Как соединить разные по мощности солнечные панели. Как соединить солнечные батареи: последовательно или параллельно? Этап #2: подключение к контроллеру

Одним из самых популярных альтернативных способов обеспечения дома электроэнергией является установка .

Их преимущества очевидны:

  1. Они не занимают столько места, сколько нужно для установки ветряка.
  2. Они работают бесшумно и не доставляют неудобств соседям.

Есть и недостатки, главные среди которых такие:

  1. Солнечные батареи все еще являются недешевым удовольствием.
  2. Установка подобной системы требует специальных знаний и навыков.

Если с первой проблемой каждый из нас по отдельности ничего сделать не может, то во второй разобраться под силу каждому.

Выбор места

Зазор между панелями и поверхностью обязателен Выбирая место для установки солнечных панелей, необходимо учитывать особенности:

  • географические;
  • частные.

Солнечные батареи нужно ставить не просто в освещенных местах, но и под конкретным углом. Особенно это касается монокристаллических панелей.

Примите во внимание: если не оставить зазор между крышей и панелями для циркуляции воздуха, модули будут перегреваться и выгорать.

Угол наклона вычисляется по специальной формуле и зависит от широты, на которой находится дом. Если формулу значительно упростить, система вычисления угла наклона панелей выглядит так:

  • для широты до 25° нужно ее значение умножить на 0,87;
  • для широты от 25 до 50° нужно умножить значение на 0,76 и прибавить 3,1 градуса.

Частные особенности включают в себя условия, в которых находится дом. На крышу не должна падать тень деревьев или других построек.

Если эту проблему невозможно решить, то лучше установить панели не на крыше, а на отдельных столбах во дворе.

Этапы монтажа

Установка комплекта системы солнечных батарей проводится в несколько этапов. Они перечислены ниже.

Имейте в виду: чем короче провода, тем меньше энергии в них теряется.

Нюансы крепежа

Каркасы под солнечные панели Перед началом работ необходимо рассчитать максимально допустимую для кровли нагрузку.

Для правильного размещения солнечных панелей при их монтаже нужно придерживаться перечисленных ниже принципов.

  1. Угол наклона панелей нужно выбирать не произвольно, а отталкиваясь от географических особенностей расположения дома. Как вычислить угол, написано выше в этой статье.
  2. Если угол кровли не соответствует тому, который был найден при расчетах, то можно установить модули на отдельных конструкциях во дворе.
  3. Эффективность панелей повышается, если их лицевые стороны направлены на юг.
  4. Зимой угол наклона батарей следует увеличивать на 14 градусов. Летом его нужно на столько же уменьшать.

Совет специалистов: для возможности регулировки угла наклона модулей можно воспользоваться специальными каркасами. Они позволяют менять угол от 15 до 70 градусов. С помощью этих конструкций батареи можно установить даже на мягкой кровле.

Связка СП между собой

Схема соединения СП Проблем, связанных с , не возникнет, если они все должны быть расположены в одной плоскости.

Но они будут работать по-разному, если располагать их приходится на разных скатах крыши. Те панели, на которые попадает больше света, будут работать эффективнее.

Снизить потери мощности можно за счет установки индивидуального контроллера на батареи каждой плоскости.

Контроллером называется входящий в комплект прибор, обеспечивающий автоматическую работу зарядки и разрядки .

Кроме того, помочь в таком случае может установка отсекающих диодов. Диоды могут быть установлены производителями изначально, или под них может быть оставлено место для самостоятельной интеграции.

Схема подключения

Схема подключения СП. (Для увеличения нажмите) Схема подключения солнечной батареи выглядит следующим образом:

  1. Постоянный ток поступает по проводу в контроллер.
  2. Постоянный ток распределяется контроллером на две ветви: одна ведет к аккумуляторной батарее, чтобы ее подзарядить, вторая питает приборы, потребляющие постоянный ток.
  3. Постоянный ток поступает из аккумулятора в инвертор, который преобразует его в переменный.
  4. Из инвертора переменный ток направляется в распределительную коробку, откуда он распределяется по всему дому.

Имейте в виду: энергоснабжение дома можно сделать более эффективным, добавив дополнительные источники электрического тока. Такое действие, однако, усложнит схему подключения устройств.

Как видите, установка солнечных батарей не является слишком сложной задачей. Все сводится к выполнению пунктов следующего плана:

  • убрать деревья, отбрасывающие тень;
  • правильно определить угол наклона панелей;
  • закрепить панели на крыше (если нужно – следует воспользоваться специальными регулируемыми каркасами);
  • установить в доме необходимые приборы (инвертор, коллектор, аккумуляторы);
  • соединить элементы схемы проводами.

Обратите внимание: в стоимость комплектов солнечных батарей обычно не входит цена фурнитуры, проводки, креплений.

Если вы не уверены, что сможете выполнить подобную работу, лучше доверить дело профессионалам. Ведь при неправильном подключении можно не просто получить ток меньшей мощности, можно вывести из строя дорогую систему.

Смотрите видео, в котором опытные специалисты объясняют нюансы установки солнечных панелей:

При монтаже солнечных электростанций неизбежно возникает вопрос – как соединять солнечные панели и чем отличаются варианты подключения. Именно об этом мы и поговорим в этой статье.

Существуют 3 варианта соединения солнечных панелей между собой:

Последовательное соединение

Параллельное соединение

Последовательно-параллельное соединение солнечных панелей

Для того чтобы разобраться чем они отличаются, обратимся к основным характеристикам солнечных панелей:

Номинальное напряжение солнечной батареи – как правило 12В или 24В, но существуют и исключения
Напряжение при пиковой мощности Vmp – напряжение при которой панель выдает максимальную мощность
Напряжение холостого хода Voc – напряжение в отсутствии нагрузки (важно при выборе контроллера заряда АКБ)
Напряжение максимальное в системе Vdc – определяет максимальное количество панелей объединенных вместе
Ток Imp – ток при максимальной мощности панели
Ток Isc – ток короткого замыкания, максимально возможный ток панели

Мощность солнечной панели определяется как произведение Напряжения и тока в точке максимальной мощности – Vmp* Imp

В зависимости от того какая схема подключения солнечных панелей выбрана, будут определяться характеристики системы солнечных панелей и подбираться соответствующий контроллер заряда.

Теперь предметно рассмотрим каждую схему соединения:

1) Последовательное соединение солнечных панелей

При таком соединении минусовая клемма первой панели соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и так далее.

При последовательном соединении нескольких панелей, напряжение всех панелей будет складываться. Ток системы будет равен току панели с минимальным током. По этой причине не рекомендуется соединять последовательно панели с различным значением ток максимальной мощности, поскольку работать они будут не в полную силу.

Рассмотрим на примере:

Имеем 4 солнечных монокристаллических панели со следующими характеристиками:

Номинальное напряжение солнечной батареи: 12В
Напряжение при пиковой мощности Vmp: 18.46 В
Напряжение холостого хода Voc: 22.48В
Напряжение максимальное в системе Vdc: 1000В
Ток в точке максимальной мощности Imp: 5.42А
Ток короткого замыкания Isc: 5.65А

Соединив последовательно 4 таких панели мы получим на выходе номинальное напряжение 12В*4=48В. Напряжение холостого хода = 22,48В*4=89,92В и Ток в точке максимальной мощности равный 5,42А. Эти три параметра задают нам ограничения при выборе контроллера заряда.

2) Параллельное соединение солнечных панелей

В данном случае панели соединяются при помощи специальных Y - коннекторов. У таких коннекторов имеется два входа и один выход. К входам подключаются клеммы одинакового знака.

При таком соединении напряжение на выходе каждой панели будет равны между собой и равны напряжению на выходе из системы панелей. Ток от всех панелей будет складываться. Такое соединение позволяет, не поднимая напряжения увеличить ток от панелей.

Рассмотрим на примере все тех же 4х панелей:

Соединив параллельно 4 таких панели мы получим номинальное напряжение на выходе равное 12В, Напряжение холостого хода останется 22,48В, но ток при этом будет равен 5,42А*4=21,68А.

3) Последовательно-параллельное соединение солнечных панелей

Последний тип соединения объединяет в себе два предыдущих. Применяя данную схему соединения панелей, мы можем регулировать напряжение и ток на выходе из системы нескольких панелей, что позволит подобрать наиболее оптимальный режим работы всей солнечной электростанции.

В случае такого подключения соединенные последовательно цепочки панелей объединяют параллельно.

Вернемся к нашему примеру с 4мя панелями:

Соединив по 2 панели последовательно и затем объединим их соединив цепочки панелей параллельно мы получим следующее. Номинальное напряжение на выходе будет равно сумме двух последовательно соединенных панелей 12В*2=24В, напряжение холостого хода будет равно 22,48В*2=44,96В, а ток при этом будет равен 5,42А*2=10,84А.

Такое соединение позволит максимально сэкономить на покупке контроллера заряда, поскольку от него не потребуется выдерживать больших напряжений как в случае последовательного соединения или больших токов как в случае параллельного соединения. Именно поэтому соединяя панели между собой необходимо стремится к балансу между токами и напряжениями.

О том как подобрать контроллер заряда можно прочитать тут –

А если вы хотите купить солнечную электростанцию ― позвоните по телефону 8-800-100-82-43 (+7-499-709-75-09) или оставьте заявку на сайте и мы сделаем все необходимые расчеты и подберем оптимальную комплектацию для вас!

Альтернативная энергетика становится все доступнее. Эта статья даст вам полное представление о солнечной энергетике локальных масштабов, видах фотоэлементов и панелей, принципах построения солнечных ферм и экономической обоснованности.

Особенности солнечной энергетики в средних широтах

Для жителей средних широт альтернативная энергетика весьма привлекательна. Даже в северных широтах среднегодовая суточная доза излучения составляет 2,3-2,6 кВт·ч/м 2 . Чем ближе к югу — тем выше этот показатель. В Якутске, например, интенсивность солнечного излучения составляет 2,96, а в Хабаровске — 3,69 кВт·ч/м 2 . Показатели в декабре составляют от 7% до 20% от среднегодового значения, а в июне и июле возрастают вдвое.

Вот пример расчета эффективности солнечных панелей для Архангельска — региона с одним из самых низких показателей интенсивности солнечного излучения:

  • Q — среднегодовое количество солнечной радиации в регионе (2,29 кВт·ч/м 2);
  • К откл — коэффициент отклонения поверхности коллектора от южного направления (среднее значение: 1,05);
  • P ном — номинальная мощность солнечной панели;
  • К пот — коэффициент потерь в электроустановках (0,85-0,98);
  • Q исп — интенсивность излучения, при которой панель испытывалась (обычно 1000 кВт·ч/м 2).

Последние три параметра указываются в паспорте панелей. Таким образом, если в условиях Архангельска работают панели KVAZAR с номинальной мощностью 0,245 кВт, а потери в электроустановке не превышают 7%, то один блок фотоэлементов обеспечит генерацию в размере около 550 Вт·ч. Соответственно, для объекта с номинальным потреблением 10 кВт·ч понадобится около 20 панелей.

Экономическая обоснованность

Сроки окупаемости солнечных панелей посчитать несложно. Умножьте суточное количество производимой энергии в сутки на количество суток в году и на срок эксплуатации панелей без снижения мощности — 30 лет. Рассмотренная выше электроустановка способна генерировать в среднем от 52 до 100 кВт·ч в сутки в зависимости от продолжительности светового дня. Среднее значение составляет около 64 кВт·ч. Таким образом, за 30 лет электростанция в теории должна выработать 700 тыс. кВт·ч. При одноставочном тарифе в 3,87 руб. и стоимости одной панели около 15 000 руб, затраты окупятся за 4-5 лет. Но реальность более прозаична.

Дело в том, что декабрьские значения солнечной радиации меньше среднегодовых примерно на порядок. Поэтому для полностью автономной работы электростанции зимой требуется в 7-8 раз больше панелей, чем летом. Это существенно увеличивает вложения, но уменьшает срок окупаемости. Перспектива введения «зеленого тарифа» выглядит вполне ободряюще, но даже на сегодняшний день можно заключить договор на поставку электроэнергии в сеть по оптовой цене, которая втрое ниже розничного тарифа. И даже этого достаточно, чтобы выгодно продавать 7-8 кратный излишек выработанной электроэнергии в летний период.

Основные типы солнечных панелей

Существует два основных типа солнечных панелей.

Твердые кремниевые фотоэлементы считаются элементами первого поколения и наиболее распространены: около 3/4 рынка. Их существует две разновидности:

  • монокристаллические (черного цвета) имеют высокий КПД (0,2-0,24) и малую цену;
  • поликристаллические (темно-синего цвета) дешевле в производстве, но менее эффективны (0,12-0,18), хотя при рассеянном свете их КПД снижается меньше.

Мягкие фотоэлементы называют пленочными и изготавливают либо из кремниевого напыления, либо путем многослойной композиции. Кремниевые элементы дешевле в производстве, но их КПД в 2-3 раза ниже кристаллических. Однако при рассеянном свете (сумерки, пасмурность) они эффективнее кристаллических.

Некоторые виды композитных пленок имеют КПД около 0,2 и стоят гораздо больше твердых элементов. Их применение в солнечных электростанциях весьма сомнительно: пленочные панели в большей степени подвержены деградации со временем. Основная область их применения — мобильные энергоустановки с низким потреблением энергии.

Гибридные панели включают помимо блока фотоэлементов также коллектор — систему капиллярных трубок для нагрева воды. Преимущество их не только в экономии площади и возможности горячего водоснабжения. За счет водяного охлаждения фотоэлементы меньше теряют в производительности при нагреве.

Таблица. Обзор производителей

Модель SSI Solar LS-235 SOLBAT MCK-150 Canadian Solar CS5A-210M Chinaland CHN300-72P
Страна Швейцария Россия Канада Китай
Тип Поликристалл Монокристалл Монокристалл Поликристалл
Мощность при 1000 кВт·ч/м 2 , Вт 235 150 210 300
Число элементов 60 72 72 72
Напряжение: холостого хода/при нагрузке, В 36,9/29,8 18/12 45,5/37,9 36,7/43,6
Ток: при нагрузке/короткого замыкания, А 7,88/8,4 8,33/8,58 5,54/5,92 8,17/8,71
Вес, кг 19 12 15,3 24
Размеры, мм 1650х1010х42 667х1467х38 1595х801х40 1950х990х45
Цена, руб. 13 900 10 000 14 500 18 150

Оборудование гелиоэнергетического комплекса

Батареи генерируют при работе постоянный ток величиной до 40 В. Чтобы использовать его в бытовых целях, требуется ряд преобразований. За это отвечает следующее оборудование:

  1. Блок аккумуляторных батарей. Позволяет пользоваться выработанной энергией ночью и в часы малой интенсивности. Используются гелиевые аккумуляторы номинальным напряжением 12, 24 или 48 В.
  2. Контроллеры заряда поддерживают оптимальный цикл работы аккумуляторов и переводят требуемую мощность на питание потребителей. Необходимое оборудование подбирается под параметры батарей и аккумуляторов.
  3. Инвертор напряжения трансформирует постоянный ток в переменный и имеет ряд дополнительных функций. Во-первых, инвертор устанавливает приоритет источника напряжения, а при недостатке мощности «подмешивает» питание из другого. Гибридные инверторы позволяют также отдавать излишек вырабатываемой энергии в городскую сеть.

1 — солнечные батареи 12 В; 2 — солнечные батареи 24 В; 3 — контроллер заряда; 4 — АКБ 12 В; 5 — освещение 12 В; 6 — инвертор; 7 — автоматика «умного дома»; 8 — блок АКБ 24 В; 9 — аварийный генератор; 10 — основные потребители 220 В

Применение в домашнем хозяйстве

Солнечные панели могут использоваться в абсолютно любых целях: от компенсации получаемой энергии и питания отдельных линий до полной автономизации энергосистемы , включая отопление и горячее водоснабжение. В последнем случае важную роль играет масштабное применение энергосберегающих технологий — рекуператоров и тепловых насосов.

При смешанном использовании гелиоэнергетики используют инверторы. При этом питание может направляться либо на работу отдельных линий или систем, либо частично компенсировать использование городского электричества. Классический пример эффективной энергосистемы — тепловой насос, питаемый небольшой солнечной электростанцией с блоком аккумуляторов.

1 — городская сеть 220 В; 2 — солнечные батареи 12 В; 3 — освещение 12 В; 4 — инвертор; 5 — контроллер заряда; 6 — основные потребители 220 В; 7 — АКБ

Традиционно панели устанавливают на крышах зданий, а в некоторых архитектурных решениях они полностью заменяют кровельное покрытие. При этом панели необходимо ориентировать на южную сторону таким образом, чтобы падение лучей на плоскость было перпендикулярным.

Либо просто хотите организовать независимое электроснабжение участка, первым делом нужно выбрать подходящую электростанцию и разобраться с ее подключением. Как первый, так и второй момент может вызвать множество вопросов, особенно у новичков в электрике. Чтобы читатели « » умели соединять панели между собой и подключать их к домашней сети далее мы рассмотрим наиболее эффективные схемы подключения солнечных батарей к контроллеру, аккумулятору и сети загородного дома!

Итак, первое, о чем Вы должны иметь представление – из чего состоит комплект солнечной электростанции. Основные элементы системы представлены следующими устройствами:

  1. Солнечные батареи или как их еще называют солнечные элементы, панели или фотоэлектрические преобразователи. Они нужны для преобразования солнечного света в электроэнергию.
  2. Контроллер солнечных панелей. Следит за зарядом и разрядом АКБ. Бывают разных видов – On/Off, PWM, MPPT. Контроллеры перечислены в порядке возростания сложности и эффективности алгоритмов заряда. MPPT – позволяют добиться большей эффективности за счет того, что находят оптимальные параметры напряжения и тока, для закачки максимально возможной мощности в аккумуляторы. Это происходит на основании анализа режима работы в текущий момент и ВАХ солнечной панели. Основная задача контроллера – следить за зарядом АКБ, чтобы не допустить перезаряда или чрезмерного их разряда. Простыми словами, когда аккумуляторная батарея полностью заряжена или разряжена АКБ отключаются от панели или нагрузки.
  3. Аккумулятор, предназначен для накопления сгенерированной электроэнергии.
  4. Инвертор – преобразовывает 12 Вольт в переменные 220, необходимые для работы домашних электроприборов, системы освещения и бытовой техники.

Обращаем Ваше внимание на то, что между всеми устройствами: контроллером, инвертором, нагрузкой и аккумулятором желательно поставить предохранители, которые защитят систему при !

В простейшем исполнении схема подключения солнечных батарей к контроллеру, аккумулятору, инвертору и нагрузке выглядит следующим образом:

Как Вы видите, особых сложностей в подключении нет, главное соблюдать полярность и подключать все штекеры в нужные разъемы контроллера. В таком варианте очень сложно что-то перепутать. А вот если Вы решили использовать электроэнергию от солнца одновременно со стационарной сетью, схема подключения солнечных батарей в электросеть дома должна выглядеть следующим образом:

Тут нужно пояснить: резервируемая нагрузка – это , котел и, к примеру, холодильник. Не резервируемая – бытовая техника, свет в доме и т.д. Чем больше емкость аккумулятора, тем дольше смогут проработать резервируемые электроприборы в автономном режиме!

Со схемой подключения солнечных батарей к сети переменного тока разобрались. Теперь нужно рассмотреть не менее важную часть вопроса – правильное соединение панелей между собой.

Если у вас готовая солнечная панель, то вам нужно узнать её выходное напряжение и подключить к контроллеру, но они бывают на 12 и 24В и 12/24В. Если у вас солнечная панель рассчитана на работу с 12В аккумуляторами и контролерами нужно соединить их напрямую. Иногда нужно соединять батареи последовательно, чтобы получить нужное напряжение. Поэтому рассмотрим три основных способа соединения. Такие же рекомендации для сборки солнечной батареи своими руками из отдельных ячеек.

Существуют 3 варианта соединения солнечных панелей между собой:

Последовательное соединение

Параллельное соединение

Последовательно-параллельное соединение солнечных панелей.

Данная статья как раз для того, чтобы разобраться в каждом из них.

Возможные варианты подключения солнечных батарей (солнечных панелей)

Существуют 3 варианта соединения солнечных батарей между собой:

Последовательное соединение;

Параллельное соединение;

Последовательно-параллельное соединение.

Для того чтобы разобраться чем они отличаются, обратимся к основным характеристикам солнечных батарей:

Номинальное напряжение солнечной батареи - как правило 12В или 24В;
. Напряжение при пиковой мощности Vmp - напряжение при которой батарея выдает максимальную мощность;
. Напряжение холостого хода Voc - напряжение в отсутствии нагрузки (важно при выборе контроллера заряда);

Напряжение максимальное в системе Vdc - определяет максимальное количество батарей объединенных вместе;
. Ток Imp - ток при максимальной мощности батареи;
. Ток Isc - ток короткого замыкания, максимально возможный ток батареи.

Мощность солнечной батареи определяется как произведение Напряжения и тока в точке максимальной мощности - Vmp х Imp

В зависимости от того какая схема подключения солнечных батарей выбрана, будут определяться характеристики системы солнечных батарей и подбираться соответствующий контроллер заряда.

Рассмотрим каждую схему соединения:

1) Последовательное соединение солнечных батарей :

При таком соединении минусовая клемма первой батареи соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и так далее.

При последовательном соединении нескольких батарей, напряжение их всех будет складываться. Ток системы будет равен току батареи с минимальным током. По этой причине не рекомендуется соединять последовательно батареи с различным значением тока максимальной мощности, поскольку работать они будут не в полную силу.

Рассмотрим на примере:

Имеем 4 солнечных монокристаллических батареи со следующими характеристиками:

Номинальное напряжение: 12В
. Напряжение при пиковой мощности Vmp: 18.46 В
. Напряжение холостого хода Voc: 22.48В
. Напряжение максимальное в системе Vdc: 1000В
. Ток в точке максимальной мощности Imp: 5.42А
. Ток короткого замыкания Isc: 5.65А

Соединив последовательно 4 таких батареи мы получим на выходе номинальное напряжение 12Вх 4=48В. Напряжение холостого хода = 22,48В х 4=89,92В и Ток в точке максимальной мощности равный 5,42А. Эти три параметра задают нам ограничения при выборе контроллера заряда.


2) Параллельное соединение солнечных батарей

В данном случае батареи соединяются при помощи специальных Y - коннекторов. У таких коннекторов имеется два входа и один выход. К входам подключаются клеммы одинакового знака.

При таком соединении напряжение на выходе каждой батареи будет равны между собой и равны напряжению на выходе из системы батарей. Ток от всех батарей будет складываться. Такое соединение позволяет, не поднимая напряжения увеличить ток от них.

Рассмотрим на примере все тех же 4х батарей:

Соединив параллельно 4 таких батареи мы получим номинальное напряжение на выходе равное 12В, Напряжение холостого хода останется 22,48В, но ток при этом будет равен 5,42А х 4 = 21,68А.

3) Последовательно-параллельное соединение солнечных батарей

Последний тип соединения объединяет в себе два предыдущих. Применяя данную схему соединения батарей, мы можем регулировать напряжение и ток на выходе из системы нескольких батарей, что позволит подобрать наиболее оптимальный режим работы всей солнечной электростанции.

В случае такого подключения соединенные последовательно цепочки батарей объединяют параллельно.

Вернемся к нашему примеру с 4-мя батеями:

Соединив по 2 батареи последовательно и затем объединим их соединив цепочки батарей параллельно мы получим следующее. Номинальное напряжение на выходе будет равно сумме двух последовательно соединенных батарей 12В х 2=24В, напряжение холостого хода будет равно 22,48В х 2=44,96В, а ток при этом будет равен 5,42А х2=10,84А.


Такое соединение позволит максимально сэкономить на покупке контроллера заряда, поскольку от него не потребуется выдерживать больших напряжений как в случае последовательного соединения или больших токов как в случае параллельного соединения. Именно поэтому соединяя панели между собой необходимо стремится к балансу между токами и напряжениями.

О том как подобрать контроллер заряда можно прочитать




Top