Активная матрица tft lcd. LCD-мониторы. Технология изготовления TN

Современные электронные устройства являются практически универсальными. Так, например, смартфон превосходно справляется не только со звонками (их приемом и совершением), но и возможностью бороздить просторы интернета, слушать музыку, просматривать видеоролики или читать книги. Для этих же задач подойдет планшет. Экран является одной из важнейших частей электроники, особенно если он - сенсорный и служит не только для отображения файлов, но и для управления. Ознакомимся с характеристиками дисплеев и технологиями, по которым они создаются. Уделим особое внимание тому, что такое IPS-экран, что это за технология, в чем ее преимущества.

Как устроен ЖК-экран

Прежде всего разберемся, как устроен которым оснащается современная техника. Во-первых, это активная матрица. Она состоит из микропленочных транзисторов. Благодаря им и формируется изображение. Во-вторых, это слой жидких кристаллов. Они оснащены светофильтрами и создают R-, G-, B-субпиксели. В-третьих, это система подсветки экрана, которая позволяет сделать изображение видимым. Она может быть люминесцентной или светодиодной.

Особенности IPS-технологии

Строго говоря, матрица IPS - разновидность технологии TFT, по которой создаются ЖК-экраны. Под TFT часто понимают мониторы, произведенные способом TN-TFT. Исходя из этого, можно произвести их сравнение. Чтобы ознакомиться с тонкостями выбора электроники, разберемся, что такое технология экрана IPS, что это понятие обозначает. Главное, что отличает эти дисплеи от TN-TFT, - расположение жидкокристаллических пикселей. Во втором случае они располагаются по спирали, находятся под углом в девяносто градусов горизонтально между двумя пластинами. В первом (который нас интересует больше всего) матрица состоит из тонкопленочных транзисторов. Причем кристаллы располагаются вдоль плоскости экрана параллельно друг другу. Без поступления на них напряжения они не поворачиваются. У TFT каждый транзистор управляет одной точкой экрана.

Отличие IPS от TN-TFT

Рассмотрим подробнее IPS, что это такое. У мониторов, созданных по данной технологии, есть масса преимуществ. Прежде всего, это великолепная цветопередача. Весь спектр оттенков ярок, реалистичен. Благодаря широкому углу обзора изображение не блекнет, с какой точки на него ни взгляни. У мониторов более высокая, четкая контрастность благодаря тому, что черный цвет передается просто идеально. Можно отметить следующие минусы, которыми обладает тип экрана IPS. Что это, прежде всего, большое потребление энергии, значительный недостаток. К тому же устройства, оснащенные такими экранами, стоят дорого, так как их производство очень затратное. Соответственно, TN-TFT обладают диаметрально противоположными характеристиками. У них меньше угол обзора, при изменении точки взгляда изображение искажается. На солнце ими пользоваться не очень удобно. Картинка темнеет, мешают блики. Однако такие дисплеи имеют быстрый отклик, меньше потребляют энергии и доступны по цене. Поэтому подобные мониторы устанавливают в бюджетных моделях электроники. Таким образом, можно заключить, в каких случаях подойдет IPS-экран, что это великолепная вещь для любителей кино, фото и видео. Однако из-за меньшей отзывчивости их не рекомендуют поклонникам динамичных компьютерных игр.

Разработки ведущих компаний

Сама технология IPS была создана японской компанией Hitachi совместно с NEC. Новым в ней было расположение жидкокристаллических кристаллов: не по спирали (как в TN-TFT), а параллельно друг другу и вдоль экрана. В результате такой монитор передает цвета более яркие и насыщенные. Изображение видно даже на открытом солнце. Угол обзора IPS-матрицы составляет сто семьдесят восемь градусов. Смотреть можно на экран с любой точки: снизу, сверху, справа, слева. Картинка остается четкой. Популярные планшеты с экраном IPS выпускает компания Apple, они создаются на матрице IPS Retina. На один дюйм используется увеличенная плотность пикселей. В результате изображение на дисплее выходит без зернистости, цвета передаются плавно. По словам разработчиков, человеческий глаз не замечает микрочастиц, если пикселей более 300 ppi. Сейчас устройства с IPS-дисплеями становятся более доступными по цене, ими начинают снабжать бюджетные модели электроники. Создаются новые разновидности матриц. Например, MVA/PVA. Они обладают быстрым откликом, широким углом обзора и замечательной цветопередачей.

Устройства с экраном мультитач

В последнее время большую популярность завоевали электронные приборы с сенсорным управлением. Причем это не только смартфоны. Выпускают ноутбуки, планшеты, у которых сенсорный экран IPS, служащий для управления файлами, изображениями. Такие устройства незаменимы для работы с видео, фотографиями. В зависимости от встречаются компактные и полноформатные устройства. мультитач способен распознавать одновременно десять касаний, то есть на таком мониторе можно работать сразу двумя руками. Небольшие мобильные устройства, например смартфоны или планшеты с диагональю в семь дюймов, распознают пять касаний. Этого вполне достаточно, если у вашего смартфона небольшой IPS-экран. Что это очень удобно, оценили многие покупатели компактных устройств.

Введение

Текущее развитие рынка LCD (TFT) дисплеев напоминает многим продавцам о прошлых временах, когда уровни прибыли и спрос были на очень высоком уровне. Еще недавно покупатель должен был выложить очень большие деньги за LCD монитор, что бы сэкономить пространство на рабочем столе, снизить потребление энергии и позаботиться о собственном здоровье. Однако уже сегодня рынок изменяет свое направление, и цены начинают подчиняться обычным динамическим рыночным силам.

Эта статья является первой из цикла, посвященного рассмотрению всех вопросов связанных с LCD. В этой части, мы расскажем Вам о развитии рыночной ситуации и некоторых тенденциях развития LCD. Мы рассмотрим технологию, архитектуру и принципы работы. В заключении мы дадим несколько советов покупателям LCD мониторов. Статья будет интересна не только новичкам, но и профессионалам.

Во второй и третьей частях мы углубленно рассмотрим некоторые особенности LCD, т.к. увеличение угла обзора, рассмотрим современные цифровые интерфейсы (DFP и DVI) и отношение пиксельного размера и максимального диагонального размера дисплея.

Позже мы сообщим о наиболее важных компаниях на рынке LCD, рассмотрим некоторые модели, и естественно будем следить за уровнем цен.

Рыночная ситуация

Огромный успех портативных компьютеров стал сильным толчком в развитии TFT дисплеев. Несмотря на это, свой путь на современный рынок LCD пробивали с большим трудом. Так, например, в 1998 объем проданных LCD был далек от объема продаж ЭЛТ мониторов. При этом спрос на LCD был и остается достаточно высоким. В связи со сложностью производства и низким процентом годных матриц производители не могут выполнить 100% заказов. Не секрет, что сегодня наибольшее распространение LCD получили в офисной сфере. Для того чтобы LCD могли занять свою нишу в секторе домашних компьютеров, необходимо выполнение следующих требований:

  • Цены должны быть на уровне ЭЛТ-мониторов
  • Минимальный размер 15" с разрешением 1024 x 768 пикселей
  • Доступность
  • Стандартизированные интерфейсы для цифрового TFT
  • Качество и функциональность для всех приложений

Производство и выход годных матриц

Как мы уже сказали выше, конструкция и производство активной TFT матрицы процесс достаточно сложный. Это приводит к очень высоким требованиям к отклонениям от нормы. Например, для управления элементами матрицы используются очень тонкие транзисторы, которые должны иметь абсолютно идентичные уровни срабатывания. Как Вы можете понять, все это прямым образом влияет не только на цену, но и доступность TFT дисплеев.

Текущая ценовая ситуация и тенденции

Еще недавно цены на LCD в два - три раза превышали цену аналогичного ЭЛТ-монитора. Так, 15.1" LCD монитор (эквивалент 17" ЭЛТ-монитора) стоил от 500 до 1,300$. А 18.1" TFT (эквивалент 21" ЭЛТ дисплея) от $2,800 - $3,500.

В начале 1999 года на рынке LCD наблюдалась кратковременная тенденция повышения цен. Многие производители подняли цена примерно на 100$. В общем эта тенденция отличается от традиционного развития IT рынка, однако сложившаяся ситуация позволила держать цены на высоком уровне.

Недавно на рынке наметилось существенное снижение цен. Так сегодня 15" модель можно купить уже за 399$. Однако, это не предел. Некоторые аналитики утверждают, что при благоприятных условиях 15" LCD могут достичь цены $80. Не верится? Да, действительно, LCD могут стоить значительно дешевле ЭЛТ. Однако когда это произойдет, никто не знает.

Современные технологии

Современные дисплейные технологии подразделяются на традиционные с электронно-лучевой трубкой (ЭЛТ) и плоско панельные дисплеи. Несмотря на развитие ЭЛТ технологии, мониторы, основанные на ней, занимают достаточно много пространства рабочего стола, имеют высокое энергопотребление и негативно влияют на наше здоровье. Плоско панельные дисплеи - т.е. устройства без ЭЛТ - как следует из названия, плоские и занимают минимум площади рабочего стола. Плоско панельные технологии в свою очередь подразделяются на множество различных технологий типа LCD (Жидкокристаллические дисплеи), плазменные дисплеи, LED (светоизлучающие диоды) и различные другие. Среди этих технологий можно выделить те, которые излучают свет и те, которые управляют проходящим через них светом.

На сегодняшний день наиболее интересной и перспективной технологией считаются т.н. TFT-LCD или как их еще называют в народе активные. Эти устройства для формирования изображения используют проходящий через них свет. Кроме активных LCD, существуют пассивные дисплеи STN и DSTN, однако сегодня они применяются только в дешевых ноутбуках.

Рисунок 1: Краткий обзор современных плоско панельных технологий.

Как работает TFT?

TFT расшифровывается как ’Тонкопленочный транзистор (Thin Film Transistor) и описывает элементы, которые активно управляют индивидуальными пикселями.

Как же формируется изображение? Сам принцип формирования достаточно прост: панель состоит из множества мельчайших пикселей, каждый из которых может формировать любой цвет. Для этого используется задняя подсветка, состоящая из одной или множества флуоресцентных ламп. Для управления проходящим через пиксель светом используется т.н. дверка или затвор. На самом деле технология, которая делает это возможным, значительно сложнее.

LCD (Жидкокристаллический дисплей) означает дисплей основанный на жидких кристаллах, которые могут изменять свою молекулярную структуру, что приводит к изменению уровня света, проходящему через них (они могут полностью блокировать проходящий через них свет). В процессе формирования точки используются два поляризационных фильтра, цветные фильтры и два уровня выравнивания. Все это позволяет точно установить уровень проходящего света и его цвет. Уровень выравнивания расположен между двумя стеклянными панелями. Применив определенное напряжение к уровню выравнивания, создается электрическое поле, которое "выравнивает" жидкие кристаллы. Для формирования цвета каждая точка состоит из трех компонентов, один для красного, зеленого и синего - также как на традиционных ЭЛТ дисплеях.

Наиболее часто, сегодня встречаются т.н. скручивающиеся нематические TFT. Ниже на рисунках 2а и 2b показано как работает стандартный TFT (скручивающийся нематический) дисплей.

Рисунок 2a

Когда на уровень выравнивания не подано напряжение, молекулярная структура находится в своем естественном состоянии и искривлена под углом 90 градусов. Свет, испускаемый задней подсветкой, может спокойно проходить через структуру.

Рисунок 2b

Если подать напряжение, создается электрическое поле, и жидкие кристаллы искривляются так, что бы они были вертикально выровнены. Поляризованный свет поглощается вторым поляризатором, что приводит к отсутствию света в конкретной точке.

Архитектура TFT пикселя

Цветные фильтры интегрированы на стеклянную подложку и расположены рядом друг с другом. Как уже мы говорили выше, каждый пиксель состоит из трех цветных ячеек или под-пиксельных элемента. Это означает, что матрица с разрешением 1280 x 1024 пикселя, имеет 3840 x 1024 транзистора и пиксельных элементов. Точка или пиксельный шаг для 15.1" TFT (1024 x 768 пикселя) составляет около 0.0188" (или 0.30mm), а для 18.1" TFT (1280 x 1024 пикселя) около 0.011" (или 0.28mm).

Рисунок 3: TFT пиксели. В левом верхнем углу каждой ячейки расположен тонкопленочный транзистор. Цветные фильтры позволяют формировать любой RGB цвет.

Говоря о архитектуре пикселя необходимо обратить внимание на физические ограничения TFT. Теоретически, чем меньше интервал между пикселями, тем выше разрешение, однако на 15" (около 38 cm) дисплее с точкой 0.0117" (0.297mm), будет невозможно получить разрешение 1280 x 1024. Об отношении между точечным шагом и диагональным размером мы поговорим в одной из будущих статей.

Проблемы масштабирования

Как Вы смогли понять, каждый пиксель находится в фиксированном положении и поэтому определяет разрешающую способность TFT без каких-либо геометрических проблем. Другими словами: максимальное число пикселей соответствует максимальной разрешающей способности. Но, что происходит при уменьшении разрешения, например, при запуске игр или видео? В этом случае контроллер, отвечающий за масштабирование, уменьшает изображение до размера максимального размера дисплея. Если контроллер не может обрабатывать эту задачу эффективно, результат будет искажен. С технической точки зрения эта задача значительно сложнее изменения масштаба на обычном ЭЛТ-мониторе.

Почему? В случае ЭЛТ, электронный луч может приспосабливаться к новому разрешению простым изменением напряжения отклонения. Кроме того, здесь не имеет значения, если луч сформирует точку между двумя соседними пикселями. В случае TFT все значительно сложнее. Из-за активного управления каждым пикселем, масштабирующий контроллер должен повторно вычислить данные для меньших разрешений. Если используется целый коэффициент масштабирования (например, 2 при переходе на 800 x 600 с 1600 x 1200) все очень просто: высота и ширина каждого пикселя удваивается. В случае не целого коэффициента, например, при переходе к 800 x 600 с 1024 x 768 - 1.28, ситуация значительно усложняется. Контроллер должен сам выбрать где отображать один пиксель, а где два. При математическом округлении, возникают ошибки, которые приводят к неприятным эффектам при отображении текста (см. рисунок ниже). Благодаря новым алгоритмам, современные контроллеры могут уменьшать этот эффект, использую уловку (см. продвинутое масштабирование) уменьшая оптическое впечатление: Если данные не могут быть уникально назначены пикселю, то интенсивность пикселя уменьшается.

Рисунок 5: Примеры масштабирования

Какие характеристики являются важными при оценке LCD?

Реальный диагональный размер экрана

Видимый диагональный размер ЭЛТ-монитора всегда меньше фактического диагонального размера трубки. TFT панели не имеют этой краевой области, поэтому указанный диагональный размер тот же, что и видимый диагональный размер. Это означает, что панель размером 15.1" эквивалентна размеру 17" ЭЛТ-монитора.

Угол видимости

Эта характеристика является критической практически для всех плоско панельных дисплеев. Не каждый LCD может похвастаться углом видимости, эквивалентным стандартному ЭЛТ-монитору. Меньший угол связан в первую очередь с конструктивными особенностями LCD. Напомним, что свет от задней подсветки должен пройти через поляризационные фильтры, жидкие кристаллы и т.н. уровни выравнивания, что придает ему некий направленный характер. Если посмотреть на дисплей сбоку под большим углом, изображение будет казаться очень темным или будет наблюдаться искажение цвета. Несмотря на отрицательность этого эффекта, производители смогли найти ему достойное применение. Мы имеем ввиду безопасность. Наибольшее применение этот эффект получил в банках и других учреждениях, где очень важно, что бы отображаемый документ был виден только оператору.

Сегодня разработчики работают над технологией, позволяющими увеличить значение угла видимости, однако уже сегодня известны методы, т.к. IPS (in-plane switching), MVA (multi-domain vertical alignment) и TN+film (twisted nematic and retardation film) которые позволяют увеличить угол до 160 градусов и более, что соответствует стандарту для ЭЛТ-мониторов.

Кстати, если Вы не знаете, напоминаем, что максимальный угол обзора равен крайнему значению, при котором коэффициент контрастности снижается до 10:1 от оригинального значения при перпендикулярном положении к плоскости экрана.

Коэффициент контрастности

Коэффициент контрастности получается из значений максимального и минимального значения яркости. На ЭЛТ-мониторах это коэффициент равен 500:1 и позволяет получить фото реалистическое качество. Для LCD этот коэффициент имеет значительно меньшее значение. Особенно это заметно при отображении черного цвета. На ЭЛТ-мониторе черный цвет формируется достаточно просто, изменением уровня всех цветовых составляющих. На LCD свет подсветки обычно не регулируется, и находится постоянно во включенном состоянии. Для отображения черного цвета, жидкие кристаллы должны полностью блокировать прохождение света. Однако, физически это не возможно. Несмотря на полную блокировку, свет частично будет проходить через кристаллы. Разработчики работают на этой проблемой и сегодня приемлемыми значениями для LCD являются 250:1.

Яркость

Здесь TFT дисплеи лидируют. Максимальная яркость определяется возможностями лампы подсветки. Поэтому получить значения в 200 - 250 кандела не проблема. Хотя технически возможно получить еще большее значение яркости, на практике этого не требуется.

Максимальная яркости ЭЛТ-мониторов находится на уровне 100 - 120 cd/m 2 . Большее значение яркости получить возможно, однако это требует поднятия напряжения ускорения, что негативно влияет на срок службы фосфорного покрытия.

Пиксельные ошибки

На некоторых LCD мониторах (даже новых) имеются т.н. "заклинившие" или "мертвые" точки. Это происходит из-за дефектных транзисторов. Т.е. конкретный транзистор не может управлять световым потоком. Он либо всегда блокирует свет, либо всегда пропускает. Этот факт очень раздражает, однако, стандарты учитывают наличие до пяти "мертвых" точек на новом LCD. При этом успокаивает только, то, что в будущем они не появятся. Для тех, кого эта проблема особенно волнует, мы рекомендуем тщательно проверять монитор при покупке.

Время отклика

Одной из критических характеристик многих TFT дисплеев является время отклика жидких кристаллов. Это приводит к видимой задержке при отображении анимированных сюжетов. Для современных систем типичным значением отклика является 20 - 30 миллисекунд.

Для сравнения: Для нормального просмотра видео необходимо отображать 25 кадров в секунду, т.е. каждый кадр может отображаться не более 40 миллисекунд. Это говорит о том, что TFT в принципе подходит для просмотра видео.

Цветовое качество - подготовка аналоговых входных сигналов

П сравнению с цифровыми плоско панельными дисплеями, LCD, оборудованные стандартным VGA разъемом, должны конвертировать аналоговый сигнал обратно в цифровой, что приводит к потере цветового качества. Некоторые производители рекомендуют использовать A/D конвертеры, которые могут передавать только 18 bit (3 x 6 bit на каждый цвет (красный, зеленый и синий)). Это приводит к снижению числа отображаемых цветов до 262,144 (псевдо RGB). Режим "True Color" требует отображения 16.7 миллионов цветов.

Преимущества и недостатки TFT дисплеев

После знакомства с оcновными характеристиками TFT дисплеев, мы хотели бы провести сравнение обычного ЭЛТ монитора и TFT. TFT дисплеи предлагают очень хорошие характеристики фокусировки из-за активного управления пикселями. Кроме того, TFT дисплеи лишены различных геометрических искажений и ошибок сходимости. Также мы хотим отметить отсутствие нежелательного мерцания. Все эти преимущества TFT перед ЭЛТ связаны с технической природой. Так, например, для формирования изображения на экране ЭЛТ, электронный луч должен пройти весь экран с лева на право с верху в низ, после чего экран гаснет, и луч переходит в исходную позицию. В большинстве случаев возникшее мерцание не заметно, однако оно имеет негативное влияние на наши глаза. В случае TFT дисплеев каждый пиксель горит постоянно, меняется только интенсивность свечения.

В таблице ниже мы привели сравнение основных характеристик ЭЛТ и TFT дисплеев.

Плоско панельные дисплеи (TFT)

ЭЛТ-мониторы

(+) 170 - 250 cd/m 2

(~) 80 - 120 cd/m 2

Коэффициент контрастности

(~) 200:1 - 400:1

(+) 350:1 - 700:1

Угол видимости (контрастность)

(~) 110 - 170 градусов

(+) более 150 градусов

Угол видимости (цвет)

(-) 50 до 125 градусов

(~) более 120 градусов

Ошибки сходимости

(~) 0.0079" - 0.0118" (0,20 - 0,30 mm)

(+) очень хороший

(~) удовлетворительный - очень хороший

Геометрические и линейные ошибки

(~) возможны

Пиксельные ошибки

Входной сигнал

(+) аналоговый или цифровой

(~) только аналоговый

Масштабирование для различных разрешений

(-) нет или используются методы интерполяции

(+) очень хорошее

Гамма (настройка цвета)

(~) удовлетворительно

(+) фото реалистично

Однородность

(~) более яркое изображение на гранях

(~) более яркое в центре

Чистота цвета/качество

(~) хорошее

(+) высокое

Мерцание

(~) не видимо на частоте более 85 Hz

Время отклика

(-) 20 - 30 msec

(+) не значимо

Потребление энергии

(+) 25 - 40 Вт

(-) 60 - 150 Вт

Габаритные размеры/вес

(+) плоский дизайн, маленький вес

(-) требует много пространства + большой вес

(+) положительно (~) приемлемо (-) отрицательно

Идеальный TFT: Что выбрать?

Итак, если Вы решили купить LCD, мы настоятельно рекомендуем проконсультироваться с продавцом и ознакомиться с описанием конкретной модели. Вам необходимо удостовериться, что выбранный Вами монитор отвечает следующим требованиям:

Заключение

Итак, какие выводы можно сделать из нашей первой статьи.

Во-первых, LCD мониторы стали дешевле, и уже практически достигли уровня традиционных ЭЛТ-мониторов. Во-вторых, мы выяснили, что характеристики современных LCD не только не отстают, но и в некоторых случаях превосходят ЭЛТ-мониторы. LCD мониторы лишены таких недостатков ЭЛТ мониторов, как сходимость и геометрические искажения, не имеют неприятного мерцания и излучения, они занимают минимум площади рабочего места, и потребляют в три раза меньше энергии.

Все это говорит о том, что современные LCD могут свободно применяться не только для работы с офисными приложениями, но и дома при просмотре видео, 3D играх и в других современных приложениях, экономя потребление энергии, сохраняя Ваше здоровье, и не портят дизайн Вашей рабочей комнаты.

Что это - LCD? Если говорить коротко и ясно, это жидкокристаллический экран. Простые приборы, которые имеют такое оснащение, могут работать либо с черно-белым изображением, либо с 2-5 цветами. На данный момент описываемые экраны используются для отображения графической или текстовой информации. Их устанавливают в компьютеры, ноутбуки, телевизоры, телефоны, фотоаппараты, планшеты. Большинство электронных устройств на данный момент работает именно с таким экраном. Одной из популярных разновидностей такой техники является жидкокристаллический дисплей с активной матрицей.

История

Впервые жидкие кристаллы были открыты в 1888 году. Сделал это австриец Рейнитцер. В 1927 году русский физик Фредерикс открыл переход, который был назван в его честь. На данный момент он широко используется при создании жидкокристаллических дисплеев. В 1970 году компания RCA представила первый экран подобного типа. Его сразу стали применять в часах, калькуляторах и других приборах.

Чуть позже был создан матричный дисплей, который работал с черно-белым изображением. Цветной жидкокристаллический экран появился в 1987 году. Его создатель - компания Sharp. Диагональ этого прибора составляла 3 дюйма. Отзывы о LCD-экране такого типа были положительными.

Устройство

Рассматривая LCD-экраны, необходимо упомянуть о конструкции технологии.

Состоит данное устройство из ЖК-матрицы, источников света, которые обеспечивают непосредственно саму подсветку. Имеется пластиковый корпус, обрамленный металлической рамкой. Она необходима для придания жесткости. Также используются контактные жгуты, которые являются проводами.

ЖК-пиксели состоят из двух электродов прозрачного типа. Между ними размещается слой молекул, а также имеется два поляризационных фильтра. Их плоскости перпендикулярны. Следует отметить один нюанс. Он заключается в том, что если бы жидких кристаллов между вышеуказанными фильтрами не существовало, то свет, проходящий через один из них, блокировался бы сразу же вторым.

Поверхность электродов, которая соприкасается с жидкими кристаллами, покрыта специальной оболочкой. За счет этого молекулы движутся в одном направлении. Как уже было сказано выше, в основном они располагаются перпендикулярно. При отсутствии напряжения все молекулы имеют винтовую структуру. За счет этого свет преломляется и проходит через второй фильтр без потерь. Теперь любой человек должен понимать что это - LCD с точки зрения физики.

Преимущества

Если сравнивать с электронно-лучевыми приборами, то здесь выигрывает. Он имеет небольшие размеры и массу. ЖК-устройства не мерцают, у них нет проблем с фокусировкой, а также со сведением лучей, не появляются помехи, которые возникают от магнитных полей, нет никаких проблем с геометрией картинки и ее четкостью. Можно прикрепить дисплей LCD на кронштейнах к стене. Сделать это очень просто. При этом картинка не потеряет своих качеств.

Сколько потребляет ЖК-монитор, полностью зависит от настроек изображения, модели самого прибора, а также от характеристик подачи сигнала. Поэтому этот показатель может как совпадать с потреблением тех же лучевых устройств и плазменных экранов, так и быть гораздо ниже. На данный момент известно, что трата электроэнергии ЖК-мониторов будет определяться мощностью установленных ламп, которые обеспечивают подсветку.

Необходимо также сказать о малогабаритных дисплеях LCD. Что это, чем они отличаются? Большая часть таких приборов не имеет подсветки. Эти экраны используются в калькуляторах, часах. Такие устройства отличаются совершенно низким энергопотреблением, поэтому они могут работать до нескольких лет автономно.

Недостатки

Однако эти приборы имеют и минусы. К сожалению, много недостатков являются трудноустранимыми.

Если сравнивать с электронно-лучевой техникой, то четкое изображение на ЖК-дисплее можно получить лишь при штатном разрешении. Чтобы добиться хорошей характеристики других картинок, придется использовать интерполяцию.

ЖК-мониторы имеют средний контраст, а также плохую глубину черного цвета. Если захочется увеличить первый показатель, то нужно сделать больше яркость, что не всегда обеспечивает комфортный просмотр. Эта проблема заметна в устройствах LCD от Sony.

Скорость смены кадров у ЖК-дисплеев намного меньше, если сравнивать с плазменными экранами или электронно-лучевыми. На данный момент разработана технология Overdrive, однако она не решает проблемы скорости.

С углами обзора также имеются некоторые нюансы. Они полностью зависят от контрастности. У электронно-лучевой техники такой неприятности нет. ЖК-мониторы не защищены от механических повреждений, матрица не покрыта стеклом, поэтому при сильном нажатии можно деформировать кристаллы.

Подсветка

Поясняя, что это такое - LCD, следует сказать и об этой характеристике. Сами кристаллы не светятся. Поэтому для того чтобы изображение стало видимым, необходимо иметь источник света. Он может быть внешним или внутренним.

В качестве первого следует использовать солнечные лучи. Во втором варианте применяется искусственный источник.

Как правило, лампы со встроенной подсветкой устанавливаются сзади всех слоев жидких кристаллов, за счет чего они просвечиваются насквозь. Также встречается боковая подсветка, которая используется в часах. В телевизорах LCD (что это - ответ выше) такой тип конструкции не применяется.

Что касается внешнего освещения, то, как правило, черно-белые дисплеи часов и мобильных телефонов работают при наличии такого источника. Позади слоя с пикселями находится специальная матовая отражающая поверхность. Она позволяет отбивать солнечный свет или же излучение от ламп. Благодаря этому можно использовать такие устройства в темноте, так как производители встраивают боковую подсветку.

Дополнительная информацция

Есть дисплеи, в которых объединены внешний источник и дополнительно встроенные лампы. Ранее в некоторых часах, где был установлен ЖК-экран монохромного типа, использовалась специальная лампа накаливания небольшого размера. Однако из-за того что она потребляет слишком много энергии, такое решение не является выгодным. Подобные устройства уже не используются в телевизорах, так как они выделяют большое количество тепла. Из-за этого жидкие кристаллы разрушаются и перегорают.

В начале 2010 года стали распространенными LCD-телевизоры (что это такое, мы рассмотрели выше), которые имели Такие дисплеи не стоит путать с действительно настоящими LED-экранами, где каждый пиксель светится самостоятельно, являясь светодиодом.

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.

Современные устройства оснащаются экранами различной конфигурации. Основными на данный момент являются дисплеи на базе но для них могут использоваться разные технологии, в частности речь идет о TFT и IPS, которые различаются по целому ряду параметров, хоть и являются потомками одного изобретения.

Сейчас существует огромное количество терминов, которые обозначают определенные технологии, скрывающиеся под аббревиатурами. К примеру, многие могли слышать или читать об IPS или TFT, однако мало кто понимает, в чем на самом деле разница между ними. Связано это с недостатком информации в каталогах электроники. Именно поэтому стоит разобраться с этими понятиями, а также решить, TFT или IPS - что лучше?

Терминология

Для определения того, что будет лучше или хуже в каждом отдельном случае, требуется узнать, за какие функции и задачи отвечает каждый IPS по факту представляет собой TFT, точнее ее разновидность, при изготовлении которой использовалась определенная технология - TN-TFT. Следует рассмотреть более подробно эти технологии.

Различия

TFT (TN) представляет собой один из способов производства матриц то есть экранов на тонкопленочных транзисторах, в которых элементы располагаются по спирали между парой пластин. При отсутствии подачи напряжения они будут повернуты друг к другу под прямым углом в горизонтальной плоскости. Максимальное напряжение вынуждает кристаллы поворачиваться так, чтобы проходящий сквозь них свет приводил к образованию черных пикселей, а при отсутствии напряжения - белых.

Если рассматривать IPS или TFT, то отличие первой от второй состоит в том, что матрица изготовлена на базе, описанной ранее, однако кристаллы в ней расположены не спирально, а параллельно единой плоскости экрана и друг другу. В отличие от TFT, кристаллы в данном случае не поворачиваются в условиях отсутствия напряжения.

Как мы это видим?

Если смотреть на IPS или то визуально отличие между ними состоит в контрастности, которая обеспечивается почти идеальной передачей черного цвета. На первом экране изображение будет выглядеть более четким. А вот качество цветопередачи в случае использования матрицы TN-TFT нельзя назвать хорошим. В данном случае у каждого пикселя имеется собственный оттенок, отличный от других. Из-за этого цвета сильно искажаются. Однако есть у такой матрицы и достоинство: она характеризуется самой высокой скоростью отклика среди всех существующих на данный момент. Для экрана IPS требуется определенное время, за которое все параллельные кристаллы совершат полный разворот. Однако человеческий глаз практически не улавливает разницу во времени отклика.

Важные особенности

Если говорить о том, что лучше в эксплуатации: IPS или TFT, то стоит отметить, что первые являются более энергоемкими. Это связано с тем, что для поворота кристаллов требуется немалое количество энергии. Именно поэтому, если перед производителем стоит задача сделать свое устройство энергоэффективным, в нем обычно применяется TN-TFT матрица.

Если выбирать экран TFT или IPS, то стоит отметить более широкие углы обзора второго, а именно 178 градусов в обеих плоскостях, это очень удобно для пользователя. Другие оказались неспособными обеспечить подобное. И еще одним существенным различием между двумя этими технологиями является стоимость изделий на их основе. TFT-матрицы на данный момент представляют собой наиболее дешевое решение, которое используется в большинстве бюджетных моделей, а IPS относится к более высокому уровню, но и он не является топовым.

Дисплей IPS или TFT выбрать?

Первая технология позволяет получать максимально качественное, четкое изображение, но требует больше времени для поворота используемых кристаллов. Это влияет на время отклика и прочие параметры, в частности скорость разрядки аккумулятора. Уровень цветопередачи TN-матриц гораздо ниже, однако их время отклика минимально. Кристаллы тут расположены по спирали.

На самом деле можно легко отметить невероятную пропасть в качестве экранов, работающих на базе двух этих технологий. Касается это и стоимости. Технология TN остается на рынке исключительно из-за цены, однако она не способна обеспечить сочную и яркую картинку.

IPS - это весьма удачное продолжение в развитии TFT-дисплеев. Высокий уровень контрастности и довольно большие углы обзора - это дополнительные преимущества данной технологии. К примеру, у мониторов на базе TN иногда черный цвет сам изменяет свой оттенок. Однако высокое потребление энергии устройствами, работающими на базе IPS, вынуждает многих производителей прибегать к использованию альтернативных технологий либо понижать этот показатель. Чаще всего матрицы данного типа встречаются у проводных мониторов, которые не работают от аккумулятора, что позволяет не быть устройству настолько энергозависимым. Однако постоянно ведутся разработки в этой области.




Top