Защита от импульсных перенапряжений узип. Что такое узип. Устройство защиты от импульсных перенапряжений узип

Многие бытовые приборы в своих конструкциях имеют защитные блоки, так сказать, уже встроенные, которые защищают от импульсных перенапряжений. Это опасный вид напряжения, которое может быть вызвано грозой, при проведении ремонта сетей, при коммутации больших нагрузок и так далее. В общем, причин немало. Так вот встроенные блоки имеют очень небольшой ресурс. И если импульсная разновидность напряжения бывает часто, то приходит один момент, когда блок перестает работать и подвергает бытовую технику опасности. То есть, от перенапряжения техника просто начнет выходить из строя. Поэтому для предотвращения этих неприятностей надо установить в питающую сеть устройство защиты от импульсных перенапряжений (УЗИП). Итак, давайте разбираться: УЗИП – что это такое?

Как работает УЗИП

Принцип работы УЗИП очень простое, потому что в нем несложная схема отвода перенапряжения. Так вот в схеме прибора установлен шунт, по которому электроэнергия движется к нагрузке. Конечно, которая через прибор подключена к питанию. Между шунтом и заземляющей линией устанавливается перемычка (мост), состоящая из варистора или разрядника.

Так вот, если напряжение в сети нормальное, то сопротивление варистора определяется мегаомами. Как только на линии появляется перенапряжение, то варистор тут же переходит в категорию проводников и начинает через себя пропускать ток, который устремляется в заземление. Вот так все просто.

Разновидности УЗИП

Существует три класса, обозначаемые римскими цифрами.

  • Класс I используется в сетях, где импульс (волна) имеет характеристику 10/350 мкс. Как понять это? По сути, это время, в течение которого импульс достигнет своего максимума, и оно равно 10 микросекунд. А 350 мкс – это время падения напряжения до номинального. При этом УЗИП данного класса может выдерживать токи краткосрочного типа в пределах 25-100 кА. Это соответствует, например, удару молнии в линию электропередачи, если место удара удалено от потребителя на 1,5 км.
  • Класс II. Обозначим сразу показатели: 8/20 мкс, 10-40 кА. В этом приборе используются только варисторы. А так как эти элементы имеют незначительный ресурс, то в схему подключения между ними и шунтом впаивается предохранитель, он механический. Как только сопротивление варистора станет, так сказать, неадекватным в плане необходимой безопасности, предохранитель размыкает цепь. Он просто отпаивается. Если посмотреть на это с точки зрения физического принципа работы, то это в точности тепловая защита. Кстати, производители позаботились о том, чтобы предупреждать о снижении сопротивления варистора. Он связан с индикатором, который выведен на панель УЗИП.
  • Класс III. Приборы этого класса в точности повторяют предыдущий. Есть одно отличие – это сила тока, которую варистор должен выдерживать, ее значение не превышает 10 кА.

Кстати, необходимо отметить, что защитные блоки, встраиваемого типа, имеют точно такую же схему, и они работают точно также по этому принципу. Но как было сказано выше, у них слишком низкий ресурс эксплуатации. Поэтому добавляя в сеть УЗИП третьего класса, вы решаете проблемы с преждевременным отказом бытовой техники, связанными с перенапряжением в питающей сети.

Правда, надо быть до конца честными, разбираясь с прибором этого типа. Высокую надежность могут гарантировать сразу все три класса, установленные в распределительный щит. Почему? Все дело в разных импульсах. К примеру, УЗИП первого класса не сработает, если импульс напряжения будет коротким. Да и сама величина перенапряжения будет незначительной. Потому что это устройство относится к группе малочувствительных. А вот прибор с малой пропускной способностью по мощности просто не справиться с большой силой тока.

Добавим, что схема подключения данного устройства достаточно проста. По сути, он подключается как обычный автоматический выключатель.


Если в вашем доме установлено множество дорогой бытовой техники, лучше позаботиться об организации комплексной защиты электросети. В этой статье мы расскажем об устройствах защиты от импульсных перенапряжений, зачем они нужны, какие бывают и как устанавливаются.

Природа импульсных перенапряжений и их влияние на технику

Многим с детства знакома суета с отключением от сети бытовых электроприборов при первых признаках надвигающейся грозы. Сегодня электрооборудование городских сетей стало более совершенным, из-за чего многие пренебрегают элементарными устройствами защиты. В то же время проблема не исчезла совсем, бытовая техника, особенно в частных домах, все еще находится в зоне риска.

Характер возникновения импульсных перенапряжений (ИП) может быть природным и техногенным. В первом случае ИП возникают из-за попадания молнии в воздушные ЛЭП, причем расстояние между точкой попадания и подверженными риску потребителями может составлять до нескольких километров. Возможен также удар в радиомачты и молниеотводы , подключенные к основному заземляющему контуру, в этом случае в бытовой сети появляется наведенное перенапряжение.

1 — удаленный удар молнии в ЛЭП; 2 — потребители; 3 — контур заземления; 4 — близкий удар молнии в ЛЭП; 5 — прямой удар молнии в громоотвод

Техногенные ИП непредсказуемы, они возникают в результате коммутационных перегрузок на трансформаторных и распределительных подстанциях. При несимметричном повышении мощности (только на одной фазе) возможен резкий скачок напряжения, предусмотреть такое почти невозможно.

Импульсные напряжения очень коротки по времени (менее 0,006 с), они появляются в сети систематически и чаще всего проходят незаметно для наблюдателя. Бытовая техника рассчитана выдерживать перенапряжения до 1000 В, такие появляются наиболее часто. При более высоком напряжении гарантирован выход из строя блоков питания, возможен также пробой изоляции в проводке дома, что приводит к множественным коротким замыканиям и пожару.

Как устроен и как работает УЗИП

УЗИП, в зависимости от класса защиты, может иметь полупроводниковое устройство на варисторах, либо иметь контактный разрядник. В нормальном режиме УЗИП работает в режиме байпаса, ток внутри него протекает через проводящий шунт. Шунт соединен с защитным заземлением через варистор или двумя электродами со строго нормируемым зазором.

При скачке напряжения, даже очень непродолжительном, ток проходит через эти элементы и растекается по заземлению или компенсируется резким падением сопротивления в петле фаза-ноль (короткое замыкание). После стабилизации напряжения разрядник теряет пропускную способность, и устройство снова работает в нормальном режиме.

Таким образом, УЗИП на некоторое время замыкает цепь, чтобы переизбыток напряжения мог преобразоваться в тепловую энергию. Через устройство при этом проходят значительные токи — от десятков до сотни килоампер.

В чем различие между классами защиты

В зависимости от причин возникновения ИП, различают две характеристики волны повышенного напряжения: 8/20 и 10/350 микросекунд. Первая цифра — это время, за которое ИП набирает максимальное значение, вторая — время спада до номинальных значений. Как видно, второй тип перенапряжений более опасный.

Устройства I класса предназначены для защиты от ИП с характеристикой 10/350 мкс, наиболее часто возникающих при разряде молнии в ЛЭП ближе 1500 м к потребителю. Устройства способны кратковременно пропустить через себя ток от 25 до 100 кА, практически все приборы I класса основаны на разрядниках.

УЗИП II класса ориентированы на компенсацию ИП с характеристикой 8/20 мкс, пиковые значения тока в них колеблются от 10 до 40 кА.

Класс защиты III предназначен для компенсации перенапряжений со значениями тока менее 10 кА при характеристике ИП 8/20 мкс. Устройства класса защиты II и III основаны на полупроводниковых элементах.

Может показаться, что достаточно установки только устройств класса I, как наиболее мощных, но это не так. Проблема в том, что чем выше нижний порог пропускного тока, тем менее чувствителен УЗИП. Другими словами: при коротких и относительно низких значениях ИП мощный УЗИП может не сработать, а более чувствительный не справится с токами такой величины.

Устройства с классом защиты III рассчитаны на устранение самых низких ИП — всего в несколько тысяч вольт. Они полностью аналогичны по характеристикам устройствам защиты, устанавливаемым производителями в блоках питания бытовой техники. При дублирующей установке они первыми принимают на себя нагрузку и предотвращают срабатывание УЗИП в приборах, ресурс которых ограничен 20-30 циклами.

Есть ли необходимость в УЗИП, оценка рисков

Полный перечень требований к организации защиты от ИП изложен в МЭК 61643-21, определить обязательность установки можно по стандарту МЭК 62305-2, согласно которому устанавливается конкретная оценка степени риска удара молнии и вызванных им последствий.

В целом при электроснабжении от воздушных ЛЭП установка УЗИП I класса почти всегда предпочтительна, если только не был выполнен комплекс мероприятий по снижению влияния гроз на режим электроснабжения: повторное заземление опор, PEN-проводника и металлических несущих элементов, устройство громоотвода с отдельным контуром заземления, установка систем уравнивания потенциалов.

Более простой способ оценить риск — сопоставить стоимость незащищенной бытовой техники и устройств защиты. Даже в многоэтажных домах, где перенапряжения имеют весьма низкие значения при характеристике 8/20, риск пробоя изоляции или выхода из строя приборов достаточно велик.

Установка устройств в ГРЩ

Большинство УЗИП имеют модульное исполнение и могут быть установлены на DIN-рейку 35 мм. Единственное требование — щит для установки УЗИП должен иметь металлический корпус с обязательным подключением к защитному проводнику.

При выборе УЗИП, помимо основных рабочих характеристик, следует учитывать также номинальный рабочий ток в режиме байпаса, он должен соответствовать нагрузке в вашей электросети. Другой параметр — максимальное напряжение ограничения, оно не должно быть ниже самого высокого значения в рамках суточных колебаний.

УЗИП подключаются последовательно к питающей однофазной или трехфазной сети, соответственно через двухполюсный и четырехполюсный автоматический выключатель. Его установка необходима на случай спаивания электродов разрядника или пробоя варистора, что вызывает постоянное короткое замыкание. На верхние клеммы УЗИП подключают фазы и защитный проводник, на нижние — нулевой.

Пример подключения УЗИП: 1 — ввод; 2 — автоматический выключатель; 3 — УЗИП; 4 — шина заземления; 5 — контур заземления; 6 — счетчик электроэнергии; 7 — дифференциальный автомат; 8 — к автоматам потребителей

При установке нескольких защитных устройств с разными классами защиты требуется их согласование с помощью специальных дросселей, подключенных последовательно с УЗИП. Защитные устройства встраиваются в цепь по возрастанию класса. Без согласования более чувствительные УЗИП будут принимать основную нагрузку на себя и раньше выйдут из строя.

Установки дросселей можно избежать, если протяженность кабельной линии между устройствами превышает 10 метров. По этой причине УЗИП I класса монтируют на фасаде еще до счетчика, защищая от перенапряжений учетный узел, а второй и третий класс устанавливают, соответственно, на ВРУ и этажных/групповых щитках.

Импульсные перенапряжения в электрических сетях — не редкость. Возникают они при прямых или близких ударах молний, из-за переключений в высоковольтных сетях, а также из-за различных аварийных процессов. При этом особой опасности подвергаются частные домовладения, которые получают питание по воздушной линии электропередачи (ВЛ).

Молния — это электрический разряд атмосферного происхождения, который развивается между грозовым облаком и землей или между грозовыми облаками. Считается, что ток прямого удара молнии, составляет примерно 100 тысяч Ампер , а напряжение до 1 миллиарда Вольт . Форма импульса перенапряжения при ударе молнии показана на рисунке ниже.

Очевидно, что воздействие напряжения в десятки тысяч вольт на электроприборы, рассчитанные на 220В приведет как минимум к выходу их из строя, а чаще — к их возгоранию.

Когда нужно применять УЗИП

Защита зданий и сооружений от возгораний при прямом попадании молнии осуществляется молниеотводами. Для жилых зданий он представляет собой сваренную сетку из стали диаметром 8 мм на плоской кровле, с шагом ячейки 15х15 или трос, протянутый на коньке кровли, если она скатного типа.

Защита техники и электропроводки от воздействий молнии осуществляется специальными аппаратами — . Применение УЗИП при вводе в здание воздушной линией является обязательным. Такое требование предъявляет ПУЭ п.7.1.22. УЗИП могут выглядеть как модули, устанавливаемые на DIN-рейку, или как устройства, встраиваемые в вилки или розетки.

УЗИП (Устройства защиты от импульсных перенапряжений), или как их еще называют, ограничители импульсных перенапряжений применяются для защиты сетей от грозовых, коммутационных и электростатических импульсных перенапряжений.

Попадание грозового разряда в сеть способно вызвать пробой изоляции даже на значительных расстояниях от места разряда, что соответственно повлечет за собой выход из строя электробытовых приборов (компьютеров, телевизоров, стиральных машин и т.д.). Чтобы уберечь технику от таких фатальных последствий и применяют УЗИП, который благодаря своему устройству гасит импульсы перенапряжений до безопасной величины. Конечно, помимо УЗИП, для полной защиты в доме должно быть выполнено защитное заземление по системе TN-C-S, TN-S или ТТ с разделёнными нулевым и защитным проводниками, система молниезащиты, .

  • Ограничители класса В – предназначены для защиты объектов от непосредственного удара молнии, атмосферных и коммутационных перенапряжений. Устанавливают на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Номинальный разрядный ток 30-60 кА.
  • Ограничители класса С – предназначены для защиты электрооборудования объектов от остатков атмосферных и коммутационных перенапряжений, прошедших через ограничители класса В. Устанавливают в распределительных щитах. Защищают внутреннюю проводку, автоматику и т.д. Номинальный разрядный ток 20-40 кА.
  • Ограничители класса D – предназначены для защиты потребителей от остатков атмосферных перенапряжений, фильтрации высокочастотных помех, защиты от дифференциальных (несимметричных) перенапряжений.Устанавливаются непосредственно возле потребителя. Номинальный разрядный ток 5-10 кА.

Конструктивно большинство УЗИП класса C и D выполнены на базе варисторов, УЗИП класса B на основе разрядников.

Варисторы обычно выполнены в виде сменного модуля. Помимо этого, УЗИП оснащен механическим предохранителем, который является по сути тепловой защитой и цветовым индикатором состояния. Зеленый цвет индикатора сигнализирует об исправности элемента, оранжевый — о необходимости замены элемента.

Рис.1 1 - Корпус 2 - Варисторный модуль 3 - Индикатор работы устройства 4 - Предохранитель в виде металлической пластины

Принцип действия УЗИП

При отсутствии импульсных напряжений ток через варистор пренебрежимо мал и поэтому варистор в этих условиях представляет собой изолятор. При возникновении импульса перенапряжения варистор в силу нелинейности своей характеристики резко уменьшает свое сопротивление и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. Тепловой излишек сбрасывается в землю, через защитный проводник РЕ (заземление). Через варистор кратковременно может протекать ток, достигающий нескольких тысяч ампер. Так как варистор практически безынерционен, то после прохождения импульса тока он вновь приобретает очень большое сопротивление.

При выборе защитных устройств обращайте внимание на следующие параметры:

  1. Номинальное рабочее напряжение. (Un) Это номинальное действующее напряжение сети, для работы в которой предназначено защитное устройство.
  2. Максимальное рабочее напряжение. (Uc) Это наибольшее действующее значение напряжения переменного тока, которое может быть длительно приложено к выводам защитного устройства.
  3. Классификационное напряжение. Это действующее значение напряжения промышленной частоты, которое прикладывается к варисторному ограничителю для получения классификационного тока (обычно значение классификационного тока принимается равным 1,0 мА).
  4. Номинальный разрядный ток. (In) Это пиковое значение испытательного импульса тока формы 8/20 мкс, проходящего через защитное устройство. Ток данной величины защитное устройство может выдерживать многократно. Используется для испытания УЗИП класса II. При воздействии данного импульса определяется уровень защиты устройства.
  5. Максимальный разрядный ток. (Imax) Это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.
  6. Уровень напряжения защиты. (Up) Это максимальное значение падения напряжения на защитном устройстве при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального разрядного тока (In).
  7. Время срабатывания. Для оксидно-цинковых варисторов его значение обычно не превышает 25 нс. Для разрядников разной конструкции время срабатывания может находиться в пределах от 100 наносекунд до нескольких микросекунд.

Импульсным перенапряжением называется кратковременное резкое возрастание напряжения в электрической сети. Несмотря на то, что длится этот скачок совсем недолго (доли секунды), он чрезвычайно опасен как для линии, так и для подключенных к ней потребителей энергии. Чтобы не допустить повреждения кабеля и электрических приборов, используют устройства защиты от импульсных перенапряжений. В этом материале мы поговорим о том, что представляют собой эти приборы, каких видов они бывают, а также рассмотрим, как подключаются УЗИП для частного дома.

Причины возникновения импульсного перенапряжения

ИП может происходить как по технологическим, так и по природным причинам. В первом случае резкий перепад разности потенциалов происходит, когда на трансформаторной подстанции, откуда идет питание конкретной линии, возникает коммутационная перегрузка. Импульсное перенапряжение, вызванное природными причинами, случается, когда во время грозы мощный разряд бьет в молниезащиту сооружения или линию электрической передачи. Независимо от того, чем вызван скачок напряжения, он может быть очень опасен для домашней электросети, поэтому для эффективной защиты от него требуется подключить УЗИП.

Для чего нужно подключение УЗИП?

Для того чтобы защитить электрическую сеть и подключаемые к ней приборы от мощных импульсов тока и резких перепадов напряжения, устанавливается устройство для защиты линии и оборудования от импульсных напряжений (сокращенное обозначение – УЗИП). Оно включает в себя один или несколько нелинейных элементов. Подключение внутренних компонентов защитного устройства может производиться как в определенной комбинации, так и различными способами (фаза-фаза, фаза-земля, фаза-ноль, ноль-земля). В соответствии с требованиями ПУЭ установка УЗИП для защиты сети частного дома или другого отдельного здания производится только после вводного автомата.

Наглядно про УЗИП на видео:

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Классы устройств защиты от ИП

Существует 3 класса аппаратов защиты линии от перенапряжения:

Устройства I класса устанавливаются в распределительном щите или вводном шкафу и позволяют обеспечить защиту сети от импульсного перенапряжения, когда электрический разряд во время грозы попадает в ЛЭП или молниезащиту.

Приборы II класса обеспечивают дополнительную защиту электрической линии от повреждений в результате удара молнии. Устанавливают их и в том случае, когда необходимо защитить сеть от импульсных скачков напряжения, вызванных коммутацией. Их монтируют после устройств I класса.

Рассказ про УЗИП от специалистов компании ABB на видео:

Аппараты класса I+II обеспечивают защиту отдельных жилых домов. Монтаж этих приборов производится неподалеку от электрического оборудования. Они играют роль последнего барьера, сглаживающего остаточное перенапряжение, которое, как правило, имеет незначительную величину. Устройства этого класса выпускаются в виде специализированных электророзеток или вилок.

Одновременная установка устройств I, II и III класса гарантирует трехступенчатую защиту электрической линии от импульсных скачков напряжения.

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Заключение

В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.




Top