Технология 100base tx использует для передачи данных. Основы Ethernet-сетей. Значения полей DSAP и SSAP

Физический уровень 100Base-FX - многомодовое оптоволокно, два волокна

В то время как Ethernet со скоростью передачи 10 Мбит/с использует манчестерское кодирование для представления данных при передаче по кабелю, в стандарте Fast Ethernet определен другой метод кодирования - 4В/5В. При этом методе каждые 4 бита данных подуровня MAC представляются 5 битами. Избыточный бит позволяет применить потенциальные коды при представлении каждого из пяти бит в виде электрических или оптических импульсов. Существование запрещенных комбинаций символов позволяет отбраковывать ошибочные символы, что повышает устойчивость работы сетей с 100Base-FX/TX.

После преобразования 4-битовых порций кодов MAC в 5-битовые порции физического уровня их необходимо представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. Спецификации 100Base-FX и 100Base-TX используют для этого различные методы физического кодирования - NRZI и MLT-3 соответственно (как и в технологии FDDI при работе через оптоволокно и витую пару).

Физический уровень 100Base-TX - витая пара UTP Cat 5 или STP Туре 1, две пары

В качестве среды передачи данных спецификация 100Base-TX использует кабель UTP категории 5 или кабель STP Type 1. Максимальная длина кабеля в обоих случаях - 100 м.

Основные отличия от спецификации 100Base-FX - использование метода MLT-3 для передачи сигналов 5-битовых порций кода 4В/5В по витой паре, а также наличие функции автопереговоров для выбора режима работы порта. Схема автопереговоров позволяет двум соединенным физически устройствам, которые поддерживают несколько стандартов физического уровня, отличающихся битовой скоростью и количеством витых пар, выбрать наиболее выгодный режим работы.

схема автопереговоров является стандартом технологии 100Base-T. определено 5 различных режимов работы, которые могут поддерживать устройства 100Base-TX или 100Base-T4 на витых парах:

    10Base-T full-duplex - 2 пары категории 3;

    100Base-TX - 2 пары категории 5 (или Type 1A STP);

    100Base-T4 - 4 пары категории 3;

    100Base-TX full-duplex - 2 пары категории 5 (или Type 1A STP).

Режим 10Base-T имеет самый низкий приоритет при переговорном процессе, а полнодуплексный режим 100Base-T4 - самый высокий. Переговорный процесс происходит при включении питания устройства, а также может быть инициирован в любой момент модулем управления устройства.

Физический уровень 100Base-T4 - витая пара UTP Cat 3, четыре пары Спецификация 100Base-T4 была разработана для того, чтобы можно было использовать для высокоскоростного Ethernet имеющуюся проводку на витой паре категории 3. Эта спецификация позволяет повысить общую пропускную способность за счет одновременной передачи потоков бит по всем 4 парам кабеля. Спецификация 100Base-T4 появилась позже других спецификаций физического уровня Fast Ethernet. Разработчики этой технологии в первую очередь хотели создать физические спецификации, наиболее близкие к спецификациям 10Base-T и 10Base-F, которые работали на двух линиях передачи данных: двух парах или двух волокнах. Для реализации работы по двум витым парам пришлось перейти на более качественный кабель категории 5.

В то же время разработчики конкурирующей технологии 100VG-AnyLAN изначально сделали ставку на работу по витой паре категории 3; самое главное преимущество состояло не столько в стоимости, а в том, что она была уже проложена в подавляющем числе зданий. Поэтому после выпуска спецификаций 100Base-TX и 100Base-FX разработчики технологии Fast Ethernet реализовали свой вариант физического уровня для витой пары категории 3.

Вместо кодирования 4В/5В в этом методе используется кодирование 8В/6Т, которое обладает более узким спектром сигнала и при скорости 33 Мбит/с укладывается в полосу 16 МГц витой пары категории 3 (при кодировании 4В/5В спектр сигнала в эту полосу не укладывается). Каждые 8 бит информации уровня MAC кодируются 6-ю троичными цифрами (ternary symbols), то есть цифрами, имеющими три состояния. Каждая троичная цифра имеет длительность 40 не. Группа из 6-ти троичных цифр затем передается на одну из трех передающих витых пар, независимо и последовательно.

Четвертая пара всегда используется для прослушивания несущей частоты в целях обнаружения коллизии. Скорость передачи данных по каждой из трех передающих пар равна 33,3 Мбит/с, поэтому общая скорость протокола 100Base-T4 составляет 100 Мбит/с. В то же время из-за принятого способа кодирования скорость изменения сигнала на каждой паре равна всего 25 Мбод, что и позволяет использовать витую пару категории 3.

Fast Ethernet

Fast Ethernet - спецификация IEЕЕ 802.3 u официально принятая 26 октября 1995 года определяет стандарт протокола канального уровня для сетей работающих при использовании как медного, так и волоконно-оптического кабеля со скоростью 100Мб/с. Новая спецификация является наследницей стандарта Ethernet IEЕЕ 802.3, используя такой же формат кадра, механизм доступа к среде CSMA/CD и топологию звезда. Эволюция коснулась нескольких элементов конфигурации средств физического уровня, что позволило увеличить пропускную способность, включая типы применяемого кабеля, длину сегментов и количество концентраторов.

Структура Fast Ethernet

Чтобы лучше понять работу и разобраться во взаимодействии элементов Fast Ethernet обратимся к рисунку 1.

Рисунок 1. Система Fast Ethernet

Подуровень управления логической связью (LLC)

В спецификации IEEE 802.3 u функции канального уровня разбиты на два подуровня: управления логической связью (LLC) и уровня доступа к среде (MAC), который будет рассмотрен ниже. LLC, функции которого определены стандартом IEEE 802.2, фактически обеспечивает взаимосвязь с протоколами более высокого уровня, (например, с IP или IPX), предоставляя различные коммуникационные услуги:

  • Сервис без установления соединения и подтверждений приема. Простой сервис, который не обеспечивает управления потоком данных или контроля ошибок, а также не гарантирует правильную доставку данных.
  • Сервис с установлением соединения. Абсолютно надежный сервис, который гарантирует правильную доставку данных за счет установления соединения с системой-приемником до начала передачи данных и использования механизмов контроля ошибок и управления потоком данных.
  • Сервис без установления соединения с подтверждениями приема. Средний по сложности сервис, который использует сообщения подтверждения приема для обеспечения гарантированной доставки, но не устанавливает соединения до передачи данных.

На передающей системе данные, переданные вниз от протокола Сетевого уровня, вначале инкапсулируются подуровнем LLC. Стандарт называет их Protocol Data Unit (PDU, протокольный блок данных). Когда PDU передается вниз подуровню MAC, где снова обрамляется заголовком и постинформацией, с этого момента технически его можно назвать кадром. Для пакета Ethernet это означает, что кадр 802.3 помимо данных Сетевого уровня содержит трехбайтовый заголовок LLC. Таким образом, максимально допустимая длина данных в каждом пакете уменьшается с 1500 до 1497 байтов.

Заголовок LLC состоит из трех полей:

В некоторых случаях кадры LLC играют незначительную роль в процессе сетевого обмена данными. Например, в сети, использующей TCP/IP наряду с другими протоколами, единственная функция LLC может заключаться в предоставлении возможности кадрам 802.3 содержать заголовок SNAP, подобно Ethertype указывающий протокол Сетевого уровня, которому должен быть передан кадр. В этом случае все PDU LLC задействуют ненумерованный информационный формат. Однако другие высокоуровневые протоколы требуют от LLC более расширенного сервиса. Например, сессии NetBIOS и несколько протоколов NetWare используют сервисы LLC с установлением соединения более широко.

Заголовок SNAP

Принимающей системе необходимо определить, какой из протоколов Сетевого уровня должен получить входящие данные. В пакетах 802.3 в рамках PDU LLC применяется еще один протокол, называемый Sub - Network Access Protocol (SNAP, протокол доступа к подсетям).

Заголовок SNAP имеет длину 5 байт и располагается непосредственно после заголовка LLC в поле данных кадра 802.3, как показано на рисунке. Заголовок содержит два поля.

Код организации. Идентификатор организации или производителя - это 3-байтовое поле, которое принимает такое же значение, как первые 3 байта МАС-адреса отправителя в заголовке 802.3.

Локальный код. Локальный код - это поле длиной 2 байта, которое функционально эквивалентно полю Ethertype в заголовке Ethernet II.

Подуровень согласования

Как было сказано ранее Fast Ethernet это эволюционировавший стандарт. MAC рассчитанный на интерфейс AUI, необходимо преобразовать для интерфейса MII, используемого в Fast Ethernet, для чего и предназначен этот подуровень.

Управление доступом к среде ( MAC)

Каждый узел в сети Fast Ethernet имеет контроллер доступа к среде (Media Access Controller - MAC). MAC имеет ключевое значение в Fast Ethernet и имеет три назначения:

Самым важным из трех назначений MAC является первое. Для любой сетевой технологии, которая использует общую среду, правила доступа к среде, определяющие, когда узел может передавать, являются ее основной характеристикой. Разработкой правил доступа к среде занимаются несколько комитетов IЕЕЕ. Комитет 802.3, часто именуемый комитетом Ethernet, определяет стандарты на ЛВС, в которых используются правила под названием CSMA/ CD (Carrier Sense Multiple Access with Collision Detection - множественный доступ с контролем несущей и обнаружением конфликтов).

CSMS/ CD являются правилами доступа к среде как для Ethernet, так и для Fast Ethernet. Именно в этой области две технологии полностью совпадают.

Поскольку все узлы в Fast Ethernet совместно используют одну и ту же среду, передавать они могут лишь тогда, когда наступает их очередь. Определяют эту очередь правила CSMA/ CD.

CSMA/ CD

Контроллер MAC Fast Ethernet, прежде чем приступить к передаче, прослушивает несущую. Несущая существует лишь тогда, когда другой узел ведет передачу. Уровень PHY определяет наличие несущей и генерирует сообщение для MAC. Наличие несущей говорит о том, что среда занята и слушающий узел (или узлы) должны уступить передающему.

MAC, имеющий кадр для передачи, прежде чем передать его, должен подождать некоторый минимальный промежуток времени после окончания предыдущего кадра. Это время называется межпакетной щелью (IPG, interpacket gap) и продолжается 0,96 микросекунды, то есть десятую часть от времени передачи пакета обычной Ethernet со скоростью 10 Мбит/с (IPG - единственный интервал времени, всегда определяемый в микросекундах, а не во времени бита) рисунок 2.


Рисунок 2. Межпакетная щель

После окончания пакета 1 все узлы ЛВС обязаны подождать в течение времени IPG, прежде чем смогут передавать. Временной интервал между пакетами 1 и 2, 2 и 3 на рис. 2 - это время IPG. После завершения передачи пакета 3 ни один узел не имел материала для обработки, поэтому временной интервал между пакетами 3 и 4 длиннее, чем IPG.

Все узлы сети должны соблюдать эти правила. Даже если на узле имеется много кадров для передачи и данный узел является единственным передающим, то после пересылки каждого пакета он должен выждать в течение, по крайней мере, времени IPG.

Именно в этом заключается часть CSMA правил доступа к среде Fast Ethernet. Короче говоря, многие узлы имеют доступ к среде и используют несущую для контроля ее занятости.

В ранних экспериментальных сетях применялись именно эти правила, и такие сети работали очень хорошо. Тем не менее, использование лишь CSMA привело к возникновению проблемы. Часто два узла, имея пакет для передачи и прождав время IPG, начинали передавать одновременно, что приводило к искажению данных с обеих сторон. Такая ситуация называется коллизией (collision) или конфликтом.

Для преодоления этого препятствия ранние протоколы использовали достаточно простой механизм. Пакеты делились на две категории: команды и реакции. Каждая команда, переданная узлом, требовала реакции. Если в течение некоторого времени (называемого периодом тайм-аута) после передачи команды реакция на нее не была получена, то исходная команда подавалась вновь. Это могло происходить по нескольку раз (предельное количество тайм-аутов), прежде чем передающий узел фиксировал ошибку.

Эта схема могла прекрасно работать, но лишь до определенного момента. Возникновение конфликтов приводило к резкому снижению производительности (измеряемой обычно в байтах в секунду), потому что узлы часто простаивали в ожидании ответов на команды, никогда не достигающие пункта назначения. Перегрузка сети, увеличение количества узлов напрямую связаны с ростом числа конфликтов и, следовательно, со снижением производительности сети.

Проектировщики ранних сетей быстро нашли решение этой проблемы: каждый узел должен устанавливать факт потери переданного пакета путем обнаружения конфликта (а не ожидать реакции, которая никогда не последует). Это означает, что потерянные в связи с конфликтом пакеты должны быть немедленно переданы вновь до окончания времени тайм-аута. Если узел передал последний бит пакета без возникновения конфликта, значит, пакет передан успешно.

Метод контроля несущей хорошо сочетать с функцией обнаружения коллизий. Коллизии все еще продолжают происходить, но на производительности сети это не отражается, так как узлы быстро избавляются от них. Группа DIX, разработав правила доступа к среде CSMA/CD для Ethernet, оформила их в виде простого алгоритма - рисунок 3.


Рисунок 3. Алгоритм работы CSMA/CD

Устройство физического уровня ( PHY)

Поскольку Fast Ethernet может использовать различный тип кабеля, то для каждой среды требуется уникальное предварительное преобразование сигнала. Преобразование также требуется для эффективной передачи данных: сделать передаваемый код устойчивым к помехам, возможным потерям, либо искажениям отдельных его элементов (бодов), для обеспечения эффективной синхронизации тактовых генераторов на передающей или приемной стороне.

Подуровень кодирования ( PCS)

Кодирует/декодирует данные поступающие от/к уровня MAC с использованием алгоритмов или .

Подуровни физического присоединения и зависимости от физической среды ( PMА и PMD)

Подуровни РМА и PMD осуществляют связь между подуровнем PSC и интерфейсом MDI, обеспечивая формирование в соответствии с методом физического кодирования: или .

Подуровень автопереговоров (AUTONEG)

Подуровень автопереговоров позволяет двум взаимодействующим портам автоматически выбирать наиболее эффективный режим работы: дуплексный или полудуплексный 10 или 100 Мб/с. Физический уровень

Стандарт Fast Ethernet определяет три типа среды передачи сигналов Ethernet со скоростью 100 Мбит/с.

  • 100Base-TX - две витые пары проводов. Передача осуществляется в соответствии со стандартом передачи данных в витой физической среде, разработанным ANSI (American National Standards Institute - Американский национальный институт стандартов). Витой кабель для передачи данных может быть экранированным, либо неэкранированным. Использует алгоритм кодирования данных 4В/5В и метод физического кодирования MLT-3.
  • 100Base-FX - две жилы, волоконно-оптического кабеля. Передача также осуществляется в соответствии со стандартом передачи данных в волоконно-оптической среде, которой разработан ANSI. Использует алгоритм кодирования данных 4В/5В и метод физического кодирования NRZI.

Спецификации 100Base-TX и 100Base-FX известны также как 100Base-X

  • 100Base-T4 - это особая спецификация, разработанная комитетом IEEE 802.3u . Согласно этой спецификации, передача данных осуществляется по четырем витым парам телефонного кабеля, который называют кабелем UTP категории 3. Использует алгоритм кодирования данных 8В/6Т и метод физического кодирования NRZI.

Дополнительно стандарт Fast Ethernet включает рекомендации по использованию кабеля экранированной витой пары категории 1, который является стандартным кабелем, традиционно использующимся в сетях Token Ring. Организация поддержки и рекомендации по использованию кабеля STP в сети Fast Ethernet предоставляют способ перехода на Fast Ethernet для покупателей, имеющих кабельную разводку STP.

Спецификация Fast Ethernet включает также механизм автосогласования, позволяющий порту узла автоматически настраиваться на скорость передачи данных - 10 или 100 Мбит/с. Этот механизм основан на обмене рядом пакетов с портом концентратора или переключателя.

Среда 100Base-TX

В качестве среды передачи 100Base-TX применяются две витые пары, причем одна пара используется для передачи данных, а вторая - для их приема. Поскольку спецификация ANSI TP - PMD содержит описания как экранированных, так и неэкранированных витых пар, то спецификация 100Base-TX включает поддержку как неэкранированных, так и экранированных витых пар типа 1 и 7.

Разъем MDI (Medium Dependent Interface)

Интерфейс канала 100Base-TX, зависящий от среды, может быть одного из двух типов. Для кабеля на неэкранированных витых парах в качестве разъема MDI следует использовать восьмиконтактный разъем RJ 45 категории 5. Этот же разъем применяется и в сети 10Base-T, что обеспечивает обратную совместимость с существующими кабельными разводками категории 5. Для экранированных витых пар в качестве разъема MDI необходимо использовать разъем STP IBM типа 1, который является экранированным разъемом DB9. Такой разъем обычно применяется в сетях Token Ring.

Кабель UTP категории 5(e)

В интерфейсе среды UTP 100Base-TX применяются две пары проводов. Для минимизации перекрестных наводок и возможного искажения сигнала оставшиеся четыре провода не должны использоваться с целью передачи каких-либо сигналов. Сигналы передачи и приема для каждой пары являются поляризованными, причем один провод передает положительный (+), а второй - отрицательный (-) сигнал. Цветовая маркировка проводов кабеля и номера контактов разъема для сети 100Base-TX приведены в табл. 1. Хотя уровень PHY 100Base-TX разрабатывался после принятия стандарта ANSI TP-PMD, однако номера контактов разъема RJ 45 были изменены для согласования со схемой разводки, уже использующейся в стандарте 10Base-T. В стандарте ANSI TP-PMD контакты 7 и 9 применяются для приема данных, в то время как в стандартах 100Base-TX и 10Base-T для этого предназначены контакты 3 и 6. Такая разводка обеспечивает возможность использования адаптеров 100Base-TX вместо адаптеров 10 Base - T и их подключения к тем же кабелям категории 5 без изменений разводки. В разъеме RJ 45 используемые пары проводов подключаются к контактам 1, 2 и 3, 6. Для правильного подключения проводов следует руководствоваться их цветовой маркировкой.

Таблица 1. Назначение контактов разъема MDI кабеля UTP 100Base-TX

Узлы взаимодействуют друг с другом путем обмена кадрами (frames). В Fast Ethernet кадр является базовой единицей обмена по сети - любая информация, передаваемая между узлами, помещается в поле данных одного или нескольких кадров. Пересылка кадров от одного узла к другому возможна лишь при наличии способа однозначной идентификации всех узлов сети. Поэтому каждый узел в ЛВС имеет адрес, который называется его МАС-адресом. Этот адрес уникален: никакие два узла локальной сети не могут иметь один и тот же МАС-адрес. Более того, ни в одной из технологий ЛВС (за исключением ARCNet) никакие два узла в мире не могут иметь одинаковый МАС-адрес. Любой кадр содержит, по крайней мере, три основные порции информации: адрес получателя, адрес отправителя и данные. Некоторые кадры имеют и другие поля, но обязательными являются лишь три перечисленные. На рисунке 4 отражена структура кадра Fast Ethernet.

Рисунок 4. Структура кадра Fast Ethernet

  • адрес получателя - указывается адрес узла, получающего данные;
  • адрес отправителя - указывается адрес узла, пославшего данные;
  • длина/Тип (L/T - Length/Type) - содержится информация о типе передаваемых данных;
  • контрольная сумма кадра (PCS - Frame Check Sequence) - предназначена для проверки корректности полученного принимающим узлом кадра.

Минимальный объем кадра составляет 64 октета, или 512 битов (термины октет и байт - синонимы). Максимальный объем кадра равен 1518 октетам, или 12144 битам.

Адресация кадров

Каждый узел в сети Fast Ethernet имеет уникальный номер, который называется МАС-адресом (MAC address) или адресом узла. Этот номер состоит из 48 битов (6 байтов), присваивается сетевому интерфейсу во время изготовления устройства и программируется в процессе инициализации. Поэтому сетевые интерфейсы всех ЛВС, за исключением ARCNet, которая использует 8-битовые адреса, присваиваемые сетевым администратором, имеют встроенный уникальный МАС-адрес, отличающийся от всех остальных МАС-адресов на Земле и присваиваемый производителем по согласованию с IEEE.

Чтобы облегчить процесс управления сетевыми интерфейсами, IEEE было предложено разделить 48-битовое поле адреса на четыре части, как показано на рисунке 5. Первые два бита адреса (биты 0 и 1) являются флажками типа адреса. Значение флажков определяет способ интерпретации адресной части (биты 2 - 47).


Рисунок 5. Формат МАС-адреса

Бит I/G называется флажком индивидуального/группового адреса и показывает, каким (индивидуальным или групповым) является адрес. Индивидуальный адрес присваивается только одному интерфейсу (или узлу) в сети. Адреса, у которых бит I/G установлен в 0 - это МАС-адреса или адреса узла. Если бит I/O установлен в 1, то адрес относится к групповым и обычно называется многопунктовым адресом (multicast address) или функциональным адресом (functional address). Групповой адрес может быть присвоен одному или нескольким сетевым интерфейсам ЛВС. Кадры, посланные по групповому адресу, получают или копируют все обладающие им сетевые интерфейсы ЛВС. Многопунктовые адреса позволяют послать кадр подмножеству узлов локальной сети. Если бит I/O установлен в 1, то биты от 46 до 0 трактуются как многопунктовый адрес, а не как поля U/ L, OUI и OUA обычного адреса. Бит U/L называется флажком универсального/местного управления и определяет, как был присвоен адрес сетевому интерфейсу. Если оба бита, I/O и U/ L, установлены в 0, то адрес является уникальным 48-битовым идентификатором, описанным ранее.

OUI (organizationally unique identifier - организационно уникальный идентификатор). IEEE присваивает один или несколько OUI каждому производителю сетевых адаптеров и интерфейсов. Каждый производитель отвечает за правильность присвоения OUA (organizationally unique address - организационно уникальный адрес), который должно иметь любое созданное им устройство.

При установке бита U/L адрес является локально управляемым. Это означает, что он задается не производителем сетевого интерфейса. Любая организация может создать свой МАС-адрес сетевого интерфейса путем установки бита U/ L в 1, а битов со 2-го по 47-й в какое-нибудь выбранное значение. Сетевой интерфейс, получив кадр, первым делом декодирует адрес получателя. При установлении в адресе бита I/O уровень MAC получит этот кадр лишь в том случае, если адрес получателя находится в списке, который хранится на узле. Этот прием позволяет одному узлу отправить кадр многим узлам.

Существует специальный многопунктовый адрес, называемый широковещательным адресом. В 48-битовом широковещательном IEEE-адресе все биты установлены в 1. Если кадр передается с широковещательным адресом получателя, то все узлы сети получат и обработают его.

Поле Длина/Тип

Поле L/T (Length/Type - Длина/Тип) применяется в двух различных целях:

  • для определения длины поля данных кадра, исключая любое дополнение пробелами;
  • для обозначения типа данных в поле данных.

Значение поля L/T, находящееся в интервале между 0 и 1500, является длиной поля данных кадра; более высокое значение указывает на тип протокола.

Вообще поле L/T является историческим осадком стандартизации Ethernet в IEEE, породившим ряд проблем с совместимостью оборудования выпущенного до 1983. Сейчас Ethernet и Fast Ethernet никогда не использует поля L/T. Указанное поле служит лишь для согласования с программным обеспечением, обрабатывающим кадры (то есть с протоколами). Но единственным подлинно стандартным предназначением поля L/T является использование его в качестве поля длины - в спецификации 802.3 даже не упоминается о возможном его применении как поля типа данных. Стандарт гласит: "Кадры со значением поля длины, превышающим определенное в пункте 4.4.2, могут быть проигнорированы, отброшены или использованы частным образом. Использование данных кадров выходит за пределы этого стандарта".

Подводя итог сказанному, заметим, что поле L/T является первичным механизмом, по которому определяется тип кадра. Кадры Fast Ethernet и Ethernet, в которых значением поля L/T задается длина (значение L/T 802.3, кадры, в которых значением этого же поля устанавливается тип данных (значение L/T > 1500), называются кадрами Ethernet - II или DIX .

Поле данных

В поле данных содержится информация, которую один узел пересылает другому. В отличие от других полей, хранящих весьма специфические сведения, поле данных может содержать почти любую информацию, лишь бы ее объем составлял не менее 46 и не более 1500 байтов. Как форматируется и интерпретируется содержимое поля данных, определяют протоколы.

Если необходимо переслать данные длиной менее 46 байтов, уровень LLC добавляет в их конец байты с неизвестным значением, называемые незначащими данными (pad data). В результате длина поля становится равной 46 байтам.

Если кадр имеет тип 802.3, то в поле L/T указывается значение объема действительных данных. Например, если пересылается 12-байтовое сообщение, то поле L/T хранит значение 12, а в поле данных находятся и 34 добавочных незначащих байта. Добавление незначащих байтов инициирует уровень LLC Fast Ethernet, и обычно реализуется аппаратно.

Средства уровня MAC не задают содержимое поля L/T - это делает программное обеспечение. Установка значения этого поля почти всегда производится драйвером сетевого интерфейса.

Контрольная сумма кадра

Контрольная сумма кадра (PCS - Frame Check Sequence) позволяет убедиться в том, что полученные кадры не повреждены. При формировании передаваемого кадра на уровне MAC используется специальная математическая формула CRC (Cyclic Redundancy Check - циклический избыточный код), предназначенная для вычисления 32-разрядного значения. Полученное значение помещается в поле FCS кадра. На вход элемента уровня MAC, вычисляющего CRC, подаются значения всех байтов кадра. Поле FCS является первичным и наиболее важным механизмом обнаружения и исправления ошибок в Fast Ethernet. Начиная с первого байта адреса получателя и заканчивая последним байтом поля данных.

Значения полей DSAP и SSAP

Значения DSAP/SSAP

Описание

Indiv LLC Sublayer Mgt

Group LLC Sublayer Mgt

SNA Path Control

Reserved (DOD IP)

ISO CLNS IS 8473

Алгоритм кодирования 8В6Т преобразует восьмибитовый октет данных (8B) в шестибитовый тернарный символ (6T). Кодовые группы 6Т предназначены для передачи параллельно по трем витым парам кабеля, поэтому эффективная скорость передачи данных по каждой витой паре составляет одну треть от 100 Мбит/с, то есть 33,33 Мбит/с. Скорость передачи тернарных символов по каждой витой паре составляет 6/8 от 33,3 Мбит/с, что соответствует тактовой частоте 25 МГц. Именно с такой частотой работает таймер интерфейса МП. В отличие от бинарных сигналов, которые имеют два уровня, тернарные сигналы, передаваемые по каждой паре, могут иметь три уровня.

Таблица кодировки символов

Линейный код

Символ

MLT-3 Multi Level Transmission - 3 (многоуровневая передача) - немного схож с кодом NRZ, но в отличии от последнего имеет три уровня сигнала.

Единице соответствует переход с одного уровня сигнала на другой, причем изменение уровня сигнала происходит последовательно с учетом предыдущего перехода. При передаче “нуля” сигнал не меняется.

Этот код, так же как и NRZ нуждается в предварительном кодировании.

Составлено по материалам:

  1. Лаем Куин, Ричард Рассел "Fast Ethernet";
  2. К. Заклер "Компьютерные сети";
  3. В.Г. и Н.А. Олифер "Компьютерные сети";

Стандарт 100Base-TX имеет определенные ограничения на структуру сети, построенной в соответствии с ним.

В частности, стандарт вводит ограничение на длину сегмента сети в 100 метров (на самом деле эта длина ограничена 94 метрами, но мы здесь и далее будем использовать круглую цифру 100). То есть, вы можете подключить к коммутатору несколько компьютеров кабелями , длина каждого из которых составляет 100 метров.

В стандарте существует такое понятие, как домен коллизий – сегмент сети, все узлы которого способны распознать коллизию независимо от места в сети, где она произошла. Именно для того, чтобы узлы могли правильно распознавать коллизии, и вводится ограничение на длину кабелей .

Топологии локальных сетей

Топология – это способ связи нескольких компьютеров в сеть.

Простейшая топология локальной сети – это связь двух компьютеров. Такую сеть можно организовать и по стандартам Ethernet , соединив сетевые карты двух машин особым образом разведенным кабелем .

Итак, простейшая топология – это одна связь, соединяющая два узла сети. На такую топологию похожа кольцевая топология , все узлы которой соединены в кольцо. Данные в такой сети обычно передаются от компьютера к компьютеру в одном направлении. Еще одна топология носит название общая шина. Она свойственна устаревшим Ethernet -сетям, построенным на основе коаксиального кабеля .

В настоящий момент наибольшее распространение получила топология "звезда" (рис. 1.1.) - актуальна она и для Ethernet -сетей. В центре "звезды" находится хаб (коммутатор , концентратор, повторитель) от которого отходят провода, соединяющие его с компьютерами.

Рис. 1.1. Топология "звезда"

Звездообразная топология отличается от шинной повышенной надежностью. Если какая-нибудь связь в шинной топологии будет повреждена, то сеть будет разбита на два независимых сегмента. А повреждение кабеля при звездообразной организации сети ведет лишь к отключению от коммутатора одного из компьютеров.



Надо отметить, что коммутаторы (а также маршрутизаторы) могут объединяться, образуя таким образом топологию "иерархическая звезда" - несколько обычных "звезд", соединенных линиями связи.

Существуют и другие топологии . Например, для глобальных сетей характерна ячеистая топология , когда от одного узла сети связи могут идти к нескольким другим. Полный вариант ячеистой топологии – это полносвязная топология – когда каждый из узлов сети имеет интерфейсы для связи со всеми остальными.

Особенности выбора и эксплуатации оборудования

Выбор сетевого оборудования – это довольно просто. Надо лишь определиться с тем, какое оборудование вам нужно, а уже после этого подумать над бюджетом будущих покупок.

Для построения Ethernet -сети вам понадобится следующее оборудование:

1. Сетевые карты – по одной на каждый компьютер.

2. Коммутатор – устройство, к которому подключаются все кабели от сетевых карт компьютеров.

3. Кабели .

Теперь давайте поговорим обо всем этом подробнее.

Встроенные сетевые карты

Сетевая карта занимается передачей информации между компьютерами сети. Она принимает данные от компьютера, преобразует их в форму, подходящую для передачи по сети, отправляет в сеть, принимает данные от других компьютеров и, обработав их, передает в компьютер.

Прежде чем заниматься выбором сетевой карты , поинтересуйтесь – может быть в компьютерах, которые вы собираетесь объединять, уже есть сетевые карты . Часто их встраивают в материнские платы, встроенные карты есть в большинстве ноутбуков.

Для того, чтобы понять, есть ли в вашем ПК встроенная сетевая карта , поищите на его задней стенке (или, для ноутбуков – на боковой или задней поверхности компьютера) разъем, похожий на тот, который изображен на рис. 1.2.

Рис. 1.2. Разъем для подключения сетевого кабеля

Если такой разъем найден – это значит, что выбирать дополнительную сетевую карту вам, скорее всего, не нужно. Встроенные сетевые карты обеспечивают достаточный уровень производительности и подходят для нормальной работы в локальной сети. Некоторые материнские платы имеют встроенные сетевые карты стандарта Gigabit Ethernet .

Серверные карты

Если вы собираетесь использовать компьютер в роли сервера (особенно, если вы рассчитываете построить достаточно большую сеть – начиная с 5-8 компьютеров, и считаете, что нагрузка на ваш сервер будет достаточно большой – то есть, что компьютерам сети часто придется обращаться к нему), подумайте о специальной сетевой карте для серверов. Поищите такую карту в местных компьютерных магазинах – обычно серверные сетевушки стоят больше простых, но это – достойное вложение в вашу локальную сеть.

Скорость передачи данных в сетях, построенных по этому стандарту - 100 Мбит/c.

Логика работы сетей Fast Ethernet и Ethernet совершенно одинаковая. Все отличия лежат на физическом уровне построения сети.

В 10 раз увеличилась скорость передачи сигнала, значит, в 10 раз должен уменьшиться максимальный диаметр одного разделяемого сегмента (чтобы избежать в нём поздних коллизий).

Признаком свободного состояния среды в Fast Ethernet является передача специального символа простоя источника (а не отсутствие сигнала, как в стандарте классической Ethernet).

Коаксиальный кабель исключён из списка разрешённых сред передачи. Стандарт Fast Ethernet установил три спецификации:

– 100Base-TX - неэкранированная или экранированная витая пара (две пары в кабеле).

– 100Base-T4 - неэкранированная витая пара (четыре пары в кабеле).

– 100Base-FX - волоконно-оптический кабель (с двумя волокнами).

Максимальные длины для кабельных сегментов приводятся в таблице:

Таблица 1.6.2 Стандарты Fast Ethernet

Полудуплексный канал работает на передачу и приём по очереди, а дуплексный - одновременно.

Правило 4 хабов для Fast Ethernet превращается в правило одного или двух хабов (в зависимости от класса хаба).

100Base-tx

Среда передачи - 2 витых пары в одной общей оболочке.

100Base-t4

Среда передачи - 4 витых пары в одной общей оболочке.

Три пары используются для параллельной передачи сигнала со скоростью 33,3 Мбит/с (всего получается 100 Мбит/с), четвёртая пара всегда “слушает” сеть на предмет обнаружения коллизий.

100Base-fx

Среда передачи - оптоволоконный кабель с двумя волокнами.

Gigabit Ethernet

Скорость передачи данных в сетях, построенных по этому стандарту - 1000 Мбит/c.

Поддерживаются кабели, используемые в Fast Ethernet: волоконно-оптический, витая пара.

Для предотвращения поздних коллизий длина сегмента кабеля должна уменьшиться в 10 раз по сравнению со стандартом Fast Ethernet, но это было бы неприемлемо. Вместо этого в технологии Gigabit Ethernet увеличена длина минимального пакета с 64 байтов до 512 байт и, кроме того, разрешено передавать несколько пакетов подряд (общий размер - не более 8192 байт). Конечно, это увеличивает ожидание паузы для начала передачи, но на скорости 1000 Мбит/c эта задержка не слишком существенна.

Для поддержки заявленной скорости передачи, в технологии Gigabit Ethernet применяются и некоторые другие технические решения, но структура сети остаётся прежней:

– дерево разделяемых сред;

– для соединения узлов в одном домене коллизий используются хабы;

– коммутаторы и маршрутизаторы соединяют домены коллизий.

Скорость передачи данных в сетях, построенных по этому стандарту - 10 000 Мбит/c.

Технология построения сети 10G Ethernet принципиально отличается от других Ethernet-технологий.

Сети 10G Ethernet - это сети с коммутацией пакетов .

Если в сетях с разделяемыми средами пакет, переданный одной станцией, поступает на все другие станции, то в коммутируемых сетях пакет следует от передающей станции к станции назначения по маршруту, который уточняется по мере продвижения пакета от одного маршрутизатора к другому.

Сеть с разделяемыми средами, построенная только на хабах и коммутаторах, должна иметь строго иерархическую структуру: на схеме соединений не должно быть циклов.

Сеть, приведённая на рисунке 1.6.2, имеет иерархическую структуру. Между любыми двумя узлами существует ровно один путь, например, путь от А к Б пролегает через узлы: А–2–1–3–5–Б:

Рисунок 1.6.2 Сеть с иерархической структурой

На следующем рисунке 1.6.3 показана сеть с циклом. Между узлами А и Б теперь имеются два пути: А–2–1–3–5–Б и А–5–Б:

Рисунок 1.6.3 Сеть с циклом

Сети с коммутацией пакетов могут иметь ячеистую структуру, в которой между двумя станциями может существовать два и более вариантов прохождения пакета.

Ячеистые сети более надежны: если один маршрут перестаёт работать по техническим причинам, для доставки пакета выбирается другой.

Сети с коммутацией пакетов имеют бóльшую пропускную способность по сравнению с сетями на разделяемых средах (пакеты не транслируются во все стороны, а следуют строго к пункту назначения; станции передают, не дожидаясь тишины в сети).

В качестве проводящей среды в сетях 10G Ethernet используют оптоволоконный кабель и кабель с витыми парами.

Длина сегмента оптического кабеля может достигать 40 км, а длина сегмента витой пары - 100 м. Причина ограничения длины кабеля теперь не в поздних коллизиях (при коммутации пакетов коллизий не бывает), а в затухании сигнала при его прохождению по кабелю.

Быстрый Ethernet

Когда-то казалось, что 10 Мбит/с - это просто фантастически высокая скорость. Однако мир меняется очень быстро. Постоянно ощущалась и продолжает ощущаться нехватка скорости и ширины канала. Для решения этих проблем различными компаниями было разработано множество оптоволоконных кольцевых ЛВС. Одна из таких систем называется FDDI (Fiber Distributed Data Interface - распределенный интерфейс передачи данных по волоконно-оптическим каналам), а другая - волоконный канал (Fibre Channel). Они обе использовались в магистральных сетях, но ни одна из них так и не стала доступна непосредственно конечному пользователю. В обоих случаях управление станциями осуществлялось очень сложными методами, что привело к необходимости создания дорогостоящих, сложных микросхем.

После неудачной попытки создания волоконно-оптических локальных сетей возникло множество Ethernet-сетей, работающих со скоростями свыше 10 Мбит/с. Многим приложениям требовалась высокая пропускная способность, и поэтому появились 10-мегабитные ЛВС, связанные лабиринтами кабелей, повторителей, мостов, маршрутизаторов и шлюзов. Сетевым администраторам иногда казалось, что система держится еле-еле и может развалиться от любого прикосновения.

Вот при таких обстоятельствах в 1992 году институт IEEE начал пересмотр стандартов и дал заказ комитету 802.3 выработать спецификацию более быстрых сетей. Одно из предложений состояло в том, чтобы сохранить 802.3 без изменений и просто увеличить скорость работы. Другое заключалось в том, чтобы полностью его переделать, снабдить новым набором функций - например, обеспечить возможность передачи данных реального времени, оцифрованной речи. При этом предлагалось сохранить старое название стандарта. Комитет решил все-таки изменить лишь скорость работы 802.3, а все остальные параметры оставить прежними. Сторонники хлопнули дверью, организовали собственный комитет и разработали свой стандарт (собственно, 802.12), который, впрочем, с треском провалился.

Комитет 802.3 решил продолжить линию старого доброго Ethernet по следующим трем соображениям.

1. Необходимость обратной совместимости с существующими ЛВС Ethernet.

2. Боязнь того, что в новом протоколе могут вскрыться неожиданные проблемы.

3. Желание успеть переделать стандарт до того, как изменится технология в целом.

Работа шла довольно быстро, и уже в июне 1995 года официально объявили о создании стандарта 802.3и. С технической точки зрения, в нем нет ничего нового по сравнению с предыдущей версией. Честнее было бы назвать это не новым стандартом, а расширением 802.3 (чтобы еще больше подчеркнуть обратную совместимость с ним).

Основная идея быстрого Ethernet: оставить без изменений все старые форматы кадров, интерфейсы, процедуры и лишь уменьшить битовый интервал со 100 нс до 10 нс. Преимущества проводки 10Base-T были столь неоспоримы, что практически все системы типа «быстрый Ethernet» в результате были построены именно на этом типе кабеля. Таким образом, в быстром Ethernet используются исключительно концентраторы (хабы) и коммутаторы.

Однако некоторые технические решения все же необходимо было принять. Самый важный вопрос заключался в том, какие типы кабелей поддерживать. Одним из претендентов была витая пара категории 3. Основным аргументом в его пользу было то, что практически все западные офисы уже были оборудованы по крайней мере четырьмя витыми парами категории 3 (а то и лучше): они использовались в телефонных линиях, и их длина (до ближайшего телефонного щита) составляла не более 100 м. Иногда можно было встретить два таких кабеля.

Было лишь одно неудобство: витые пары третьей категории неспособны передавать сигналы, изменяющиеся со скоростью 200 мегабод (100 Мбит/с с манчестерским кодированием) на 100 м (именно таково максимальное расстояние между компьютером и концентратором, установленное стандартом для 10Base-T). Витые пары категории 5 с такой задачей справились бы без всяких проблем, а для оптоволокна это и вовсе смешная цифра. Надо было найти какой-то компромисс. Не мудрствуя лукаво, комитет 802.3 разрешил применять все три типа кабелей, как показано в табл. 4.2, с условием, что решения на основе витой пары третьей категории будут чуть живее и смогут обеспечить необходимую емкость канала

В сетях Fast Ethernet максимальное значение окна коллизий равно 5,12 мксек и называется временем канала (slot time). Это время в точности соответствует минимальной длине пакета в 64 байта. Для более короткого пакета коллизия может быть не зафиксирована. Окно коллизий представляет собой время от начала передачи первого бита кадра до потери возможности регистрации коллизии с любым узлом сегмента, это время равно удвоенной задержке распространения сигнала между узлами (RTT). Конфигурация сети Fast Ethernet, для которой значение окна коллизий превышает время канала, не верна. Время канала задает величину минимального размера кадра и максимальный диаметр сети.

В сетях 100-мегагерцного Ethernet используются повторители двух классов (I и II ). Задержки сигналов в повторителях класса I больше (~140нс), зато они преобразуют входные сигналы в соответствии с регламентациями применяемыми при работе с цифровыми кодами. Такие повторители могут соединять каналы, отвечающие разным требованиям, например, 100BASE-TX и 100BASE-T4 или 100BASE-FX. Преобразование сигнала может занимать время, соответствующее передаче нескольких бит, поэтому в пределах одного логического сегмента может быть применен только один повторитель класса I , если кабельные сегменты имеют предельную длину. Повторители часто имеют встроенные возможности управления с использованием протокола SNMP.

Повторители класса II имеют небольшие задержки (~90нс или даже меньше), но никакого преобразования сигналов здесь не производится, и по этой причине они могут объединять только однотипные сегменты. Логический сегмент может содержать не более двух повторителя класса II , если кабели имеют предельную длину. Повторители класса II не могут объединять сегменты разных типов, например, 100BASE-TX и 100BASE-T4. . Согласно требованиям комитета IEEE время задержки сигнала JAM в повторителе Fast Ethernet (TX и FX) не должно превышать 460 нсек, а для 100BASE-T4 – 670 нсек.

100Base-FX, использует два оптических многомодовых кабеля (отвечающие требованиям стандарта ANSI), по одному для передачи в каждом направлении, то есть также полный дуплекс на скорости 100 Мбит/с в каждом направлении. Кроме того, расстояние между станциями при этом может достигать 2 км. Мультимодовое волокно 62,5/125m (см. выше) работает в инфракрасном диапазоне 1350нм.

Предельное ослабление сигнала в волокне не должно превышать 11 дБ, стандартный кабель имеет 1-5 дБ/км. Оптические разъемы должны отвечать тем же требованиям, что и разъемы, используемые в FDDI-сетях (MIC - Media Interface Connector).

Поскольку оптоволоконные кабели системы 100Base-FX слишком длинны для алгоритма столкновений, стандартного для сети Ethernet, их следует присоединять к буферированным коммутируемым концентраторам, так чтобы каждый кабель представлял собой отдельную область столкновений.

Устройство системы 100Base-TX (стандарт ANSI TP-PMD), использующей витые пары категории 5 (волновое сопротивление 100-150 Ом), проще, так как кабели этого типа могут работать с сигналами на частоте 125 МГц. Поэтому для каждой станции используются только две витые пары: одна к концентратору, другая от него. Прямое битовое кодирование не используется. Вместо него имеется специальная система кодирования, называемая 4В/5В. Она является последователем FDDI и совместима с ней. Каждая группа из четырех тактовых интервалов, каждый из которых содержит один из двух сигнальных значений, образует 32 комбинации. 16 из них используются для передачи четырехбитных групп 0000, 0001, 0010…1111. Оставшиеся 16 используются для служебных целей - например, для маркировки границ кадров. Используемые комбинации тщательно подбирались с целью обеспечения достаточного количества передач для поддержки синхронизации с тактогенератором. Система 100Base-TX является полнодуплексной, станции могут передавать на скорости 100 Мбит/с и одновременно принимать на той же скорости. Зачастую кабели 100Base-TX и 100Base-T4 называют просто 100Base-T. Провода должны быть скручены по всей длине, скрутка может быть прервана не далее как в 12мм от разъема.

При работе со скрученными парами (стандарт TX) используется 8-контактный разъем RJ-45 со следующим назначением контактов:

Если используются экранированные пары и 9-контактный разъем “D”-типа, то назначение контактов следующее:

Контакт 1 Прием +
Контакт 5 Передача +
Контакт 6 Прием -
Контакт 9 Передача -

В схеме 100Base-4T, используют четыре скрученные пары телефонного качества (экранированные и неэкранированные скрученные пары проводов категории 3, 4 или 5), сигнальная скорость составляет 25 МГц, что лишь на 25 % больше, чем 20 МГц стандарта Ethernet (в манчестерском кодировании, требуется удвоенная частота). Чтобы достичь требуемой пропускной способности, в схеме 100Base-4T применяются четыре витые пары. Провода должны быть скручены по всей длине, скрутка может быть прервана не далее как в 12мм от разъема.

Из четырех витых пар одна всегда направляется на концентратор, одна - от концентратора, а две оставшиеся переключаются в зависимости от текущего направления передачи данных. Для достижения скорости 100 Мбит/с от манчестерского кодирования пришлось отказаться, однако, учитывая сегодняшние

тактовые частоты и небольшие расстояния между станциями ЛВС, без него вполне можно обойтись. Кроме того, по линии посылаются троичные сигналы, то есть 0, 1 или 2. При использовании трех витых пар в направлении передачи данных это означало передачу 1 из 27 возможных символов за один такт, то есть 4 бита плюс некоторая избыточность, что при тактовой частоте в 25 МГц как раз и составляет требуемые 100 Мбит/с. Кроме того, есть еще обратный канал, работающий на скорости 33,3 Мбит/с по оставшейся витой паре. Такая схема, известна как 8В/6Т (8 битов в виде 6 троичных цифр).

Для стандарта 100BASE-T4 назначение контактов приведено в таблице.

Разъем MDI (Media Dependant Interface) кабеля 100BASE-T4

Пары 2 и 3 также как и в ТХ предназначены для приема и передачи данных. Пары 1 и 4 используются в двух направлениях, преобразуя канал между узлом и повторителем в полудуплексную. В процессе передачи узел использует пары 1, 2 и 4, а повторитель – пары 1, 3 и 4. Следует заметить, что схема Т4, в отличие от ТХ, может работать только в полудуплексном режиме.

Схема подключения и передачи сигналов в сетях 100BASE-T4 показана на рис.

Gigabit Ethernet

Гигабитная сеть Ethernet

Только, только родился стандарт быстрого Ethernet, как комитет 802 приступил к работе над новой версией (1995). Ее почти сразу окрестили гигабитной сетью Ethernet, а в 1998 году новый стандарт был уже ратифицирован IEEE под официальным названием 802.3z. Тем самым разработчики подчеркнули, что это последняя разработка в линейке 802. Ключевые свойства гигабитного Главные предпосылки создания 802.3z были те же самые, что и при создании 802.3и, - повысить в 10 раз скорость, сохранив обратную совместимость со старыми сетями Ethernet. В частности, гигабитный Ethernet должен был обеспечить дейтаграммный сервис без подтверждений как при односторонней, так и при групповой передаче. При этом необходимо было сохранить неизменными 48-битную схему адресации и формат кадра, включая нижние и верхние ограниче-

ния его размера. Новый стандарт удовлетворил всем этим требованиям. Гигабитные сети Ethernet строятся по принципу «точка - точка», в них не применяется моноканал, как в исходном 10-мегабитном Ethernet, который теперь, кстати, величают классическим Ethernet. Простейшая гигабитная сеть, показанная на рис. 4.20, а, состоит из двух компьютеров, напрямую соединенных друг с другом. В более общем случае, однако, имеется коммутатор или концентратор, к которому подсоединяется множество компьютеров, возможна также установка дополнительных коммутаторов или концентраторов (рис. 4.20, б). Но в любом случае к одному кабелю гигабитного Ethernet всегда присоединяются два устройства, ни больше, ни меньше.

Рис. 4.20. Сеть Ethernet, состоящая из двух станций (а); сеть Ethernet, состоящая из множества станций (б)

Гигабитный Ethernet может работать в двух режимах: полнодуплексном и полудуплексном. «Нормальным» считается полнодуплексный, при этом трафик может идти одновременно в обоих направлениях. Этот режим используется, когда имеется центральный коммутатор, соединенный с периферийными компьютерами или коммутаторами. В такой конфигурации сигналы всех линий буферизируются, поэтому абоненты могут отправлять данные, когда им вздумается. Отправитель не прослушивает канал, потому что ему не с кем конкурировать . На линии между компьютером и коммутатором компьютер - это единственный потенциальный отправитель; передача произойдет успешно даже в том случае, если одновременно с ней ведется передача со стороны коммутатора (линия полнодуплексная). Так как конкуренции в данном случае нет, протокол CSMA/CD не применяется, поэтому максимальная длина кабеля определяется исключительно мощностью сигнала, а вопросы времени распространения шумового всплеска здесь не встают. Коммутаторы могут работать на смешанных скоростях; более того, они автоматически выбирают оптимальную скорость. Самонастройка поддерживается так же, как и в быстром Ethernet. Полудуплексный режим работы используется тогда, когда компьютеры соединены не с коммутатором, а с концентратором. Хаб не буферизирует входящие кадры. Вместо этого он электрически соединяет все линии, симулируя моноканал обычного Ethernet. В этом режиме возможны коллизии, поэтому применяется CSMA/CD. Поскольку кадр минимального размера (то есть 64-байтный) может передаваться в 100 раз быстрее, чем в классической сети Ethernet, максимальная длина сегмента должна быть соответственно уменьшена в 100 раз. Она составляет 25 м - именно при таком расстоянии между станциями шумовой всплеск гарантированно достигнет отправителя до окончания его передачи. Если бы кабель имел длину 2500 м, то отправитель 64-байтного кадра при 1 Гбит/с успел бы много чего наделать даже за то время, пока его кадр прошел только десятую часть пути в одну сторону, не говоря уже о том, что сигнал должен еще и вернуться обратно.

Комитет разработчиков стандарта 802.3z совершенно справедливо заметил, что 25 м - это неприемлемо малая длина, и ввел два новых свойства, позволивших расширить радиус сегментов. Первое называется расширением носителя. Заключается это расширение всего-навсего в том, что аппаратура вставляет собственное поле заполнения, растягивающее нормальный кадр до 512 байт. Поскольку это поле добавляется отправителем и изымается получателем, то программному обеспечению нет до него никакого дела. Конечно, тратить 512 байт на передачу 46 байт - это несколько расточительно с точки зрения эффективности использования пропускной способности. Эффективность такой передачи составляет всего 9 %. Второе свойство, позволяющее увеличить допустимую длину сегмента, - это пакетная передача кадров. Это означает, что отправитель может посылать не единичный кадр, а пакет, объединяющий в себе сразу много кадров. Если полная длина пакета оказывается менее 512 байт, то, как в предыдущем случае, производится аппаратное заполнение фиктивными данными. Если же кадров, ждущих передачу, хватает на то, чтобы заполнить такой большой пакет, то работа системы оказывается очень эффективной. Такая схема, разумеется, предпочтительнее расширения носителя. Эти методы позволили увеличить максимальную длину сегмента до 200 м, что, наверное, для организаций уже вполне приемлемо. Трудно представить себе организацию, которая потратила бы немало усилий и средств на установку плат для высокопроизводительной гигабитной сети Ethernet, а потом соединила бы компьютеры концентраторами, симулирующими работу классического Ethernet со всеми его коллизиями и прочими проблемами. Концентраторы, конечно, дешевле коммутаторов, но интерфейсные платы гигабитного Ethernet все равно относительно дороги, поэтому экономия на покупке концентратора вместо коммутатора себя не оправдывает. Кроме того, это резко снижает производительность, и становится вообще непонятно, зачем было тратить деньги на гигабитные платы. Однако обратная совместимость - это нечто священное в компьютерной индустрии, поэтому, несмотря ни на что, в 802.3z подобная возможность предусматривается. Гигабитный Ethernet поддерживает как медные, так и волоконно-оптические кабели, что отражено в табл. 4.3. Работа на скорости 1 Гбит/с означает, что источник света должен включаться и выключаться примерно раз в наносекунду.

Светодиоды просто не могут работать так быстро, поэтому здесь необходимо применять лазеры. Стандартом предусматриваются две операционных длины волны: 0,85 мкм (короткие волны) и 1,3 мкм (длинные). Лазеры, рассчитанные на 0,85 мкм, дешевле, но не работают с одномодовыми кабелями.

Официально допускается использование трех диаметров волокна: 10, 50 и 62,5 мкм. Первое предназначено для одномодовой передачи, два других - для многомодовой. Не все из шести комбинаций являются разрешенными, а максимальная длина сегмента зависит как раз от выбранной комбинации. Числа, приведенные в табл. 4.3, - это наилучший случай. В частности, пятикилометровый кабель можно использовать только с лазером, рассчитанным на длину волны 1,3 мкм и работающим с 10-микрометровым одномодовым волокном. Такой ва-

риант, видимо, является наилучшим для магистралей разного рода кампусов и производственных территорий. Ожидается, что он будет наиболее популярным несмотря на то, что он самый дорогой. 1000Base-CX использует короткий экранированный медный кабель. Проблема в том, что его поджимают конкуренты как сверху (1000Base-LX), так и снизу (1000Base-T). В результате сомнительно, что он завоюет широкое общественное

признание. Наконец, еще один вариант кабеля - это пучок из четырех неэкранированных витых пар. Поскольку такая проводка существует почти повсеместно, то, похоже, это будет «гигабитный Ethernet для бедных».

Новый стандарт использует новые правила кодирования сигналов, передающихся по оптоволокну. Манчестерский (4В/5В) код при скорости передачи данных 1 Гбит/с потребовал бы скорости изменения сигнала в 2 Гбод. Это слишком сложно и занимает слишком большую долю пропускной способности. Вместо манчестерского кодирования применяется схема, называющаяся 8В/10В. Как нетрудно догадаться по названию, каждый байт, состоящий из 8 бит, кодируется для передачи по волокну десятью битами. Поскольку возможны 1024 результирующих кодовых слова для каждого входящего байта, данный метод дает некоторую свободу

выбора кодовых слов. При этом принимаются в расчет следующие правила:

Ни одно кодовое слово не должно иметь более четырех одинаковых битов подряд;

Нив одном кодовом слове не должно быть более шести нулей или шести единиц.

Почему именно такие правила? Во-первых, они обеспечивают достаточное количество изменений состояния в потоке данных, необходимое для того, чтобы приемник оставался синхронизированным с передатчиком. Во-вторых, количество нулей и единиц стараются примерно выровнять. К тому же многие входящие байты имеют два возможных кодовых слова, ассоциированных с ними. Когда кодирующее устройство имеет возможность выбора кодовых слов, оно, вероятно, выберет из них то, которое сравняет число нулей и единиц. Сбалансированному количеству нулей и единиц потому придается такое значение, что необходимо держать постоянную составляющую сигнала на как можно более низком уровне. Тогда она сможет пройти через преобразователи без изменений. Люди, занимающиеся компьютерной наукой, не в восторге от того, что

преобразовательные устройства диктуют те или иные правила кодирования сигналов, но жизнь есть жизнь.

Гигабитный Ethernet, построенный на 1000Base-T, использует иную схему кодирования, поскольку изменять состояние сигнала в течение 1 не для медного кабеля затруднительно. Здесь применяются 4 витые пары категории 5, что дает возможность параллельно передавать 4 символа. Каждый символ кодируется одним из пяти уровней напряжения Чтобы вписать 1Гц в 4 витые пары применяется код РАМ5. Число из 8 бит передается пятеричное число – код с основанием 5. Таким образом, один сигнал может означать 00, 01, 10 или 11. Есть еще специальное, служебное значение напряжения. На одну витую пару приходится 2 бита данных, соответственно, за один временной интервал система передает 8 бит по 4 витым парам. Тактовая частота равна

125 МГц, что позволяет работать со скоростью 1 Гбит/с. Пятый уровень напряжения был добавлен для специальных целей - кадрирования и управления. 1 Гбит/с - это довольно много. Например, если приемник отвлечется на какоето дело в течение 1 мс и при этом забудет/не успеет освободить буфер, это означает, что он «проспит» примерно 1953 кадра. Может быть и другая ситуация: один компьютер выдает данные по гигабитной сети, а другой принимает их по классическому Ethernet. Вероятно, первый быстро завалит данными второго.

В первую очередь переполнится буфер обмена. Исходя из этого было принято решение о внедрении в систему контроля потока (так было и в быстром Ethernet, хотя эти системы довольно сильно различаются). Для реализации контроля потока одна из сторон посылает служебный кадр, сообщающий о том, что второй стороне необходимо приостановиться на некоторое время. Служебные кадры - это, на самом деле, обычные кадры Ethernet, в поле Туре которых записано 0x8808. Первые два байта поля данных - командные, а последующие, по необходимости, содержат параметры команды. Для контроля потока используются кадры типа PAUSE, причем в качестве параметра указывается продолжительность паузы в единицах времени передачи минимального кадра. Для гигабитного Ethernet такая единица равна 512 не, а паузы могут длиться до 33,6 мс.

Гигабитный Ethernet был стандартизован, и комитет 802 заскучал. Тогда IEEE предложил ему начать работу над 10-гигабитным Ethernet. Начались долгие попытки найти в английском алфавите какую-нибудь букву после z. Когда стало очевидно, что такой буквы нет в природе, от старого подхода решено было отказаться и перейти к двухбуквенным индексам. Так в 2002 году появился стандарт802.3ае. Судя по всему, появление 100-гигабитного Ethernet уже тоже не за горами.

Еще несколько слов (выдержек из лекций) которые здесь не упомянались

Возникли проблемы: В нем сохранили витую пару 100 м, а при этом время на разрешения коммутаций уже не хватает

Эхоподавление(для дуплекса) до 1 Гц и каждая пара используется на всю ширину своей полосы в оба направления

в любом случае – дуплексный или полудуплексный- сигнал передается по всем 4-м витым парам

Есть 3 среды, в которых может работать:

1) Оптоволокно

2) Коаксиальный кабель

Может использоваться 2 или 4 коаксиальных пары. И возможное расстояние примерно равно 25 м. им объединяются например рядом стоящие серваки.

Так же задается количество нулей и единиц, что сохранит самосинхронизацию.


Похожая информация.





Top