше для “каналированного” спектра за счёт эффекта каналирования. Такое уменьшение выхода обратного рассеяния отражает степень совершенства кристаллической структуры мишени, для чего вводят величину “нормированный минимальный выход” χ min , который определяется как отношение числа обратно рассеянных частиц в узком энергетическом “окне” (вблизи поверхности кристалла) “каналированного” и “случайного” спектров (Рис. 20а ,c min =Н а /Н ). Для случая наибольшего сближения ионов пучка с цепочкой атомовr , концентрации атомовN и периода расположения атомов вдоль цепочки, преимущественно определяется тепловыми колебаниями атомов в кристалле.

В экспериментах по каналированию кристаллический образец закрепляется в гониометрическом устройстве, и регистрируется число близких столкновений (как например, обратное рассеяние из приповерхностной области) как функция угла наклона ψ пучка к кристаллографической оси для фиксированного числа падающих частиц. Кривая, полученная в результате углового сканирования, показана наРис. 20б . Кривая симметрична относительно минимума выхода и имеет ширину, определяемую как полуширина на половине высоты кривой. Приблизительная оценка критического значения углаψ с , больше которого пучок будет пробивать ряд атомов, может быть легко получена приравниванием поперечной энергии падающей частицыЕ 0 ψ с и поперечной энергией U(ρ ) в точке поворота:

ψ с = 1/2

Метод каналированного обратного рассеяния используется для исследования разориентированных кристаллических решеток путем измерения доли атомов, для которых каналы закрыты. Когда падающий пучок направлен вдоль направления каналирования совершенного кристалла, значительное уменьшение выхода обратного рассеяния наблюдается вследствие того, что каналированные ионы, направляемые атомными цепочками, не приближаются к атомам достаточно близко, чтобы испытать столкновение. Однако, если часть кристалла разориентирована и атомы решетки смещены так, что закрывают часть каналов, ионы, направленные вдоль номинального направления каналирования, испытывают близкие столкновения со смещенными атомами, в результате чего выход обратного рассеяния увеличивается по сравнению с ненарушенными каналами. Так как смещённые атомы имеют ту же массу, что и атомы решетки, увеличение выхода обратного рассеяния происходит при энергии, соответствующей глубине, на которой расположен смещенный атом. Увеличение выхода обратного рассеяния с данной глубины, зависит от числа смещенных атомов, а зависимость выхода от глубины (энергия обратного рассеяния Е 1 ) отражает распределение смещенных атомов по глубине.

В то время как ионы высоких энергий могут проникать в твердое тело на глубину порядка нескольких микрон, ионы средних энергий (порядка сотен килоэлектронвольт) рассеиваются почти полностью в приповерхностном слое и широко используются для исследования первых монослоев. Налетающие на мишень ионы средних энергий рассеиваются на атомах поверхности посредством бинарных столкновений и регистрируются электростатическим энерго-анализатором. Такой анализатор регистрирует только заряженные частицы, а в диапазоне энергий ~1 кэВ частицы, проникающие глубже первого монослоя, выходят наружу почти всегда в виде нейтральных атомов. Поэтому чувствительность эксперимента только к заряженным частицам повышает поверхностную чувствительность метода рассеяния ионов низких энергий. Главными причинами высокой поверхностной чувствительности этого метода является зарядовая избирательность электростатического анализатора и очень большие значения сечений рассеяния. Разрешение по массе определяется энергетическим разрешением электростатического энергоанализатора.

Однако форма спектра отличается от той, которая характерна для высоких энергий. Теперь спектр состоит из серии пиков, соответствующих атомным массам элементов поверхностного слоя. Количественный

анализ в этом диапазоне сложен по двум причинам: 1) вследствие неопределенности сечений рассеяния и 2) из-за отсутствия достоверных данных о вероятности нейтрализации ионов, рассеянных на поверхности. Влияние второго фактора можно свести к минимуму, используя пучки с малой вероятностью нейтрализации

и применяя методы детектирования, не чувствительные к зарядовому состоянию рассеянного иона.

В заключение, упомянем ещё одно любопытное применение метода обратного резерфордовского рассеяния – определение элементного состава лунной и марсианской поверхностей. В миссии США 1967-68

источник 242 Cm испускал α -частицы, рассеяние которых впервые обнаружило в лунном грунте повышенное содержание титана, что в последствии было подтверждено лабораторным анализом лунных минералов. Эта же методика использовалась при изучении марсианских горных пород и почвы.

В квантовой механике состояние частицы определяется заданием значений координат, импульса, энергии и других подобных величин, которые называются динамическими переменными .

Строго говоря, микрообъекту не могут быть приписаны динамические переменные. Однако информацию о микрообъекте мы получаем в результате их взаимодействия с макроприборами. Поэтому необходимо результаты измерений выражаются в динамических переменных. Поэтому, например, говорят о состоянии электрона с определенной энергией.

Своеобразие свойств микрообъектов заключается в том, что не для всех переменных получаются при изменениях определенные значения. Так в мысленном эксперименте мы видели, что при попытке уменьшить неопределенность координаты электронов в пучке путем уменьшения ширины щели приводит к появлению у них неопределенной составляющей импульса в направлении соответствующей координаты. Между неопределенностями координаты и импульса имеет место соотношение

(33.4)

Аналогичное соотношение имеет место для других осей координат и соответствующих проекций импульса, а также для ряда других пар величин. В квантовой механике такие пары величин называются канонически сопряженными . Обозначив канонически сопряженными величины А и В , можно записать:

(33.5)

Соотношение (33.5) было установлено в 1927 году Гейзенбергом и называется соотношением неопределенности .

Само утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше принципом неопределенности Гейзенберга . Принцип неопределенности Гейзенберга является одним из фундаментальных положений квантовой механики.

Важно отметить, что канонически сопряженными являются энергия и время, и справедливо соотношение:

(33.6) в частности, означает, что для измерения энергии с погрешностью не более (порядка) необходимо затратить время не менее . С другой стороны, если известно, что в некотором состоянии частица не может находиться более , то можно утверждать что энергия частицы в этом состоянии не может быть определена с погрешностью менее



Соотношение неопределенностей определяет возможность использования классических понятий для описания микрообъектов. Очевидно, что чем больше масса частицы, тем меньше произведение неопределенностей ее координаты и скорости . Для частиц с размерами порядка микрометра неопределенности координаты и скорости становятся столь малы, что оказываются за пределами точности измерений, и движение таких частиц можно рассматривать происходящим по определенной траектории.

При определённых условиях даже движение микрочастицы может рассматриваться, как происходящее по траектории. Например, движение электрона в ЭЛТ.

Соотношение неопределенностей, в частности, позволяет объяснить, почему электрон в атоме не падает на ядро. При падении электрона на ядро его координаты и импульс приняли бы одновременно определенные, а именно нулевые значения, что запрещено принципом неопределенности. Важно отметить, что принцип неопределенности – это базовое положение, которое определяет невозможность падения электрона на ядро наряду с рядом других следствий без принятия дополнительных постулатов.

Оценим на основе соотношения неопределенностей минимальные размеры атома водорода. Формально, с классической точки зрения, энергия должна быть минимальна при падении электрона на ядро, т.е. при и . Поэтому для оценки минимальной размеров атома водорода можно считать что, что его координата и импульс совпадают с неопределенностями этих величин: . Тогда они должны быть связаны соотношением:

Энергия электрона в атоме водорода выражается формулой:

(33.8)

Выразим импульс из (33.7) и подставим в (33.8):

. (33.9)

Найдем радиус орбиты , при котором энергия минимальна. Дифференцируя (33.9) и приравнивая производную нулю, получаем:

. (33.10)

Поэтому радиус расстояние от ядра, на котором электрон имеет минимальную энергию в атоме водорода, можно оценить по соотношению

Это значение совпадает с радиусом воровской орбиты.

Подставив найденное расстояние в формулу (33.9), получим выражение для минимальной энергии электрона в атоме водорода:

Это выражение также совпадает с энергией электрона на орбите минимального радиуса в теории Бора.

Уравнение Шрёдингера

Поскольку, по идее Де-Бройля, движение микрочастицы связано с некоторым волновым процессом, Шрёдингер сопоставил ее движению комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил . Часто это функцию так и называют – «пси-функция». В 1926 году Шрёдингер сформулировал уравнение, которому должна удовлетворять :

. (33.13)

В этом уравнении:

m – масса частицы;

;

– функция координат и времени, градиент, который с обратным знаком определяет силу, действующую на частицу.

Уравнение (33.13) называется уравнением Шрёдингера . Отметим, что уравнение Шрёдингера не выводится из каких-либо дополнительных соображений. Фактически оно является постулатом квантовой механики, сформулированным на основе аналогии уравнений оптики и аналитической механики. Фактическим обоснованием уравнения (33.13) Является соответствие результатов, полученных на его основе экспериментальным фактам.

Решая (33.13), получают вид волновой функции, описывающей рассматриваемую физическую систему, например, состояния электронов в атомах. Конкретный вид - функции определяется характером силового поля, в котором находится частица, т.е. функцией .

Если силовое поле стационарно , то не зависит явно от времени и имеет смысл потенциальной энергии . В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой – только от времени:

где – полная энергия системы, которая в случае стационарного поля остаётся постоянной.

Подставив (33.14) в (33.13), получим:

После сокращения на ненулевой множитель получаем уравнение Шредингера, справедливое в указанных ограничениях:

. (33.15)

Уравнение (33.15) называется уравнением Шрёдингера для стационарных состояний , которое обычно записывают в виде.

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!




Top