Единые нормы допустимых уровней вибрации оборудования. Нормы вибрации и погрешность оценки вибрационного состояния оборудования. Чем вредно длительное воздействие вибрации на человека

Показателем расхода тепловой энергии на отопление и вентиляцию жилого или общественного здания на стадии разработки проектной документации, является удельная характеристика расхода тепловой энергии на отопление и вентиляцию здания численно равная расходу тепловой энергии на 1 м 3 отапливаемого объема здания в единицу времени при перепаде температуры в 1°С, , Вт/(м 3 · 0 С). Расчетное значение удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания,
, Вт/(м 3 · 0 С), определяется по методике с учетом климатических условий района строительства, выбранных объемно-планировочных решений, ориентации здания, теплозащитных свойств ограждающих конструкций, принятой системы вентиляции здания, а также применения энергосберегающих технологий. Расчетное значение удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания должно быть меньше или равно нормируемого значения, согласно ,
, Вт/(м 3 · 0 С):


(7.1)

где
- нормируемая удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий, Вт/(м 3 · 0 С), определяемая для различных типов жилых и общественных зданий по таблице 7.1 или 7.2.

Таблица 7.1


, Вт/(м 3 · 0 С)

Площадь здания, м 2

С числом этажей

1000 и более

Примечания:

При промежуточных значениях отапливаемой площади здания в интервале 50-1000м 2 значения
должны определяться линейной интерполяцией.

Таблица 7.2

Нормируемая (базовая) удельная характеристика расхода

тепловой энергии на отопление и вентиляцию

малоэтажных жилых одноквартирных зданий,
, Вт/(м 3 · 0 С)

Тип здания

Этажность здания

1 Жилые многоквар­тирные,

гостиницы,

общежития

2 Общественные, кроме перечислен­ных в строках 3-6

3 Поликлиники и лечебные учреждения, дома- интернаты

4 Дошкольные учреждения, хосписы

5 Сервисного обслу­живания, культурно-досуговой деятель­ности, технопарки, склады

6 Административ­ного назначения (офисы)

Примечания:

Для регионов, имеющих значение ГСОП=8000 0 С·сут и более, нормируемые
следует снизить на 5%.

Для оценки достигнутой в проекте здания или в эксплуатируемом здании потребности энергии на отопление и вентиляцию, установлены следующие классы энергосбережения (таблица 7.3) в % отклонения расчетной удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания от нормируемой (базовой) величины.

Проектирование зданий с классом энергосбережения «D, Е» не допускается. Классы «А, В, С» устанавливают для вновь возводимых и реконструируемых зданий на стадии разработки проектной документации. Впоследствии, при эксплуатации класс энергосбережения здания должен быть уточнен в ходе энергетического обследования. С целью увеличения доли зданий с классами «А, В» субъекты Российской Федерации должны применять меры по экономическому стимулированию, как к участникам строительного процесса, так и к эксплуатирующим организациям.

Таблица 7.3

Классы энергосбережения жилых и общественных зданий

Обозначение

Наименование

Величина отклонения расчетного (фактического) значения удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания от нормируемого, %

При проектировании и эксплуатации новых и реконструируемых зданий

Очень высокий

Экономическое

стимулирование

От - 50 до - 60 включительно

От - 40 до - 50 включительно

От - 30 до - 40 включительно

Экономическое

стимулирование

От - 15 до - 30 включительно

Нормальный

От - 5 до - 15 включительно

Мероприятия не

разрабатываются

От + 5 до - 5 включительно

От + 15 до + 5 включительно

Пониженный

От + 15,1 до + 50 включительно

Реконструкция при соответствующем экономическом обосновании

Реконструкция при соответствующем экономическом обосновании, или снос

Расчетную удельную характеристику расхода тепловой энергии на отопление и вентиляцию здания,
, Вт/(м 3 · 0 С), следует определять по формуле

k об - удельная теплозащитная характеристика здания, Вт/(м 3 · 0 С), определяется следующим образом

, (7.3)

где - фактическое общее сопротивление теп­лопередачедля всех слоев ограждения (м 2 С)/Вт;

- площадь соответствующего фрагмента теплозащитной оболочки здания, м 2 ;

V от - отапливаемый объем здания, равный объему, ограниченному внутренними поверхностями наружных ограждений зданий, м 3 ;

- коэффициент, учитывающий отличие внутренней или наружной температуры у конструкции от принятых в расчете ГСОП, =1.

k вент - удельная вентиляционная характеристика здания, Вт/(м 3 ·С);

k быт - удельная характеристика бытовых тепловыделений здания, Вт/(м 3 ·С);

k рад - удельная характеристика теплопоступлений в здание от солнечной радиации, Вт/(м 3 · 0 С);

ξ - коэффициент, учитывающий снижение теплопотребления жилых зданий, ξ =0,1;

β - коэффициент, учитывающий дополнительное теплопотребление системы отопления, β h = 1,05;

ν - коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций; рекомендуемые значения определяются по формуле ν = 0,7+0,000025*(ГСОП-1000);

Удельную вентиляционную характеристику здания, k вент, Вт/(м 3 · 0 С), следует определять по формуле

где с - удельная теплоемкость воздуха, равная 1 кДж/(кг·°С);

β v - коэффициент снижения объема воздуха в здании, β v = 0,85;

- средняя плотность приточного воздуха за отопительный период, кг/м 3

=353/, (7.5)

t от - средняя температура отопительного периода, С, по 6, табл. 3.1, (см. прил. 6).

n в - средняя кратность воздухообмена общественного здания за отопительный период, ч -1 , для общественных зданий, согласно , принимается усредненная величина n в =2;

k э ф - коэффициент эффективности рекуператора, k э ф =0,6.

Удельную характеристику бытовых тепловыделений здания, k быт, Вт/(м 3 ·С), следует определять по формуле

, (7.6)

где q быт - величина бытовых тепловыделений на 1 м 2 площади жилых помещений (А ж) или расчетной площади общественного здания (А р),Вт/м 2 , принимаемая для:

а) жилых зданий с расчетной заселенностью квартир менее 20 м 2 общей площади на человека q быт = 17 Вт/м 2 ;

б) жилых зданий с расчетной заселенностью квартир 45 м 2 общей площади и более на человека q быт = 10 Вт/м 2 ;

в) других жилых зданий - в зависимости от расчетной заселенности квартир по интерполяции величины q быт между 17 и 10 Вт/м 2 ;

г) для общественных и административных зданий бытовые тепловыделения учитываются по расчетному числу людей (90 Вт/чел), находящихся в здании, освещения (по установочной мощности) и оргтехники (10 Вт/м 2) с учетом рабочих часов в неделю;

t в, t от - то же, что и в формулах (2.1, 2.2);

А ж - для жилых зданий - площадь жилых помещений (А ж), к которым относятся спальни, детские, гостиные, кабинеты, библиотеки, столовые, кухни-столовые; для общественных и административных зданий - расчетная площадь (А р), определяемая согласно СП 117.13330 как сумма площадей всех помещений, за исключением коридоров, тамбуров, переходов, лестничных клеток, лифтовых шахт, внутренних открытых лестниц и пандусов, а также помещений, предназначенных для размещения инженерного оборудования и сетей, м 2 .

Удельную характеристику теплопоступлений в здание от солнечной радиации, k р ад, Вт/(м 3 ·°С), следует определять по формуле

, (7.7)

где
- теплопоступления через окна и фонари от солнечной радиации в течение отопительного периода, МДж/год, для четырех фасадов зданий, ориентированных по четырем направлениям, определяемые по формуле

- коэффициенты относительного проникания солнечной радиации для светопропускающих заполнений соответственно окон и зенитных фонарей, принимаемые по паспортным данным соответствующих светопропускающих изделий; при отсутствии данных следует принимать следует принимать по таблице (2.8); мансардные окна с углом наклона заполнений к горизонту 45° и более следует считать как вертикальные окна, с углом наклона менее 45° - как зенитные фонари;

- коэффициенты, учитывающие затенение светового проема соответственно окон и зенитных фонарей непрозрачными элементами заполнения, принимаемые по проектным данным; при отсутствии данных следует принимать по таблице (2.8).

- площадь светопроемов фасадов здания (глухая часть балконных дверей исключается), соответственно ориентированных по четырем направлениям, м 2 ;

- площадь светопроемов зенитных фонарей здания, м;

- средняя за отопительный период величина суммарной солнечной радиации (прямая плюс рассеянная) на вертикальные поверхности при действительных условиях облачности, соответственно ориентированная по четырем фасадам здания, МДж/м 2 , определяется по прил. 8;

- средняя за отопительный период величина суммарной солнечной радиации (прямая плюс рассеянная) на горизонтальную поверхность при действительных условиях облачности, МДж/м 2 , определяется по прил. 8.

V от - то же, что и в формуле (7.3).

ГСОП – то же, что и в формуле (2.2).

Расчет удельной характеристики расхода тепловой энергии

на отопление и вентиляцию здания

Исходные данные

Расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания проведем на примере двухэтажного индивидуального жилого дома общей площадью 248,5 м 2 .Значения величин, необходимых для расчета: t в = 20 С; t оп = -4,1С;
= 3,28(м 2 С)/Вт;
=4,73 (м 2 С)/Вт;
=4,84 (м 2 С)/Вт; =0,74 (м 2 С)/Вт;
=0,55(м 2 С)/Вт;
м 2 ;
м 2 ;
м 2 ;
м 2 ;
м 2 ;
м 2 ;
м 3 ;
Вт/м 2 ;
0,7;
0;
0,5;
0;
7,425 м 2 ;
4,8 м 2 ;
6,6 м 2 ;
12,375 м 2 ;
м 2 ;
695 МДж/(м 2 ·год);
1032 МДж/(м 2 ·год);
1032 МДж/(м 2 ·год); =1671 МДж/(м 2 ·год);
= =1331 МДж/(м 2 ·год).

Порядок расчета

1. Вычисляют удельную теплозащитную характеристику здания, Вт/(м 3 · 0 С), по формуле (7.3) определяется следующим образом

Вт/(м 3 · 0 С),

2. По формуле (2.2) рассчитывают градусо-сутки отопительного периода

D = (20 + 4,1)200 = 4820 Ссут.

3. Находят коэффициент снижения теплопоступлений за счет тепловой инерции ограждающих конструкций; рекомендуемые значения определяются по формуле

ν = 0,7+0,000025*(4820-1000)=0,7955.

4. Находят среднюю плотность приточного воздуха за отопительный период, кг/м 3 , по формуле (7.5)

=353/=1,313 кг/м 3 .

5. Вычисляюм удельную вентиляционную характеристику здания по формуле (7.4), Вт/(м 3 · 0 С)

Вт/(м 3 · 0 С)

6. Определяю удельную характеристику бытовых тепловыделений здания, Вт/(м 3 ·С), по формуле (7.6)

Вт/(м 3 ·С),

7. По формуле (7.8) вычисляют теплопоступления через окна и фонари от солнечной радиации в течение отопительного периода, МДж/год, для четырех фасадов зданий, ориентированных по четырем направлениям

8. По формуле (7.7) определяют удельную характеристику теплопоступлений в здание от солнечной радиации, Вт/(м 3 ·°С)

Вт/(м 3 ·°С),

9. Определяют расчетную удельную характеристику расхода тепловой энергии на отопление и вентиляцию здания, Вт/(м 3 · 0 С), по формуле (7.2)

Вт/(м 3 · 0 С)

10. Сравнивают полученное значение расчетной удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания с нормируемой (базовой),
, Вт/(м 3 · 0 С), по таблицам 7.1 и 7.2.

0,4 Вт/(м 3 · 0 С)
=0,435 Вт/(м 3 · 0 С)


Расчетное значение удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания должно быть меньше нормируемого значения.

Для оценки достигнутой в проекте здания или в эксплуатируемом здании потребности энергии на отопление и вентиляцию, определяют класс энергосбережения проектируемого жилого здания по процентному отклонению расчетной удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания от нормируемой (базовой) величины.

Вывод: проектируемое здание относится к «С+ Нормальному» классу энергосбережения, который устанавливают для вновь возводимых и реконструируемых зданий на стадии разработки проектной документации. Разработка дополнительных мероприятий по повышению класса энергосбережения здания не требуется. Впоследствии, при эксплуатации класс энергосбережения здания должен быть уточнен в ходе энергетического обследования.

Контрольные вопросы к разделу 7:

1. Какая величина являет основным показателем расхода тепловой энергии на отопление и вентиляцию жилого или общественного здания на стадии разработки проектной документации? От чего она зависит?

2. Какие классы энергосбережения жилых и общественных зданий существуют?

3. Какие классы энергосбережения устанавливают для вновь возводимых и реконструируемых зданий на стадии разработки проектной документации?

4. Проектирование зданий с каким классом энергосбережения не допускается?

ЗАКЛЮЧЕНИЕ

Проблемы экономии энергоресурсов являются особо важными в теку­щий период развития нашей страны. Стоимость топлива и теп­ло­вой энер­гии растёт, и эта тенденция прогнозируется на будущее; вместе с тем не­прерывно и быстро возрастает объем потребления энер­гии. Энергоёмкость национального дохода в нашей стране в не­сколько раз выше, чем в разви­тых странах.

В связи с этим очевидна важность выявления резервов снижения энер­­­гозатрат. Одним из направлений экономии энергоресурсов яв­ля­ет­ся реали­зация энергосберегающих мероприятий при работе систем теп­ло­­снабже­ния, отопления, вентиляции и кондицио­ниро­вания воз­духа (ТГВ). Одним из решений этой проблемы яв­ля­ется снижение теп­­лопо­терь зданий через ограждающие конструкции, т.е. снижение теп­ловых нагрузок на системы ТГВ.

Значение решения данной задачи особенно велико в городском ин­же­нерном хозяйстве, где только на теплоснабжение жилых и об­щественных зданий расходуется около 35% всего добываемого твер­д­ого и газообраз­ного топлива.

В последние годы в городах резко обозначилась несбаланси­ро­ван­ность развития подотраслей городского строительства: техни­чес­кое отставание инженерной инфраструктуры, неравномерность развития от­дельных систем и их элемен­тов, ведомственный подход к исполь­зо­ванию природных и вырабатывае­мых ресурсов, что при­во­дит к не­ра­циональному их использованию и ино­гда к необхо­димости при­вле­чения соответствующих ресурсов из других ре­гионов.

Потребность городов в топливно-энергетических ресурсах и пре­до­­с­тавлении инженерных услуг растет, что напрямую влияет на увеличение забо­ле­вае­мости населения, приводит к уничтожению лесного пояса городов.

Применение современных теплоизоляционных материалов с вы­со­ким значением сопротивления теплопередаче приведет к значи­тель­но­му снижению энергозатрат, результатом будет существенный экономи­чес­кий эффект при эксплуатации систем ТГВ через умень­ше­ние затрат на топливо и соответственно улучшение экологической ситуации ре­гио­на, что снизит затраты на медицинское обслуживание населения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

    Богословский, В.Н. Строительная теплофизика (теплофизи­чес­кие основы отопления, вентиляции и кондиционирования возду­ха) [Текст] / В.Н. Богословский. – Изд. 3-е. – СПб.: АВОК «Северо-Запад», 2006.

    Тихомиров, К.В. Теплотехника, тепло­газо­снаб­жение и вен­ти­ля­ция [Текст] / К.В. Тихомиров, Е.С. Сергиенко. – М.: ООО «БАСТЕТ», 2009.

    Фокин, К.Ф. Строительная теплотехника ограждающих час­тей зданий [Текст] / К.Ф. Фокин; под ред. Ю.А. Табунщикова, В.Г. Гагарина. – М.: АВОК-ПРЕСС, 2006.

    Еремкин, А.И. Тепловой режим зданий [Текст]: учеб. пособие / А.И. Еремкин, Т.И. Королева. – Ростов-н/Д.: Феникс, 2008.

    СП 60.13330.2012 Отопление, вентиляция и кондициони­рова­ние воздуха. Актуализированная редакция СНиП 41-01-2003 [Текст]. – М.: Минрегион России, 2012.

    СП 131.13330.2012 Строительная климатология. Актуализированная версия СНиП 23-01-99 [Текст]. – М.: Минрегион России, 2012.

    СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 [Текст]. – М.: Минрегион России, 2012.

    СП 54.13330.2011 Здания жилые многоквартирные. Актуализированная редакция СНиП 31-01-2003 [Текст]. – М.: Минрегион России, 2012.

    Кувшинов, Ю.Я. Теоретические основы обеспечения мик­рокли­мата помещения [Текст] / Ю.Я. Кувшинов. – М.: Изд-во АСВ, 2007.

    СП 118.13330.2012 Общественные здания и сооружения. Актуализированная редакция СНиП 31-05-2003 [Текст]. – Минрегион России, 2012.

    Куприянов, В.Н. Строительная климатология и физика среды [Текст] / В.Н. Куприянов. – Казань, КГАСУ, 2007.

    Монастырев, П.В. Технология устройства дополнительной теплозащиты стен жилых зданий [Текст] / П.В. Монастырев. – М.: Изд-во АСВ, 2002.

    Бодров В.И., Бодров М.В. и др. Микроклимат зданий и сооружений [Текст] / В.И. Бодров [и др.]. – Нижний Новгород, Издательство «Арабеск», 2001.

    ГОСТ 30494-96. Здания жилые и общественные. Параметры микроклимата в помещениях [Текст]. – М.: Госстрой России, 1999.

    ГОСТ 21.602-2003. Правила выполнения рабочей докумен­тации отопления, вентиляции и кондиционирования [Текст]. – М.: Госстрой России, 2003.

    СНиП 2.01.01-82. Строительная климатология и геофизика [Текст]. – М.: Госстрой СССР, 1982.

    СНиП 2.04.05-91*. Отопление, вентиляция и кондициони­рова­ние [Текст]. – М.: Госстрой СССР, 1991.

    СП 23-101-2004. Проектирование тепловой защиты зданий [Текст]. – М.:ООО «МЦК»,2007.

    ТСН 23-332-2002. Пензенской области. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2002.

21. ТСН 23-319-2000. Краснодарского края. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2000.

22. ТСН 23-310-2000. Белгородской области. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2000.

23. ТСН 23-327-2001. Брянской области. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2001.

24. ТСН 23-340-2003. Санкт-Петербург. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2003.

25. ТСН 23-349-2003. Самарская область. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2003.

26. ТСН 23-339-2002. Ростовская область. Энергетическая эффективность жилых и общественных зданий [Текст]. – М.: ГосстройРоссии,2002.

27. ТСН 23-336-2002. Кемеровская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

28. ТСН 23-320-2000. Челябинская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

29. ТСН 23-301-2002. Свердловская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

30. ТСН 23-307-00. Ивановская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

31. ТСН 23-312-2000. Владимирская область. Тепловая защита жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

32. ТСН 23-306-99. Сахалинская область. Теплозащита и энергопотребление жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,1999.

33. ТСН 23-316-2000. Томская область. Тепловая защита жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

34. ТСН 23-317-2000. Новосибирская область. Энергосбережение в жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

35. ТСН 23-318-2000. Республика Башкортостан. Тепловая защита зданий. [Текст]. – М.: ГосстройРоссии,2000.

36. ТСН 23-321-2000. Астраханская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

37. ТСН 23-322-2001. Костромская область. Энергоэффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2001.

38. ТСН 23-324-2001. Республика Коми. Энергосберегающая теплозащита жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2001.

39. ТСН 23-329-2002. Орловская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

40. ТСН 23-333-2002. Ненецкий автономный округ. Энергопотребление и теплозащита жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

41. ТСН 23-338-2002. Омская область. Энергосбережение в гражданских зданиях. [Текст]. – М.: ГосстройРоссии,2002.

42. ТСН 23-341-2002. Рязанская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

43. ТСН 23-343-2002. Республика Саха. Теплозащита и энергопотребление жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

44. ТСН 23-345-2003. Удмуртская Республика. Энергосбережение в зданиях. [Текст]. – М.: ГосстройРоссии,2003.

45. ТСН 23-348-2003. Псковская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2003.

46. ТСН 23-305-99. Саратовская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,1999.

47. ТСН 23-355-2004. Кировская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2004.

48. Малявина Е.Г., А.Н. Борщев. Статья. Расчет солнечной радиации в зимнее время [Текст]. «ЭСКО». Электронный журнал энергосервисной компании «Экологические системы» №11, ноябрь 2006.

49. ТСН 23-313-2000. Тюменская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

50. ТСН 23-314-2000. Калининградская область. Нормативы по энергосберегающей теплозащите жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2000.

51. ТСН 23-350-2004. Вологодская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2004.

52. ТСН 23-358-2004. Оренбургская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2004.

53. ТСН 23-331-2002. Читинская область. Энергетическая эффективность жилых и общественных зданий. [Текст]. – М.: ГосстройРоссии,2002.

Шум ухудшает условия труда, оказывает вредное действие на организм человека. При длительном воздействии шума на организм происходят нежелательные явления: снижается острота зрения и слуха, повышается кровяное давление, снижается внимание. Сильный продолжительный шум может быть причиной функциональных изменений сердечно-сосудистой и нервной систем. Требования к уровням шумов устанавливаются стандартом ГОСТ 12.1.003-83 Шум. Общие требования безопасности (с изменением №1), СН 2.2.4/2.1.8.562 - 96. Шум на рабочих местах, в помещениях жилых и общественных зданий и на территории жилой застройки.

Звук как физический процесс представляет собой волновое движение упругой среды. Ощущает человек механические колебания с частотами от 20 до 20000 Гц.

Шум - это беспорядочное сочетание звуков различной частоты и интенсивности.

Основными характеристиками звука являются:

частота колебаний (Гц); звуковое давление (Па); интенсивность звука (Вт/м2).V звука =344 м/c.

Звуковое давление - переменная составляющая давления воздуха, возникающая вследствие колебаний источника звука, накладывающаяся на атмосферное давление.

Количественная оценка звукового давления оценивается среднеквадратичным значением.

где Т = 30-100 мс.

При распространении звуковых волн имеет место перенос звуковой энергии, величина которого определяется интенсивностью звука.

Интенсивность звука - звуковая мощность на единицу площади, передаваемая в направлении распространения звуковой волны.

Интенсивность звука связана с звуковым давлением выражением

где P - среднеквадратичное давление звуковое;

V - среднеквадратичное значение колебательной скорости частиц в звуковой волне.

В свободном звуковом поле интенсивность звука может быть выражена формулой

гдеr - плотность среды, с -скорость звука в среде;

r с - акустическое сопротивление среды.

Минимальное звуковое давление и минимальная интенсивность звуков, едва различимых слуховым аппаратом человека, называется пороговым .

Чувствительность слухового аппарата человека наибольшая в диапазоне 2000-5000 Гц. За эталонный - звук частотой 1000 Гц. При этой частоте порог слышимости по интенсивностиI 0 = 10-12 Bт/м2, а соответствующее ему звуковое давление р0 = 2·10-5 Па. Порог болевого ощущенияI max =10 Вт/м2. Различие в 1013 раз.

Принято измерять и оценивать относительные уровни интенсивности звука и звукового давления по отношению к пороговым значениям, выраженное в логарифмической форме.

Уровень интенсивности: LI = 10 lg I/I0 ;

Уровень звукового давления: Lp = 20 lg P/P0-

Слышимый диапазон составляет 0 - 140 дБ.

Характеристикой непосредственно источника шума является его звуковая мощность Р - общее количество звуковой энергии, излучаемой в окружающее пространство в секунду.

Уровень звуковой мощности источника шума

LP = 10 lg P/P0,

где Р 0 - пороговая величина = 10-12Вт.

Общие требования безопасности предусматривает классификацию шумов, допустимые уровни шума на рабочих местах, общие требования к шумовым характеристикам машин и методы измерения шума.

Суммарный уровень звукового давления при одновременном действии двух одинаковых источников с уровнями L 1 и L 2 в дБ можно определить по формуле

L общ = L 1 + L ,

гдеL 1 - больший из двух суммарных уравнений,

L - поправка для суммарного уравнения шума.

Если источников N одинаковых, то L общ = L 1 + 10 lg L .

Шум, в котором звуковая энергия распределена по всему спектру, называется широкополосным . Если прослушивается звук определенной частоты, то шум называется тональным . Шум, воспринимаемый как отдельные импульсы (удары), называется импульсным .

Звуковую мощность и звуковое давление как величины переменные можно представить в виде суммы синусоидальных колебаний различной частоты.

Зависимость среднеквадратичных значений этих составляющих (или их уровней) от частоты называется частотным спектром шума .

Обычно частотный спектр определяется опытным путем, находя звуковые давления не для каждой отдельной частоты, а для октавных (или третьоктавных) полос частот.

Среднегеометрическая октавная полоса частотf ср определяется как:

причем для октавных полос f b/ f k = 2,

для третьоктавных f b/ f k = 1,26.

Частотные спектры шума получает с помощью анализаторов шума, представляющих собой набор электрических фильтров, которые пропускают электрический звуковой сигнал в определенной полосе частот (полосе пропускания).

По временным характеристикам шумы подразделяются на постоянные и непостоянные .

Непостоянные бывают:

- колеблющиеся по времени , уровень звука которых непрерывно изменяется во времени;

- прерывистые , уровень звука которых резко падает до уровня фонового шума;

- импульсные , состоящие из сигналов менее 1с.

Нормирование шума

Для оценки шума используют частотный спектр измеренного уровня звукового давления, выраженный в дБ, в октавных полосах частот, который сравнивается с предельным спектром, нормированным в ГОСТ 12.1.003-83 ССБТ. Шум. Общие требования безопасности (c изм. №1).

Для ориентировочной оценки шумовой обстановки допускается использовать одночисловую характеристику - так называемый уровень звука, дБА, измеряемый без частотного анализа по шкале А шумометра, которая приблизительно соответствует числовой характеристике слуха человека. Слуховой аппарат человека более чувствителен к звукам высоких частот, поэтому нормируемые значения звукового давления уменьшаются с увеличением f. Для постоянного шума нормируемыми параметрами являются - допустимые уровни звукового давления и уровни звука на рабочих местах (по ГОСТ 12.1.003-83).

Для непостоянного шума нормируемым параметром является эквивалентный уровень звука LА единиц в дБ по шкале А.

Эквивалентным уровнем звука называется значение уровня звука постоянного шума, который в пределах регламентируемого интервала времени Т=t2 - t1 имеет тоже самое среднеквадратичное значение уровня звука, что и рассматриваемый шум.

Уровни непосредственного шума измеряются специальными интегрирующими шумометрами-дозиметрами.

Если шум тональный или импульсный, то допустимые уровни должны приниматься на 5 дБА меньше значений, указанных в ГОСТ.

Классификация средств и методов защиты от шума приведена в ГОСТ 12.1.029 - 80.Средства и методы защиты от шума. Классификация.

Методы защиты от шума основаны на:

1. снижении шума в источнике;

2. снижении шума на пути его распространения от источника;

3. применении СИЗ от шума (СИЗ - средство индивидуальной защиты).

Методы снижения шума на пути распространения:- достигается путем проведения строительно-акустических мероприятий. Методы снижения шума на пути его распространения - кожухи, экраны, звукоизолирующие перегородки между помещениями, звукопоглощающие облицовки, глушители шума. Под акустической обработкой помещений понимается облицовка части внутренних поверхностей ограждений звукопоглощающими материалами, а также размещения в помещениях штучных поглотителей.

Наибольший эффект - в зоне отраженного звука (60 % от общей площади). Эффективность - 6-8 дБ.

Снижение шума методом звукопоглoщения основано на переходе звуковых колебаний частиц воздуха в теплоту вследствие потерь на трение в порах звукопоглощающего материала. Чем больше звуковая энергия поглощается, тем меньше отражает. Поэтому, для снижения шума в помещении проводят его акустическую обработку, нанося звукопоглощающие материалы на внутренние поверхности, а также размещая в помещении штучные звукопоглотители.

Эффективность звукопоглощающего устройства характеризуется коэффициентом звукопоглощения a , который представляет собой отношение поглощенной звуковой энергии Е погл. к падающей Е пад.,

a = Е погл. /Е пад.

Звукопоглощающие устройства бывают пористыми, пористо-волокнистыми, мембранные, слоистые, объемные, и т.п.

Звукоизоляция является одним из наиболее эффективных и распространенных методов снижения производственного шума на пути его распространения.

С помощью звукоизолирующих преград можно снизить уровень шума на 30-40 дБ.

Метод основан на отражении звуковой волны, падающей на ограждение. Однако звуковая волна не только отражается от ограждения, но и проникает через него, что вызывает колебание ограждения, которое само становится источником шума. Чем выше поверхностная площадь ограждения, тем труднее привести его в колебательное состояние, следовательно, тем выше его звукоизолирующая способность. Поэтому эффективными звукоизолирующими материалами являются металлы, бетон, дерево, плотные пластмассы и т.п.

Для оценки звукоизолирующей способности ограждения введено понятие звукопроницаемостиt , под которой понимают отношение звуковой энергии, прошедшей через ограждение, к падающей на него.

Величина, обратная звукопроницаемости, называется звукоизоляцией (дБ), она связана с звукопроницаемостью следующей формулой

R = 10 lg (1/ t ) .

Вибрация

1. Вибрация может быть причиной функциональных расстройств нервной и сердечно-сосудистой систем, а также опорно-двигательного аппарата.

В соответствии с ГОСТ 24346-80 (СТСЭВ 1926-79) Вибрация. Термины и определения. под вибрацией понимается движение точки или механической системы, при которой происходит поочередное возрастание и убывание во времени значений, по крайней мере, одной координаты.

Принято различать общую и локальную вибрацию. Общая вибрация действует на весь организм человека через опорные поверхности - сиденье, пол; локальная вибрация оказывает действие на отдельные части тела.

Вибрация может измеряться с помощью как абсолютных, так и относительных параметров.

Абсолютными параметрами для измерения вибрации являются вибросмещение, виброскорость и виброускорение.

Основной относительный параметр вибрации - уровень виброскорости, который определяется по формуле

LV = 10 lg V2 / V02 = 20 lg V / V0,

где V - амплитуда виброскорости, м/c ;

V 0 = 5*10-8 м/с- пороговое значение виброскорости.

При частотном (спектральном) анализе нормируемыми являются кинематические параметры: средние квадратичные значения виброскорости V (и их логарифмические уровни LV ) или виброускорения а - для локальных вибраций в октавных полосах частот; для общий вибрации в октавных и 1/3 октавных полосах частот.

В соответствии с ГОСТ 12.1.012-90 ССБТ. Вибрационная безопасность. Общие требования безопасности существуют следующие виды общей вибрации - три категории:

1- транспортная вибрация;

2- транспортно-технологическая вибрация;

3- технологическая вибрация.

Технологическая вибрация в свою очередь подразделяется на четыре типа:

3а- на постоянных рабочих местах в производственных помещениях, центральных постах управления и др.;

3б- на рабочих местах в служебных помещениях на судах;

3в- на рабочих местах на складах, бытовых и других производственных помещениях;

3г- на рабочих местах в заводоуправлениях, КБ, лабораториях, учебных пунктах, ВЦ, конторских помещениях и др. помещениях умственного труда.

Общая вибрация нормируется в активных полосах со среднегеометрическими частотами 1, 2, 4, 8, 16, 32, 63 Гц и в 1/3 октавных полосах со среднегеометрическими частотами 0,8; 1,0; 1,25; 1,6;... 40; 50; 63; 80 Гц.

Локальная вибрация нормируется в активных полосах со среднегеометрическими частотами 8, 16, 32, 63, 120, 250, 500, 1000 Гц.

Нормируется вибрация в направлении трех ортогональных осей координат X, Y, Z для общей вибрации, где Z - вертикальная ось, а Y, X - горизонтальные; и XP , YP, ZP - для локальной вибрации, где XP cовпадает с осью мест охвата источника вибрации, а ось ZP лежит в плоскости, образованной осью XP и направлением подачи или приложения силы.

Допустимыми значениями параметров транспортной, транспортно-технологической и технологической вибрации приведены в ГОСТ 12.1.012-90 .

При интегральной оценке вибрации по частоте нормируемым параметром является корректированное значение контролируемого параметра V (виброскорости или виброускорения), измеряемое с помощью специальных фильтров или вычисляемое по формулам, приведенным в ГОСТ 12.1.012-90.

Дозовый подход позволяет оценивать кумуляцию воздействия фактора на работе и вне рабочего времени.

При оценке вибрации дозой нормируемым параметром является эквивалентное корректированное значение V ЭКВ , определяемое по формуле

VЭКВ =,

где доза вибрации, которая вычисляется по выражению

где V(t) - мгновенное корректированное значение параметра вибрации в момент времени t , получаемое с помощью корректирующего фильтра с характеристикой в соответствии с таблицей приведенной в стандарте, t - время воздействия вибрации за рабочую смену.

Техническим требованиям и средствам измерения соответствуют измеритель шума и вибрации ВШВ - 001; а также зарубежные виброакустические комплекты фирмы "Брюль и Кьер" (Дания).

Точки измерений общей вибрации выбираются на рабочих местах (или в рабочих зонах обслуживания), а для самоходных и транспортно-технологических машин - на рабочих площадях и сиденьях водителей и персонала. Измерения проводятся в типовом технологическом режиме работы оборудования (машины).

Суммарное время работы в контакте с ручными машинами, вызывающими вибрацию не должно превышать 2/3 смены. При этом продолжительность одноразового воздействия вибрации, включая микропаузы, которые входят в данную операцию, не должна превышать 15-20 минут.

Суммарное время работы с виброинструментом про 8-час. рабочем дне и 5-дневной неделе не должно превышать для слесаря-сборщика 30 % сменного рабочего времени, для электромонтажника 22 % ; для наладчика 15 %.

При работе с виброиструментом масса оборудования, удерживаемого руками не должна превышать 10 кг, а сила нажатия -196 Н.

Основными методами борьбы с вибрациями машин и оборудования являются:

Снижение вибрации воздействием на источник возбуждения (посредством снижения или ликвидации вынуждающих сил);

Отстройка от режима резонанса путем рационального выбора массы и жесткости колеблющейся системы; (либо изменением массы или жесткости системы, либо на стадии проектирования - нового режима w).

Вибродемпфирование - увеличение механического активного импеданса колеблющихся конструктивных элементов путем увеличения диссипативных сил при колебаниях с частотами, близкими к резонансными.

Диссипативные силы - это силы, возникающие в механических системах, полная энергия которых (сумма кинетической и потенциальной энергии) при движении убывает, переходя в другие виды энергии.

Диссипативная система, например, - это тело движущееся по поверхности другого тела при наличии трения (вибропокрытия - вязкость материалов).

Динамическое гашение колебаний - (дополнительные реактивные импедансы) - присоединение к защищенному объекту систем, реакции которой уменьшает размах вибрации в точках присоединения системы;

Изменение конструктивных элементов и строительных конструкций (увеличение жесткости системы - введение ребер жесткости).

Виброизоляция - этот способ заключается в уменьшении передачи колебаний от источника возбуждения защищаемому объекту при помощи устройств, помещенных между ними. (Резиновые, пружинные виброизоляторы).

Активная виброзащита.

Общие требования к СИЗ от вибраций определены в ГОСТ 12.4.002-97 ССБТ. Средства индивидуальной защиты рук от вибрации. Общие технические требования и ГОСТ 12.4.024 - 76. Обувь специальная виброзащитная.

Требования к освещению производственных помещений и рабочих мест. Характеристика естественного и искусственного освещения. Нормы освещенности. Выбор источников света, светильников. Организация эксплуатации осветительных установок.

Правильно спроектированное и выполненное освещение обеспечивает возможность нормальной производственной деятельности.

Из общего объема информации человек получает через зрительный канал около 80 %. Качество поступающей информации во многом зависит от освещения: неудовлетворительное количественно или качественно оно не только утомляет зрение, но и вызывает утомление организма в целом. Нерациональное освещение может, кроме того, являться причиной травматизма: плохо освещенные опасные зоны, слепящие источники света и блики от них, резкие тени ухудшают видимость настолько, что вызывает полную потерю ориентировки работающих.

При неудовлетворительном освещении, кроме того, снижается производительность труда и увеличивается брак продукции.

Освещение характеризуется количественными и качественными показателями.

К количественным показателям относятся: световой поток, сила света, освещенность и яркость.

Часть лучистого потока, которая воспринимается зрением человека как свет, называется световым потоком Ф и измеряется в люменах (лм).

Световой поток Ф - поток лучистой энергии, оцениваемый по зрительному ощущению, характеризует мощность светового излучения.

Единица светового потока - люмен (лм) - световой поток, излучаемый точечным источником с телесным углом в 1 стерадиан при силе света, равной 1 канделе.

Световой поток определяется как величина не только физическая, но и физиологическая, поскольку ее измерение основывается на зрительном восприятии.

Все источники света, в том числе и осветительные приборы, излучают световой поток в пространство неравномерно, поэтому вводится величина пространственной плотности светового потока - сила света I.

Сила света I определяется как отношение светового потока dФ, исходящего от источника и распространяющегося равномерно внутри элементарного телеcного угла, к величине этого угла.

За единицу величины силы света принята кандела (кд).

Одна кандела - сила света, испускаемого с поверхности площадью 1/6·10 5 м 2 полного излучения (государственный эталон света) в перпендикулярном направлении при температуре затвердевания платины (2046,65 К) при давлении 101325 Па.

Освещенность Е - отношение светового потока dФ падающего на элемент поверхности dS, к площади этого элемента

За единицу освещенности принят люкс (лк).

Яркость L элемента поверхности dS под углом относительно нормали этого элемента есть отношение светового потока d2Ф к произведению телесного угла dΩ, β котором он распространяется, площади dS и косинуса угла?

L = d2Ф/(dΩ·dS·cos θ) = dI/(dS·cosθ),

где dI - сила света, излучаемого поверхностью dS в направлении θ.

Коэффициент отражения характеризует способность отражать падающий на него световой поток. Он определяется как отношение отраженного от поверхности светового потока Фотр. к падающему на него потоку Фпад..

К основным качественным показателям освещения относятся коэффициент пульсации, показатель ослепленности и дискомфорта, спектральный состав света.

Для оценки условий зрительной работы существуют такие характеристики, как фон, контраст объекта с фоном.

При освещении производственных помещений используют естественное освещение, создаваемое светом неба, проникающим через световые проемы в наружных ограждающих конструкциях, искусственное, осуществляемое электрическими лампами и совмещенное, при котором недостаточное по нормам естественное освещение дополняется искусственным.

Естественное освещение помещения через световые проемы в наружных стенах называется боковым, а освещение помещения через фонари, световые проемы в стенах в местах перепада высот здания называется верхним. Сочетание верхнего и бокового естественного освещения называется комбинированным естественным освещением.

Качество естественного освещения характеризуют коэффициентом естественной освещенности (КЕО). Он представляет собой отношение естественной освещенности, создаваемой в некоторой точке заданной плоскости внутри помещения светом неба, к значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода; выражается в процентах.

По конструктивному исполнению искусственное освещение может быть двух систем - общее и комбинированное. В системе общего освещения светильники размещаются в верхней зоне помещения равномерно (общее равномерное освещение) или применительно к расположению оборудования (общее локализованное освещение). В системе комбинированного освещения к общему освещению добавляется местное, создаваемое светильниками, концентрирующими световой поток непосредственно на рабочих местах.

Применение одного местного освещения не допускается.

По функциональному назначению искусственное освещение подразделяют на следующие виды: рабочее, безопасности, эвакуационное, охранное и дежурное.

Рабочее освещение - освещение, обеспечивающее нормируемые осветительные условия (освещенность, качество освещения) в помещениях и в местах производства работ вне зданий.

Освещение безопасности - освещение, устраиваемое для продолжения работы при аварийном отключении рабочего освещения. Этот вид освещения должен создавать на рабочих поверхностях в производственных помещениях и на территориях предприятий, требующих обслуживания при отключении рабочего освещения, наименьшую освещенность в размере 5 % освещенности, нормируемой для рабочего освещения от общего освещения, но не менее 2лк внутри здания и не менее 1лк для территорий предприятий.

Эвакуационное освещение следует предусматривать для эвакуации людей из помещений при аварийном отключении рабочего освещения в местах, опасных для прохода людей. Оно должно обеспечивать наименьшую освещенность на полу основных проходов (или на земле) и на ступенях лестниц: в помещениях - 0,5 лк, а на открытых территориях- 0,2 лк.

Освещение безопасности и эвакуационное освещение называют аварийным освещением. Выходные двери общественных помещений общественного назначения, в которых могут находиться более 100 человек, а также выходы из производственных помещений без естественного света, где могут находиться одновременно более 50 человек или имеющих площадь более 150 м2, должны быть отмечены указателями. Указатели выходов могут быть световыми и не световыми, при условии, что обозначение выхода освещается светильниками аварийного освещения.

Осветительные приборы аварийного освещения допускается предусматривать горящими, включаемыми одновременно с основными осветительными приборами нормального освещения и не горящими, автоматически включаемыми при прекращении питания нормального освещения.

Охранное освещение должно предусматриваться вдоль границ территорий, охраняемых в ночное время. Освещенность должна быть не менее 0,5 лк на уровне земли в горизонтальной плоскости или на уровне 0,5 м от земли на одной стороне вертикальной плоскости, перпендикулярной к линии границы.

Дежурное освещение предусматривается для нерабочего времени. Область его применения, величины освещенности, равномерность и требования к качеству не нормируются.

Основная задача освещения на производстве - создание наилучших условий для видения. Эту задачу можно решить только осветительной системой, отвечающим определенным требованиям.

Освещенность на рабочем месте должна соответствовать характеру зрительной работы, который определяется следующими параметрами:

Наименьшим размером объекта различения (рассматриваемого предмета, отдельной его части или дефекта);

Характеристикой фона (поверхности, прилегающей непосредственно к объекту различения, на которой он рассматривается); фон считается светлым - при коэффициенте отражения поверхности более 0,4, средним - при коэффициенте отражения поверхности от 0,2 до 0,4, темным - при при коэффициенте отражения поверхности менее 0,2.

Контрастом объекта различения с фоном К, который равен отношению абсолютной величины разности между яркостью объекта Lо и фона Lф к яркости фона K = |Lо - Lф|/ Lф; контраст считается большим - при К более 0,5(объект и фон резко отличаются по яркости), средним - при К от 0,2 до 0,5, (объект и фон заметно отличаются по яркости), малым - при К менее 0,2(объект и фон мало отличаются по яркости).

Необходимо обеспечить достаточно равномерное распределение яркости на рабочей поверхности, а также в окружающем пространстве. Если в поле зрения находятся поверхности, значительно отличающиеся между собой по яркости, то при переводе взгляда с ярко освещенной на слабо освещенную поверхность глаз вынужден переадаптироваться, что ведет к утомлению зрения.

На рабочем месте должны отсутствовать резкие тени. Наличие резких теней создает неравномерное распределение поверхностей с различной яркостью в поле зрения, искажает размеры и формы объектов различения, в результате повышается утомляемость, снижается призводительность труда. Особенно вредны движущиеся тени, которые могут привести к травмам.

В поле зрения должна отсутствовать прямая и отраженная блескость. Блескость - повышенная яркость светящихся поверхностей, вызывающая нарушение зрительных функций (ослепленность), т.е. ухудшение видимости объектов.

Прямая блескость связана с источниками света, отраженная возникает на поверхности с большим коэффициентом отражения или отражением по направлению глаза.

Критерием оценки слепящего действия, создаваемого осветительной установки, является показатель ослепленности Ро, значение которого определяется по формуле

Ро = (S - 1) ·1000,

где S - коэффициент ослепленности, равный отношению пороговых разностей яркости при наличии и отсутствии слепящих источников в поле зрения.

Критерием оценки дискомфортной блесткости, вызывающей неприятные ощущения при неравномерном распределении яркостей в поле зрения, является показатель дискомфорта.

Величина освещенности должна быть постоянной во времени, чтобы не возникало утомления глаз за счет переадаптации. Характеристикой относительной глубины колебаний освещенности в результате изменения во времени светового потока источников света является коэффициент пульсации освещенности Кп.

Кп (%) = 100· (Еmax - Emin)/2Еср,

где Еmax,Emin и Еср - максимальное, минимальное и среднее значения освещенности за период ее колебания.

Для правильной цветопередачи следует выбирать необходимый спектральный состав света. Правильную цветопередачу обеспечивают естественное освещение и искусственные источники света со спектральной характеристикой, близкой к солнечной.

Требования к освещению помещений устанавливает СниП 23-05-95 Естественное и искусственное освещение. Для помещений промышленных предприятий установлены нормы на КЕО, освещенность, допустимые сочетания показателей ослепленности и коэффициента пульсации. Значения этих норм определяются разрядом и подразрядом зрительной работы. Всего предусмотрено восемь разрядов - от I; где наименьший размер объекта различения составляет менее 0,15мм, до VI, где он превышает 5 мм; VII разряд установлен для работ со светящимися материалами и изделиями в горячих цехах, VIII - для общего наблюдение за ходом производственного процесса. При расстояниях от объекта различения до глаза работающего более 0,5 м разряд работ устанавливается в зависимости от углового размера объекта различения, определяемого отношением минимального размера объекта различения к расстоянию от этого объекта до глаз работающего. Подразряд зрительной работы зависит от характеристики фона и контраста объекта различения с фоном.

Для помещений жилых, общественных административно-бытовых зданий установлены нормы на КЕО, освещенность, показатель дискомфорта и коэффициент пульсации освещенности. В случаях специальных архитектурно-художественных требований регламентируется также цилиндрическая освещенность. Цилиндрическая освещенность характеризует насыщенность помещения светом. Она рассчитывается инженерным методом.

Выбор этих норм зависит от разряда и подразряда зрительной работы. Для таких помещений предусмотрено 5 разрядов зрительной работы - от А - до Д.

Зрительная работа относится к одному из первых трех разрядов (в зависимости от наименьшего размера объекта различения), если она заключается в различении объектов при фиксированной и нефиксированной линии зрения. Подразряд зрительной работы при этом определяется относительной продолжительностью зрительной работы при направлении зрения на рабочую поверхность (%).

Зрительная работа относится к разрядам ГиД, если она заключается в обзоре окружающего пространства при очень кратковременном, эпизодическом различении объектов. Разряд Г устанавливается при высокой насыщенности помещения светом, а разряд Д - при нормальной насыщенности.

Нормы естественного освещения зависят от светового климата, в котором расположен административный район. Требуемое значение КЕО определяется по формуле

КЕО = eн·mN,

Где N - номер группы обеспеченности естественным светом, который зависит от выполнения световых проемов и их ориентации по сторонам горизонта;

eн - значение КЕО, указанное в таблицах СниП 23-05-95;

mN - коэффициент светового климата.

Для освещения производственных помещений и складских зданий следует использовать, как правило, наиболее экономичные разрядные лампы. Использование ламп накаливания для общего освещения допускается только в случае невозможности или технико-экономической нецелесообразности использования разрядных ламп.

Для местного освещения кроме разрядных источников света следует использовать лампы накаливания, в том числе галогенные. Применение ксеноновых ламп внутри помещений не допускается.

Для местного освещения рабочих мест следует использовать светильники с непросвечивающими отражателями. Местное освещение рабочих мест, как правило, должно быть оборудовано регуляторами освещения.

В помещениях, где возможно возникновение стробоскопического эффекта, необходимо включение соседних ламп в 3 фазы питающего напряжения или включение их в сеть с электронными пускорегулирующими аппаратами.

В помещениях общественных, жилых и вспомогательных зданий при невозможности или технико-экономической нецелесообразности использования разрядных ламп, а также для обеспечения архитектурно-художественных требований допускается предусматривать лампы накаливания.

Освещение лестничных клеток жилых зданий высотой более 3 этажей должно иметь автоматическое или дистанционное управление, обеспечивающее отключение части светильников или ламп в ночное время с таким расчетом, чтобы освещенность лестниц была не ниже норм эвакуационного освещения.

На крупных предприятиях должно быть специально выделенное лицо, ведающее эксплуатацией освещения (инженер или техник).

Следует проверять уровень освещенности в контрольных точках производственного помещения после очередной чистки светильников и замены перегоревших ламп.

Чистка стекол световых проемов должна производиться не реже 4 раз в год для помещений со значительными выделениями пыли; для светильников - 4 -12 раз в год, в зависимости от характера запыленности производственного помещения.

Перегоревшие лампы необходимо своевременно заменять. В установках с люминисцентными лампами и лампами ДРЛ необходимо следить за исправностью схем включения, а также пускорегулирующих аппаратов.

Опасности окружающей среды и способы их преодоления

контрольная работа

2. Понятие о вибрации, параметры, характеризующие вибрацию, единицы измерения вибрации, допустимые уровни вибрации

безопасность жизнедеятельность вибрация утопающий

Вибрация представляет собой механические колебания твердого тела вокруг положения равновесия (ГОСТ 12.1.012-90 «Вибрационная безопасность. Общие требования»).

Действие вибрации определяется передачей человеку механической энергии от источника колебаний. Вибрация с физической точки зрения относится к колебательным процессам, происходящим в механических системах, при которых материальное тело через определенные промежутки времени проходит одно и тоже устойчивое положение.

Как правило, причиной возбуждения вибрации являются, возникающие при работе машин и агрегатов, неуравновешенные силовые воздействия:

Неуравновешенные возвратно-поступательные движения элементов машин (перфораторы, отбойные молотки);

Неуравновешенные вращающиеся массы машин, когда есть несовпадение центра массы тела и оси вращения (шлифовальные машины, дрели);

Удары деталей (сваебойные машины, перфораторы).

Таким образом, источником вибрации является практически всякая машина, агрегат, транспортирующее устройство или транспортное средство, так сотрясение ковшового погрузчика на дороге, тряску палубы на судне из-за работающего двигателя и т.п. - это тоже вибрация.

Вибрация в рабочей среде разделяется на общую и местную вибрацию.

Об общей вибрации идет речь, когда человек опирается о вибрирующую поверхность всей тяжестью тела, например, стоя, сидя или лежа на ней. Выполняя работу около стационарных машин и станков и специальных виброустановок, рабочие подвергаются воздействию вибрации рабочего места, т.е. общей вибрации, когда вибрация действует на весь организм (вибростолы, виброплощадки ДСК). С общей вибрацией наиболее часто сталкиваются транспортные работники (трактористы, водители, операторы погрузчиков, горнодобывающего оборудования), судовые команды, а также операторы различных движущихся или просто больших машин и т.п.

Местной вибрацией называют вибрацию, при которой вибрация входит через одну конечность и преимущественно этой конечностью ограничена. Как правило, это означает, что работник держится за вибрирующий объект рукой или вибрирующая установка закреплена на нем. Т.е. при пользовании вибрационным инструментом (дрели, перфораторы, горные сверла, гайковерты, электро-бензиномоторные пилы) вибрация передается на руки рабочего.

С местной вибрацией сталкиваются преимущественно работники строительной, металло- и деревообрабатывающей отраслей при использовании разнообразных ручных инструментов, а также операторы более крупных машин, которые держатся за вибрирующие детали (рули, рукоятки и пр.).

Однако, такое разделение вибрации - условно. При локальной вибрации она передается так же на весь организм человека. Этому способствует относительно хорошая проводимость механических колебаний тканями тела, особенно костной системой.

Результатом вибрационного воздействия является снижение производительности труда и качества работы, возникновение вибрационной болезни.

Основные параметры, характеризующие вибрацию:

1) Амплитуда (А), т.е. на какое расстояние отклоняется вибрирующая поверхность или ручной инструмент от положения равновесия (максимальное перемещение колеблющейся точки), м;

2) Скорость перемещения (колебательная скорость) (V), м/с;

3) Ускорение перемещения (колебаний) (w), м/с2;

4) Период колебаний Т, с;

5) Частота колебаний f, Гц.

При гармонических колебаниях скорость и ускорение могут быть вычислены по формуле (6.1), как первая и вторая производная по времени и в конечном виде их максимальные значения соответственно равны

Учитывая, что абсолютные значения параметров, характеризующих вибрацию, изменяются в широких пределах, на практике указанные величины выражаются также в:

Уровнях виброскорости:

Lv=20*lgV/V0, дБ,

где V - текущее значение скорости, м/с;

V0=5*10-8 м/с - пороговое значение скорости.

Порог болевого ощущения при вибрации с V=0,01 м/с.

Уровнях виброускорения:

Lа=20*lgа/а0, дБ,

где а - текущее значение ускорения, м/с2;

а0=1*10-6 м/с2 - пороговое значение ускорения.

Lv и Lа являются энергетическими характеристиками вибрации, причем основной характеристикой вибрации, в соответствии с международными документами является уровень виброускорения.

Для исследования вибраций весь диапазон их частот разбивается на октавные полосы.

F общ = 1 80 Гц.

F лок = 5 1400 Гц.

Для общей вибрации F сг = 1,2,4,16,31.5,63 Гц.

Для локальной вибрации F сг = 8,16,31.5,63,126,250,500,1000 Гц.

Общая вибрация имеет достаточно узкий частотный диапазон. Локальная вибрация имеет более широкий диапазон частот.

Для оценки станков и механизмов общая вибрация выражается в треть октавных полосах частот: 1/3 f cг = 0.8,1.0,1.25,1.6,2.0,2.5,3.15,4.0,5.0,6.3,8.0, 10.0,12.5,16.0,20.0, 25.0,31.5,40.0,50.0,63.0 Гц.

Допустимые уровни вибрации. Различают гигиеническое и техническое нормирование вибраций.

Гигиенические - ограничивают параметры вибрации рабочих мест и поверхности контакта с руками работающих исходя из физиологических требований, исключающих возможность возникновения вибрационной болезни.

Технические - ограничивают параметры вибрации не только с учетом указанных требований, но и исходя из достижимого на сегодняшний день для данного типа оборудования уровня вибрации.

Санитарные нормы устанавливают предельно допустимые величины вибрации в производственных помещениях предприятий:

Амплитуда колебаний вибрации, мм

Частота вибрации, Гц

Скорость колебательных движений, см/с

Ускорение колебательных движений, см/с2

* При таких параметрах вибрации даже сверхпрочные клепочные конструкции до полного своего разрушения выдерживают не более 30 минут.

Приведенные нормы одинаковы для горизонтальных и вертикальных вибраций. Непрерывность их воздействия не должна превышать 10~15% рабочего времени.

Анализ вибраций на повреждение системы органов машинистов железной дороги

Одним из наиболее опасных для человеческого организма производственных факторов является вибрация. Под вибрацией понимается колебание твёрдых тел. Производственные воздействия вибрации, проходящей через все тело, наблюдаются на транспорте...

Безопасность жизнедеятельности

Допустимые шумовые характеристики рабочих мест в на-шей стране регламентируются ГОСТ 12.1.003-83 «Шум. Общие требования безопасности» и СН 9-86 РБ 98 «Шум на рабочих местах. Предельно допустимые уровни»...

Вибрация на рабочих местах. Оценка травмобезопасности рабочих мест

Общая вибрация -- это колебание всего тела, передающееся с рабочего места. Локальная вибрация (местная вибрация) -- это приложение колебаний только к ограниченному участку поверхности организма...

Психологической значимости вибрации и движению мышц в живых организмах уделял особое внимание выдающийся русский физиолог И.М. Сеченов. Он утверждал, что «все внешние проявления мозговой деятельности могут быть сведены на мышечное движение»...

Влияние вибраций и шума на человеческий организм

Нормирование технологической вибрации как общей, так и локальной производится в зависимости от ее направления в каждой октавной полосе(1,6 -- 1000 Гц) со среднеквадратическими виброскоростями (1,4 -- 0,28)10?2м/сек...

Влияние шума и вибрации на организм человека

Профилактика травм и заболевания, вызываемых вибрацией, передаваемой через руки, требует внедрения административных, технических и медицинских процедур...

Обеспечение безопасности труда на ОАО "Северные магистральные нефтепроводы"

Вибрация неблагоприятно воздействует на организм человека, она может быть причиной функциональных расстройств нервной и сердечно-сосудистой систем, а также опорно-двигательного аппарата...

Организация рабочего места водителя

2.1 Уровни звука в кабине грузовых автомобилей не должны превышать 70 дБА (ПС 65). 2.2 Уровни инфразвука в кабине автомобиля не должны превышать 110 длин в соответствии с «Гигиеническими нормами инфразвука на рабочих местах» № 2274-80 от 12.12.80 г...

Нормирование вибрации осуществляется по двум направлениям:

I направление – санитарно-гигиеническое;

II направление – техническое (защита оборудования).

При гигиеническом нормировании вибрации руководствуются следующими нормативными документами:

ГОСТ 12.1.012-90 ССБТ. Вибрационная безопасность;

СН 2.2.4/2.1.8.566-96. Производственная вибрация, вибрация в помещениях жилых и общественных зданий. Санитарные нормы: утв. Постановлением Госкомсанэпиднадзора России от 31.10.96 N 40.

Вводятся следующие критерии оценки неблагоприятного воздействия вибрации в соответствии с приведенной выше классификацией:

· критерий “безопасность”, обеспечивающий ненарушение здоровья оператора, оцениваемого по объективным показателям с учетом риска возникновения предусмотренной медицинской классификацией профессиональной болезни и патологий, а также исключающий возможность возникновения травмоопасных или аварийных ситуаций из-за воздействия вибрации. Этому критерию соответствуют санитарно-гигиенические нормативы, установленные для категории 1;

· критерий “граница снижения производительности труда”, обеспечивающий поддержание нормативной производительности труда оператора, не снижающейся из-за развития усталости под воздействием вибрации. Этот критерий обеспечивается соблюдением нормативов, установленных для категорий 2 и 3а;

· критерий “комфорт”, обеспечивающий оператору ощущение комфортности условий труда при полном отсутствии мешающего действия вибрации. Этому критерию соответствуют нормативы, установленные для категорий 3б и 3в.

Показатели вибрационной нагрузки на оператора формируются из следующих параметров:

Для санитарного нормирования и контроля используются средние квадратические значения виброускорения а или виброскорости V, а также их логарифмические уровни в децибелах;

При оценке вибрационной нагрузки на оператора предпочтительным параметром является виброускорение.

Нормируемый диапазон частот устанавливается:

Для локальной вибрации в виде октавных полос со среднегеометрическими частотами 1; 2; 4; 8; 16; 31, 5; 63; 125; 250; 500; 1000 Гц;

Для общей вибрации – октавных и 1/3 октавных полос со среднегеометрическими частотами 0,8; 1,0; 1,25; 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80 Гц.

Наряду со спектром вибрации в качестве нормируемого показателя вибрационной нагрузки на оператора на рабочих местах может использоваться одночисловой параметр: корректированное по частоте значение контролируемого параметра (виброскорости, виброускорения или их логарифмических уровней). При этом неодинаковое физиологическое воздействие на человека вибрации различных частот учитывается весовыми коэффициентами, значения которых приведены в указанных выше нормативных документах.

При непостоянной вибрации нормой вибрационной нагрузки на оператора являются одночисловые нормативные значения дозы вибрации или эквивалентного корректированного по времени воздействия значения контролируемого параметра.

Основные методы борьбы с вибрациями машин и оборудования.

1. Снижение вибраций воздействием на источник возбуждения посредством снижения или ликвидации вынуждающих сил, например замена кулачковых и кривошипных механизмов равномерно вращающимися, а также механизмами с гидроприводами и т.д.

2. Отстройка от режима резонанса путем рационального выбора массы или жесткости колеблющейся системы.

3. Вибродемпфирование. Это процесс уменьшения уровня вибраций защищаемого объекта путем превращения энергии механических колебаний в тепловую энергию. Для этого вибрирующая поверхность покрывается материалом с большим внутренним трением (резина, пробка, битум, войлок и др.). Вибрации, распространяющиеся по коммуникациям (трубопроводам, каналам), ослабляются их стыковкой через звукопоглощающие материалы (прокладки из резины и пластмассы). Широко применяются противошумные мастики, наносимые на поверхность металла.

4. Динамическое гашение вибрации чаще всего осуществляют путем установки агрегатов на фундаменты. Для небольших объектов между основанием и агрегатом устанавливают массивную опорную плиту.

5. Изменение конструктивных элементов машин и строительных конструкций.

6. При работе с ручным механизированным электрическим и пневматическим инструментом применяют средства индивидуальной защиты рук от воздействия вибраций. К ним относят рукавицы, перчатки, а также виброзащитные прокладки или пластины, которые снабжены креплениями в руке.

На рис. 27 приведена классификация методов и средств коллективной защиты от вибрации.

Рис. 27. Классификация методов и средств защиты от вибрации

Вопрос №57.

Производственный микроклимат (метеорологические условия) – климат внутренней среды производственных помещений, определяется действующим на организм человека сочетанием температуры, влажности и скорости движения воздуха, а также температуры окружающих поверхностей, теплового облучения и атмосферного давления. Нормирование микроклимата осуществляется в соответствии со следующими нормативными документами: СанПин 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений; ГОСТ 12.1.005-88. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

Установлены два вида нормативов: 1.Оптимальные микроклиматические условия устанавливаются по критериям оптимального теплового и функционального состояния человека; они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности. 2. В случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные микроклиматические условия, нормы устанавливают допустимые величины показателей микроклимата. Они устанавливаются по критериям допустимого теплового и функционального состояния человека на период 8-часовой рабочей смены. Допустимые параметры микроклимата не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности. Согласно ГОСТ 12.1.005-88 допустимые показатели устанавливаются дифференцированно для постоянных и непостоянных рабочих мест.

Оптимальные параметры микроклимата в производственных помещениях обеспечиваются системами кондиционирования воздуха, а допустимые параметры – обычными системами вентиляции и отопления.

Терморегуляция – совокупность физиологических и химических процессов в организме человека, направленных на поддержание постоянства температуры тела. Терморегуляция обеспечивает равновесие между количеством тепла, непрерывно образующимся в организме, и излишком тепла, непрерывно отдаваемым в окружающую среду, т.е. сохраняет тепловой баланс организма: Q выд = Q отд .

Теплообмен между человеком и окружающей его средой осуществляется с помощью следующих механизмов за счет:инфракрасногоизлучения , которое излучает или получает поверхность тела (R ); конвекции (С ), т.е. через нагрев или охлаждение тела воздухом, омывающим поверхность тела; теплоотдачей (Е ), обусловленной испарением влаги с поверхности кожи, слизистых оболочек верхних дыхательных путей, легких. Q отд = ± R ± С – Е .

В нормальных условиях при слабом движении воздуха человек в состоянии покоя теряет в результате тепловой радиации около 45 % всей вырабатываемой организмом тепловой энергии, конвекции до 30 % и испарения до 25 %. При этом свыше 80 % тепла отдается через кожу, примерно 13 % через органы дыхания, около 7 % тепла расходуется на согревание принимаемой пищи, воды и вдыхаемого воздуха. В состоянии покоя организма и при температуре воздуха 15 0 С потоотделение незначительно и составляет примерно 30 мл за 1 ч. При высокой температуре (30 о С и выше), особенно при выполнении тяжелой физической работы, потоотделение может увеличиваться в десятки раз. Так, в горячих цехах при усиленной мышечной работе количество выделяемого пота 1…1,5 л/ч, на испарение которого затрачивается 2500…3800 кДж.

В целях обеспечения эффективного теплообмена между человеком и средой устанавливаются санитарно-гигиенические нормативы параметров микроклимата на рабочем месте, а именно: температура воздуха; скорость движения воздуха; относительная влажность воздуха; температура поверхностей. Условия 1 и 2 определяют конвективный теплообмен; 1 и 3 испарение пота; 4 – теплоизлучение. Нормативы на эти параметры устанавливаются дифференцированно в зависимости от степени тяжести выполняемой работы.

Под тактильной чувствительностью понимают ощущение прикосновения и давления. В среднем на 1 см 2 находится около 25 рецепторов. Абсолютный порог тактильной чувствительности определяется по тому минимальному давлению предмета на кожную поверхность, при котором наблюдается едва заметное ощущение прикосновения. Сильнее всего развита чувствительность на частях тела, наиболее удаленных от его оси. Характерной особенностью тактильного анализатора является быстрое развитие адаптации, то есть исчезновение чувства прикосновения или давления. Благодаря адаптации человек не чувствует прикосновения одежды к телу. Ощущение боли воспринимается специальными рецепторами. Они рассеяны по всему нашему телу, на 1 см 2 кожи приходится около 100 таких рецепторов. Чувство боли возникает в результате раздражения не только кожи, но и ряда внутренних органов. Часто единственным сигналом, предупреждающим о неблагополучии в состоянии того или другого внутреннего органа, является боль. В отличие от других сенсорных систем, боль дает мало сведений об окружающем нас мире, а скорее сообщает о внутренних опасностях, грозящих нашему телу. Если бы боль не предостерегала, то уже при самых обыденных действиях мы часто наносили бы себе повреждения. Биологический смысл боли в том, что, являясь сигналом опасности, она мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность.

6.1. ХАРАКТЕРИСТИКА ПАРАМЕТРОВ ВИБРАЦИИ

Вибрация относится к наиболее распространенным вредным производственным факторам в промышленности, сельском хозяйстве, на транспорте; она может оказывать отрицательное влияние на здоровье и работоспособность человека, а в определенных условиях приводить к развитию вибрационной болезни.

Вибрация - это сложные механические колебательные движения инструмента, пола, сидения и др., передаваемые телу человека или отдельным его частям при непосредственном контакте.

Вибрация характеризуется спектром частот (в Гц) и такими ее кинематическими параметрами, как виброскорость (в м/с) или виб- роускорение (в м/с 2). Кроме абсолютных значений этих параметров, используют также их логарифмические уровни (в дБ).

Вибрации, встречающиеся в производственных условиях, различают по способу передачи и направлению воздействия на человека, а также физическим свойствам (частотному составу, распределению энергии во времени). Представленная в табл. 6.1 классификация вибрации является условной, но, будучи в определенной мере связанной со степенью и характером развивающихся в организме изменений, имеет гигиеническое значение и учитывается при регламентировании и оценке вибрации.

Гигиеническая оценка вибрации проводится при экспертизе нормативно-технической документации на новые технологические про- цессы, оборудование и ручные машины, при контроле за серийным выпуском новых и модернизируемых ручных машин, а также закупаемых за рубежом, при надзоре за условиями труда виброопасных профессий, при аттестации рабочих мест, расследовании случаев вибрационной болезни.

Методы оценки вибрации. В соответствии с санитарными нормами «Производственная вибрация, вибрация в помещениях жилых и общественных зданий» (СН 2.2.4/2.1.8.566-96) гигиеническая оценка вибраций должна проводиться следующими методами: частотным анализом нормируемого параметра (виброскорости или виброуско-

Таблица 6.1. Классификация вибраций

Окончание табл. 6.1

рения), интегральной оценкой по частоте нормируемого параметра, интегральной оценкой с учетом времени вибрационного воздействия. Показатели, характеризующие вибрацию при использовании этих методов измерения и оценки, представлены в табл. 6.2.

Таблица 6.2. Методы измерения и оценки вибрации

Примечание.

1 Усредненное значение за время измерения в соответствии с постоянной времени прибора.

2 Частотно-взвешенная величина (с помощью корректирующих фильтров или специальных расчетов).

3 Усредненное значение по правилу «равной энергии» с учетом времени действия вибрации.

Основным методом, характеризующим вибрационное воздействие на работающих, является частотный анализ. Измерения проводятся для локальной вибрации в октавах (среднегеометрические частоты 8, 16, 31,5, 63, 125, 250, 500 и 1000 Гц) и для общей вибрации в третьоктавных полосах и октавах (среднегеометрические частоты 1, 2, 4, 8, 16, 31,5 и 63 Гц). Этот метод позволяет получить наиболее полную гигиеническую характеристику вибрации, т.е. не только интенсивность вибрации, но и характер спектра вибрации (низко-, средне- и высокочастотный), определяющий специфику влияния вибрации на организм человека. Метод частотного (спектрального) анализа,

кроме того, позволяет при проведении соответствующих расчетов перейти к интегральной и далее к дозной оценке вибрации с учетом времени воздействия.

Рис. 6.1. Варианты направления условных координатных осей при локальной вибрации

Рис. 6.2. Направление условных координатных осей при общей вибрации: а - в положении стоя; б - в положении сидя

Метод интегральной оценки по частоте нормируемых параметров предполагает измерение одночислового показателя - корректиро- ванного уровня вибрации, определяемого как результат энергетического суммирования уровней вибрации в октавных полосах частот с учетом октавных поправок. Этот метод измерения менее трудоемкий, чем метод частотного анализа вибрации, однако и менее информативный.

Метод дозной оценки используется для непостоянных вибраций с учетом времени воздействия вибрации в течение смены. Этот метод связан с методом интегральной оценки по частоте и позволяет полу- чить одночисловую характеристику следующими способами:

1) расчетом эквивалентного корректированного уровня по измеренному (или рассчитанному) корректированному значению и данным хронометража;

2) инструментальным измерением эквивалентного корректированного значения.

Эквивалентный корректированный уровень изменяющейся во времени вибрации соответствует корректированному уровню пос- тоянной во времени и равной по энергии вибрации, действующей 8 ч.

Еслиработающиеподвергаютсядействиювибрации(локальнойили общей) в течение смены (8 ч), и вибрация является постоянной по временной характеристике (виброскорость меняется не более чем на 6 дБ за время наблюдения), то для гигиенической оценки используются методы интегральной оценки по частоте и спектральный (более точный). Если же работающие подвергаются действию непостоянной во времени вибрации, а именно в течение 8 ч обслуживают оборудование, генерирующее вибрацию, параметры которой изменяются >6 дБ, или же оборудование, генерирующее постоянную вибрацию, но только часть смены, то для характеристики вибрационного воздействия используется метод дозной оценки или интегральной оценки с учетом времени, так как ПДУ установлены в расчете на 8-часовое воздействие вибрации.

Например, если вибрационными характеристиками ручного инструмента являются корректированные уровни вибрации (виброско- рость и виброускорение в дБ) и уровни тех же нормируемых параметров в октавных полосах частот, то характеристикой вибрационного воздействия на оператора будет эквивалентный корректированный уровень вибрации (виброскорость, виброускорение в дБ), так как время работы с этим инструментом может быть различным в зависимости от технологии. Поскольку наиболее часто рабочие подвергаются действию непостоянных вибраций, то при оценке условий труда почти всегда необходимо измерять (или рассчитывать) эквивалентные корректированные уровни вибрации.

Методика измерения вибрации. Выпускаемая в настоящее время виброизмерительная аппаратура позволяет измерить как уровни виброускорения (виброскорости) в пределах нормируемых частот третьоктавных и/или октавных полос, так и корректированные и эквивалентные корректированные уровни виброускорения (вибро- скорости). Основные характеристики некоторых приборов указаны в табл. 5.1.

Для унификации измерений вибраций введены государственные стандарты, устанавливающие требования к приборам, методам изме- рения и обработки результатов - ГОСТ 12.1.012-90 «Вибрационная безопасность. Общие требования» и др.

При проведении измерений следует руководствоваться общими правилами, изложенными в утвержденных Минздравом СССР «Методических указаниях по проведению измерений и гигиенической оценке производственных вибраций» ? 3911-85.

Машины или оборудование должны работать в паспортном или типовом технологическом режиме по скорости, нагрузке, выполняе- мой операции, обрабатываемому объекту и т.д. При контроле общей вибрации должны быть включены все источники, передающие вибрацию на рабочее место.

Точки измерения, т.е. места установки вибродатчиков, должны располагаться на вибрирующей поверхности в местах, предназначенных для контакта с телом оператора:

1) на сиденье, рабочей площадке, полу рабочей зоны оператора и обслуживающего персонала;

2) в местах контакта рук работающего с рукоятками, рычагами управления и т.п.

Вибродатчик должен крепиться способом, указанным в заводской инструкции. При измерении общей вибрации на площадках с твердым покрытием (асфальт, бетон, металлические плиты и т.п.) или сиденьях без упругих облицовок вибродатчик должен крепиться непосредственно к этим поверхностям на резьбе, магните, мастиках и т.п. Кроме того, вибродатчик может крепиться на резьбе (или с помощью магнита) к жесткому стальному диску (диаметром 200 мм и толщиной 4 мм), который размещается между полом и ногами стоящего человека или сиденьем и корпусом сидящего человека. При измерении локальной вибрации предпочтительно укреплять датчик в точках контроля на резьбе, хотя допускается крепление и с помощью металлического элемента в виде зажима, хомута и т.п.

В каждой точке контроля вибродатчик устанавливают на ровной, гладкой площадке последовательно по трем взаимноперпендикулярным направлениям (оси Z, X, Y). Допускаются измерения в направлении максимальной вибрации (превышение по сравнению с измерениями по другим осям >12 дБ), если установлены одинаковые допустимые уровни по всем осям.

После установки вибродатчика в выбранной точке контроля включают виброметр и проводят необходимые замеры, последова- тельно выполняя манипуляции согласно инструкции.

Общее количество отсчетов должно быть не менее 3 для локальной вибрации; 6 - для общей технологической вибрации; 30 - для

общей транспортной и транспортно-технологической (во время движения) вибрации с последующей обработкой.

После проведения необходимого количества замеров в точке измерения в качестве определяющего значения уровня вибрации берут средние величины, рассчитанные так же, как и для шума (см. табл. 5.2 и 5.3).

Гигиеническая регламентация. Результаты исследований постоянных вибраций, полученных одним из указанных методов (спектральным или интегральным), сопоставляют с предельно допустимыми значениями санитарных норм «Производственная вибрация, вибрация в помещениях жилых и общественных зданий» СН 2.2.4/2.1.8.566-96 (табл. 6.3; 6.4 и 6.5). В последних двух таблицах представлены допустимые значения общей вибрации (рабочих мест) только в октавных полосах частот, опущены значения в третьоктавных полосах частот.

Предельно допустимые уровни вибрации установлены для длительности вибрационного воздействия 8 ч.

Для непостоянных вибраций, колеблющихся во времени, прерывистых, когда контакт с вибрацией занимает часть смены, оценку, согласно СН 2.2.4/2.1.8.566-96, проводят по эквивалентному корректированному уровню виброскорости или виброускорения, которое рассчитывают на основании следующих величин:

1) измеренных, как показано ранее, уровней вибрации в пределах октавных полос или корректированных уровней;

2) времени действия вибрации, определенного хронометражными исследованиями.

Для расчета эквивалентного уровня используются значения поправок к корректированному уровню на время действия вибрации аналогично шуму (табл. 5.4).

Предельно допустимый уровень (ПДУ) вибрации - это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 ч в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ вибрации не исключает нарушение здоровья у сверхчувствительных лиц.

Таблица 6.3. Предельно допустимые значения параметров локальной вибрации по осям Ζ, Χ, Υ

Таблица 6.4. Предельно допустимые значения транспортной вибрации в октавных полосах частот

Пример расчета. При измерении виброскорости спектральным методом на рукоятке рубильного молотка во время обработки чугунного литья были проведены три отсчета (по оси Z). Далее рассчитаны средние уровни виброскорости в октавных полосах частот, которые приведены в табл. 6.8. Так как ось Z - направление максимальной вибрации, результаты измерения по другим осям не приводятся. Время работы с молотком в течение смены - 5 ч.

Для перехода к расчету дозы вибрации необходимо сначала определить корректированный уровень виброскорости (интегральный показатель). Для этого с помощью весовых коэффициентов для октавных полос частот (табл. 6.6 или 6.7) нужно определить корректированные октавные уровни виброскорости, а затем провести попарно энергетическое суммирование их уровней с учетом поправок (см. табл. 5.2). В нашем случае корректированный уровень виброскорости равен 122,6 и 123 дБ (табл. 6.8).

Так как работа с молотком занимает 5 ч в смену, то с учетом поправки на время (см. табл. 5.4), равной -2, эквивалентное корректированное значение уровня виброскорости составит 121 дБ. Эту величину сравниваем с допустимым эквивалентным корректированным уровнем виброскорости (см. табл. 6.3), равным 112 дБ.

Результаты измерений оформляют протоколом установленной формы. В заключении дается анализ вибрационного фактора с ука- занием величины превышения ПДУ, а также условий, определяющих повышенные уровни вибрации. Кроме этого, отмечаются факторы условий труда, усугубляющие неблагоприятное влияние вибрации: большие динамические и статические нагрузки (для ручных машин оценивается масса, приходящаяся на руки, усилие нажатия), длительная работа в вынужденной позе, общее или местное охлаждение и др.

Так, в соответствии с СанПиН 2.2.2.540-96 «Гигиенические требования к ручным инструментам и организации работ» масса ручного инструмента в сборе (включая массу вставного инструмента, присоединяемых рукояток, шлангов и т.п.) не должна превышать 5 кг для инструмента, используемого для работы при различной ориентации в пространстве, и 10 кг для инструмента, используемого при выполнении работ вертикально вниз и горизонтально. Усилия нажатия не должны превышать для одноручной машины 100 Н, для двуручной - 150 Н.

Таблица 6.5. Предельно допустимые значения вибрации рабочих мест по осям Ζ, Χ, Υ в октавных полосах частот

Продолжение табл. 6.5

Таблица 6.6. Значение весовых коэффициентов (дБ) для локальной вибрации


Примечание. **При оценке транспортно-технологической и технологической вибрации значения весовых коэффициентов для направлений Χ, Υ принимаются равными значениям для направлений Ζ.

Таблица 6.8. Этапы расчета корректированного уровня виброскорости

Температура поверхности рукояток ручного инструмента должна быть выше 21 ?С, оптимальным является диапазон от 25 до 32 ?С. При этом температура воздуха при любых видах работ по тяжести и сезонам года (для закрытых отапливаемых помещений) не должна быть менее 16 ?С, влажность - не более 40-60%, скорость движения воздуха - не более 0,3 м/с.

При работе на открытом воздухе в холодное время года необходима организация специального отапливаемого помещения для периодического обогрева и отдыха работающего, температура в котором в холодный период года должна быть в пределах 22-24 ?С, скорость движения воздуха - не более 0,2 м/с.

6.2. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ВИБРАЦИИ НА ОРГАНИЗМ

Оценка состояния здоровья работающих, подвергающихся воздействию вибрации, проводится при обследовании с помощью физиологических и клинических методов исследований, а также при анализе профессиональной и непрофессиональной заболеваемости.

Из физиологических методов наибольшее значение имеют паллестезиометрия (измерение вибрационной чувствительности), альгезиметрия (измерение болевой чувствительности), стабилография (изучение вестибулярного анализатора), динамометрия, электромиография, термометрия с холодовой пробой, капилляроскопия, реовазография, т.е. методы, отражающие состояние сенсорной системы, нервно-мышечного аппарата и периферического кровообращения, наиболее быстро вовлекаемых в патологический процесс при действии вибрации. Для исследований рекомендуется отобрать группу рабочих виброопасных профессий со стажем не более 10 лет в возрасте до 30 лет.

При проведении предварительных и периодических медицинских осмотров в соответствии с приказом? 90 (1996) Минздрава РФ у работающих, подвергающихся действию локальной вибрации, обя- зательно проводится исследование вибрационной чувствительности и холодовая проба (по показаниям: РВГ периферических сосудов, рентгенография опорно-двигательного аппарата); у работающих, подвергающихся действию общей вибрации, - вибрационная чувствительность (по показаниям РВГ периферических сосудов, исследование вестибулярного аппарата, аудиометрия, рентгенография опорно-двигательного аппарата, ЭКГ).

Поскольку из перечисленных методов измерение вибрационной чувствительности и холодовая проба являются обязательными исследованиями при проведении предварительных и периодических медицинских осмотров работающих, подвергающихся воздействию вибрации, необходимо более подробно остановиться на их применении и оценке полученных данных.

Исследование вибрационной чувствительности может проводиться с помощью камертонов с числом колебаний 128 или 256 в 1 мин. Определяют длительность ощущения колебаний камертона после установки ножки вибрирующего камертона на каком-либо участке кожи конечности. При изменении чувствительности наблюдаются ослабление или сокращение времени ощущения вибрации (гипестезия) или отсутствие ощущения вибрации (анестезия) камертона. Вибрационную чувствительность можно определить более точно с помощью паллестезиометров типа ВТ-1 или ИВЧ-02.

При использовании прибора ВТ-1 порог вибрационной чувствительности измеряется для частот 63, 125, 250 Гц при последовательном нажатии соответствующей кнопки горизонтального ряда.

Пациент кладет III или IV палец правой или левой руки, слегка касаясь, на шток вибратора. Испытатель, нажимая последовательно на кнопки вертикального ряда (-10; -5; 0; 5; 10 дБ и др.), определяет уровень вибрации, который впервые ощущается пациентом, т.е. уста- навливает порог вибрационной чувствительности.

Средняя величина, полученная после 6 измерений (3 по восходящей, т.е. от неощутимой вибрации к явно ощутимой, и 3 - по нисходящей), принимается за величину порога вибрационной чувст- вительности.

При этом необходимо помнить, что в качестве физиологических нулевых уровней вибрационной чувствительности в этом приборе приняты среднестатистические значения вибрационной скорости, установленные для молодых, практически здоровых людей на частотах 63, 125, 250 Гц и равные соответственно 81, 70, 73 дБ. Результаты исследования заносят на бланк виброграммы. Оценка полученных результатов может быть проведена в соответствии с табл. 6.9.

Особенно информативным при оценке вибрационной чувствительности является определение величины временного смещения порогов (ВСП). Это разница показателя вибрационной чувствительности, измеренного после работы с вибрационным оборудованием

Таблица 6.9. Оценка результатов измерения вибрационной чувствительности

по сравнению с исходными показателями (до работы). ВСП зависит от частоты и уровня вибрации. В норме при воздействии вибрации с максимальными значениями колебательной скорости в октавных полосах частот 63, 125, 250 Гц происходят сдвиги показателя вибрационной чувствительности в сторону повышения: на 63 Гц - до 5 дБ; на 125 Гц - до 7 дБ; на 250 Гц - до 10 дБ с восстановлением в течение 15 мин и менее к исходному уровню. При воздействии вибрации с максимальным значением колебательной скорости в полосах частот 8 и 16 Гц ВСП вибрационной чувствительности на 125 Гц составляет в норме до 3 дБ, на 250 - до 5 дБ. Увеличение сдвигов вибрационной чувствительности более указанных величин, так же как и времени восстановления, является признаком утомления анализатора и возможности развития стойких нарушений.

Для оценки отдаленных последствий вибрационного воздействия используется величина постоянного смещения порога (ПСП), связанная с необратимыми изменениями вибрационной чувствительности. ПСП определяется у рабочих утром до работы и оценивается по сравнению с базовой кривой вибрационной чувствительности, снимаемой при поступлении на работу. Величина ПСП зависит от частоты, интенсивности вибрации и стажа работы в контакте с ней.

При оценке ПСП вибрационной чувствительности следует учитывать возрастные изменения этой функции, особенно выраженные у мужчин: в 40-49 лет наблюдается повышение порога на частотах 63, 125, 250 Гц соответственно на 1, 2 и 3 дБ; в 50 лет и более - соответственно на 6, 8 и 8 дБ.

ПСП (за вычетом возрастных поправок) на частотах 63, 125 и 250 Гц более 5, 7 и 10 дБ свидетельствует о выраженном снижении чувствительности и появлении признаков вибрационного поражения.

Исследование болевой чувствительности. Острием булавки наносят уколы в симметричные области кожи туловища, конечностей. В норме человек чувствует каждый укол. При изменении чувствительности возможно отсутствие реакции на укол (анестезия), снижение (гипестезия) или усиление (гиперестезия) реакции.

Более точную информацию о болевой чувствительности можно получить с помощью альгезиметра типа ВМ-60. Порог чувствительности определяется по едва заметному ощущению укола иглы, выступающей из поворотной головки прибора, ладонной и тыльной поверхности кисти. В норме границы диапазона физиологических колебаний показателя болевой чувствительности на тыльной поверхности кисти составляют 0,26- 0,38 мм; на бороздках пальцев тыльной поверхности кисти - 0,76- 0,86 мм, на ладонной поверхностипальцев -

0,2- 0,55 мм.

Исследование температурной чувствительности. Берут одну пробирку с горячей (около 40 ?С), другую с холодной (18-22 ?С) водой и поочередно прикладывают к симметричным участкам туловища и конечностей. В норме человек хорошо различает прикосновение холодной и горячей воды. Нарушения чувствительности возможны по типам анестезии, термогипестезии, реже термогиперестезии. Более точное исследование может быть проведено с помощью термоэстезиометров.

Исследование периферического кровообращения. О степени выраженности изменений можно судить по показателям термометрии кожи с холодовой пробой. Проводится измерение температуры кожи тыльной поверхности ногтевых фаланг II и III пальцев рук с последующим охлаждением кистей в течение 5 мин в холодной воде (8-10 ?С). После прекращения охлаждения вновь измеряют температуру кожи в тех же точках через каждую минуту до восстановления исходных величин. В норме температура кожи до охлаждения составляет 27-31 ?С, после охлаждения побеление отсутствует, время восстановления температуры - до 20 мин. Снижение температуры до 18-20 ?С, появление отдельных белых пятен или сплошное побеление концевых фаланг или двух-трех фаланг хотя бы одного пальца свидетельствуют соответственно о слабоположительной, умеренно положительной и резко положительной реакции. При этом время восстановления температуры кожи превышает 20 мин.

Данные физиологических исследований, проведенных при поступлении на работу, позволяют выявить лиц, имеющих идивидуальные особенности организма, способствующие более раннему

развитию вибрационной болезни (группа риска). Не рекомендуется прием на работу, связанную с воздействием вибрации, особенно в сочетании с выраженными локальными нагрузками на мышцы рук, лиц с высокими исходными порогами вибрационной чувствительности, более чем на 8-10 дБ превышающими физиологический ноль для частоты восприятия 125 Гц, а также низкой температурой кожи. Следует иметь в виду, что последний показатель может быть использован в качестве одного из критериев профессиональной пригодности при отборе на работу с оборудованием, создающим вибрацию с максимальными интенсивностями в октавных полосах 32-250 Гц, вызывающими ангиоспастические реакции.

6.3. КЛАССИФИКАЦИЯ УСЛОВИЙ ТРУДА ПО ПОКАЗАТЕЛЯМ ПРОИЗВОДСТВЕННОЙ

ВИБРАЦИИ

Оценка условий труда при воздействии на работающих вибрации в зависимости от величины превышения действующих нормативов представлена в документе Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда».

Степень вредности и опасности условий труда устанавливается с учетом временных характеристик вибрации.

Для постоянных вибраций (общих или локальных), действующих на работающих в течение 8 ч, оценка условий труда проводится по корректированному значению виброускорения (виброскорости). Его превышение над ПДУ характеризует степень вредности или опасности условий труда (табл. 5.7 ).

При контакте работающих с источниками как постоянной (часть смены), так и непостоянной вибрации (общей, локальной) для оценки условий труда измеряют (или рассчитывают с учетом продолжительности этого контакта) эквивалентный корректированный уровень виброскорости или виброускорения в дБ.

Определенные эквивалентные корректированные уровни виброскорости или виброускорения в дБ сравнивают с величинами действующих нормативов СН 2.2.4/2.1.8.566-96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий». И далее по превышению ПДУ (на... дБ) определяют степень вредности и опасности условий труда (см. табл. 5.7).

При эквивалентных корректированных значениях виброскорости и ускорения в абсолютных цифрах определяется кратность превыше- ния по сравнению с ПДУ.

При сочетанном действии локальной вибрации и охлаждающего микроклимата (работа в условиях охлаждающего микроклимата) класс вредности условий труда по вибрационному фактору повышается на одну ступень.

Разработка оздоровительных мероприятий. По результатам санитарного обследования дается предписание о необходимости проведения мероприятий по снижению неблагоприятного влияния вибрации. Они могут включать организационно-технические меры, оптимизацию режимов труда и отдыха, применение индивидуальных средств защиты, а также лечебно-профилактические мероприятия. К радикальным мерам можно отнести запрещение использования виброопасного оборудования или ограничение времени его использования в течение смены с тем, чтобы эквивалентный корректированный уровень вибрации не превышал установленных санитарным законодательством ПДУ. Так, в соответствии с СанПиН 2.2.2.540-96 «Гигиенические требования к ручным инструментам и организации работ» запрещается применение ручных инструментов, генерирующих уровни вибрации, которые более чем на 12 дБ превышают ПДУ. Этим же документом предусмотрена защита временем работающих в условиях превышения ПДУ вибрации с обязательным применением средств индивидуальной защиты (табл. 6.10).

Режимы труда для работающих виброопасных профессий должны разрабатываться службами охраны труда предприятитй. В режимах труда должны указываться: допустимое суммарное время контакта с вибрирующими ручными инструментами, продолжительность и организация перерывов как регламентированных, так и составляющих паузы во время работы с виброинструментом, перечень работ, которыми операторы с ручным инструментом могут быть заняты в это время.

Регламентированные перерывы: первый продолжительностью 20 мин (через 1-2 ч после начала смены) и второй 30 мин (через 2 ч после обеденного перерыва) предусмотрены для активного отдыха, проведения специального комплекса производственной гимнастики, физиотерапевтических тепловых процедур для рук и т.п. Обеденный перерыв должен быть не менее 40 мин.

При работе с виброопасным ручным инструментом продолжительность одноразового непрерывного воздействия вибрации не

Таблица 6.10. Допустимое суммарное время действия локальной вибрации за смену в зависимости от величины превышения ПДУ

должна превышать 10-15 мин. Целесообразно в режимах труда предусматривать следующее соотношение длительностей одноразового непрерывного воздействия вибрации и последующих пауз: 1:1; 1:2; 1:3 и т.д.

Подвергающиеся воздействию локальной вибрации при нормативных уровнях и превышении ПДУ должны проходить медицинское обследование согласно приказам Минздрава? 90 (1996) и? 83 (2004) невропатологом, отоларингологом, терапевтом, а подвергающиеся воздействию общей вибрации проходят медицинский осмотр, кроме этого, по показаниям, хирургом и офтальмологом. Об обязательных при этом физиологических методах исследования сказано ранее в разделе 6.2. данной главы.

Лицам, работающим в виброопасных профессиях, рекомендуется в целях повышения сопротивляемости организма по назначению врача проведение витаминопрофилактики (витамины С, В 1 , никотиновая кислота, поливитамины).




Top