Обобщенный симплекс метод. Большая энциклопедия нефти и газа. Пример решения прямой и двойственной задачи симплекс методом

11.4. ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД

Из результатов предыдущих пунктов следует, что для получения решения исходной задачи можно перейти к двойственной и, используя оценки ее оптимального плана, определить оптимальное решение исходной задачи.

Переход к двойственной задаче не обязателен, так как если рассмотреть первую симплексную таблицу с единичным дополнительным базисом, то легко заметить, что в столбцах записана исходная задача, а в строках –двойственная.

Как было показано, при решении прямой задачи на любой итерации разность , т.е. величина -коэффициента при переменной , равна разности между правой и левой частями соответствующего ограничения двойственной задачи. Если при решении прямой задачи с максимизируемой целевой функцией итерация не приводит к оптимальному решению, то по крайней мере для одной переменной и только в оптимуме для всех разность .

Рассматривая это условие с учетом двойственности, можно записать

.

Таким образом, если , то . Это означает, что, когда решение прямой задачи неоптимальное, решение двойственной задачи недопустимое. С другой стороны при . Отсюда следует, что оптимальному решению прямой задачи соответствует допустимое решение двойственной задачи.

Это позволило разработать новый метод решения задач линейного программирования, при использовании которого сначала получается недопустимое, но «лучшее, чем оптимальное» решение (в обычном симплекс-методе сначала находится допустимое , но неоптимальное решение). Новый метод, получивший название двойственного симплекс-метода , обеспечивает выполнение условия оптимальности решения и систематическое «приближение» его к области допустимых решений. Когда полученное решение оказывается допустимым, итерационный процесс вычислений заканчивается, так как это решение является и оптимальным.

Двойственный симплекс-метод позволяет решать задачи линейного программирования, системы ограничений которых при положительном базисе содержат свободные члены любого знака. Этот метод позволяет уменьшить количество преобразований системы ограничений, а также размера симплексной таблицы. Рассмотрим применение двойственного симплекс-метода на примере.

Пример . Найти минимум функции

при ограничениях

.

Перейдем к канонической форме:

при ограничениях

Начальная симплекс-таблица имеет вид

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 4

x 5

–3

–4

–1

–3

–3

–6

–2

–1

Начальное базисное решение оптимальное, но не допустимое.

Как и обычный симплексный метод, рассматриваемый метод решения основан на использовании условий допустимости и оптимальности.

Условие допустимости . В качестве исключаемой переменной выбирается наибольшая по абсолютной величине отрицательная базисная переменная (при наличии альтернатив выбор делается произвольно). Если все базисные переменные неотрицательные, процесс вычислений заканчивается, так как полученное решение допустимое и оптимальное.

Условие оптимальности . Включаемая в базис переменная выбирается из числа небазисных переменных следующим образом. Вычисляются отношения коэффициентов левой части -уравнения к соответствующим коэффициентам уравнения, ассоциированного с исключаемой переменной. Отношения с положительным или нулевым значением знаменателя не учитываются. В задаче минимизации вводимой переменной должно соответствовать наименьшее из указанных отношений, а в задаче максимизации – отношение, наименьшее по абсолютной величине (при наличии альтернатив выбор делается произвольно). Если знаменатели всех отношений равны нулю или положительные, задача не имеет допустимых решений.

После выбора включаемой в базис и исключаемой переменных для получения следующего решения осуществляется обычная операция преобразования строк симплекс-таблицы.

В рассматриваемом примере исключаемой переменной является . Отношения, вычисленные для определения новой базисной переменной, приведены в следующей таблице:

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

–2

–4

–1

–3

Отношение

В качестве включаемой переменной выбирается x 2 . Последующее преобразование строк приводит к новой симплекс-таблице:

Базисные

переменные

x 1

x 2

x 3

x 4

x 5

Решение

x 3

x 2

x 5

–1

–1

Новое решение также оптимальное, но все еще недопустимое. В качестве новой исключаемой переменной выберем (произвольно) x 3 . Определим включаемую переменную.

Переменные

x 1

x 2

x 3

x 4

x 5

Уравнение

x 4 -уравнение

отношение

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

Двойственный симплекс-метод

Двойственный симплекс-метод, как и симплекс-метод, используется при нахождении решения задачи линейного программирования, записанной в форме основной задачи, для которой среди векторов Pi , составленных из коэффициентов при неизвестных в системе уравнений, имеется m единичных. Вместе с тем двойственный симплекс-метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами (при решении задачи симплексным методом эти числа предполагались неотрицательными). Такую задачу и рассмотрим теперь, предварительно предположив, что единичными являются векторы т. е. рассмотрим задачу, состоящую в определении максимального значения функции

при условиях

и среди чисел имеются отрицательные.

В данном случае есть решение системы линейных уравнений (55). Однако это решение не является планом задачи (54) - (56), так как среди его компонент имеются отрицательные числа.

Поскольку векторы - единичные, каждый из векторов можно представить в виде линейной комбинации данных векторов, причем коэффициентами разложения векторов по векторам служат числа

Таким образом, можно найти:

На основе исходных данных составляют симплекс-таблицу, в которой некоторые элементы столбца вектора являются отрицательными числами. Если таких чисел нет, то в симплекс-таблице записан оптимальный план задачи (54) - (56), поскольку, по предположению, все. Поэтому для определения оптимального плана задачи при условии, что он существует, следует произвести упорядоченный переход от одной симплекс-таблицы к другой до тех пор, пока из столбца вектора P0 не будут исключены отрицательные элементы. При этом все время должны оставаться неотрицательными все элементы (т +1)-й строки, т.е. для любого

Таким образом, после составления симплекс-таблицы проверяют, имеются ли в столбце вектора Po отрицательные числа. Если их нет, то найден оптимальный план исходной задачи. Если же они имеются (что мы и предполагаем), то выбирают наибольшее по абсолютной величине отрицательное число. В том случае, когда таких чисел несколько, берут какое-нибудь одно из них: пусть это число b l . Выбор этого числа определяет вектор, исключаемый из базиса, т. е. в данном случае из базиса выводится вектор P l . Чтобы определить, какой вектор следует ввести в базис, находим

Пусть это минимальное значение принимается при j=r, тогда в базис вводят вектор Р r . Число является разрешающим элементов. Переход к новой симплекс-таблице производят по обычным правилам симплексного метода. Итерационный процесс продолжают до тех пор, пока в столбце вектора Р 0 не будет больше отрицательных чисел. При этом находят оптимальный план исходной задачи, а следовательно, и двойственной. Если на некотором шаге окажется, что в i -й строке симплекс-таблицы в столбце вектора Р 0 стоит отрицательное число b i , а среди остальных элементов этой строки нет отрицательных, то исходная задача не имеет решения.

Таким образом, отыскание решения задачи двойственным симплекс-методом включает следующие этапы:

  • 1. Находят псевдоплан задачи.
  • 2. Проверяют этот псевдоплан на оптимальность. Если псевдоплан оптимален, то найдено решение задачи. В противном случае либо устанавливают неразрешимость задачи, либо переходят к новому псевдоплану.
  • 3. Выбирают разрешающую строку с помощью определения наибольшего по абсолютной величине отрицательного числа столбца вектора Р 0 и разрешающий столбец с помощью нахождения наименьшего по абсолютной величине отношения элементов (m +1)-и строки к соответствующим отрицательным элементам разрешающей строки.
  • 4. Находят новый псевдоплан и повторяют все действия начиная с этапа 2.

Найти максимальное значение функции

при условиях :

Решение . Запишем исходную задачу линейного программирования в форме основной задачи: найти максимум функции при условиях

Составим для последней задачи двойственную задачу. Такой является задача, в результате решения которой требуется найти минимальное значение функции

Строим симплекс таблицу:

Итерация 0:

Условие допустимости выполняется, так как в графе «Решение» все значения положительные, но не выполняется условие оптимальности, так как -строка содержит отрицательный коэффициент.Продолжаем наши действия

Итерация 1:

.
Приведем систему ограничений к системе неравенств смысла ≤, умножив соответствующие строки на (-1).
Определим минимальное значение целевой функции F(X) = x 1 + x 2 при следующих условиях-ограничений.
- 5x 1 - 6x 2 ≤-1
- 15x 1 ≤-1
- 7x 1 - 12x 2 ≤-1
Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме ).
В 1-м неравенстве смысла (≤) вводим базисную переменную x 3 . В 2-м неравенстве смысла (≤) вводим базисную переменную x 4 . В 3-м неравенстве смысла (≤) вводим базисную переменную x 5 .
-5x 1 -6x 2 + 1x 3 + 0x 4 + 0x 5 = -1
-15x 1 + 0x 2 + 0x 3 + 1x 4 + 0x 5 = -1
-7x 1 -12x 2 + 0x 3 + 0x 4 + 1x 5 = -1
Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

A= -5 -6 1 0 0
-15 0 0 1 0
-7 -12 0 0 1
Базисные переменные это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.
Решим систему уравнений относительно базисных переменных:
x 3 , x 4 , x 5 ,
Полагая, что свободные переменные равны 0, получим первый опорный план:
X1 = (0,0,-1,-1,-1)
Базисное решение называется допустимым, если оно неотрицательно.
B x 1 x 2 x 3 x 4 x 5
-1 -5 -6 1 0 0
-1 -15 0 0 1 0
-1 -7 -12 0 0 1
0 -1 -1 0 0 0

.
План 0 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
.

Ведущей будет 1-ая строка, а переменную x 3 следует вывести из базиса.
.
Минимальное значение θ соответствует 2-му столбцу, т.е. переменную x 2 необходимо ввести в базис.
На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-6).
B x 1 x 2 x 3 x 4 x 5
-1 -5 -6 1 0 0
-1 -15 0 0 1 0
-1 -7 -12 0 0 1
0 -1 -1 0 0 0
0 -1: (-5) = 1 / 5 -1: (-6) = 1 / 6 - - -

4. Пересчет симплекс-таблицы .
B x 1 x 2 x 3 x 4 x 5
1 / 6 5 / 6 1 -1 / 6 0 0
-1 -15 0 0 1 0
1 3 0 -2 0 1
1 / 6 -1 / 6 0 -1 / 6 0 0

x 1 x 2 x 3 x 4 x 5
5 / 6: 1 1: 1 -1 / 6: 1 0: 1 0: 1

1-(1 / 6 0):1

-15-(5 / 6 0):1 0-(1 0):1 0-(-1 / 6 0):1 1-(0 0):1 0-(0 0):1
3-(5 / 6 0):1 0-(1 0):1 -2-(-1 / 6 0):1 0-(0 0):1 1-(0 0):1

1 / 6 -(1 / 6 0):1

-1 / 6 -(5 / 6 0):1 0-(1 0):1 -1 / 6 -(-1 / 6 0):1 0-(0 0):1 0-(0 0):1

1. Проверка критерия оптимальности .
План 1 в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
2. Определение новой свободной переменной .
Среди отрицательных значений базисных переменных выбираем наибольший по модулю.
Ведущей будет 2-ая строка, а переменную x 4 следует вывести из базиса.
3. Определение новой базисной переменной .
Минимальное значение θ соответствует 1-му столбцу, т.е. переменную x 1 необходимо ввести в базис.
На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-15).
B x 1 x 2 x 3 x 4 x 5
1 / 6 5 / 6 1 -1 / 6 0 0
-1 -15 0 0 1 0
1 3 0 -2 0 1
1 / 6 -1 / 6 0 -1 / 6 0 0
0 -1 / 6: (-15) = 1 / 90 - - - -

4. Пересчет симплекс-таблицы .
Выполняем преобразования симплексной таблицы методом Жордано-Гаусса.
B x 1 x 2 x 3 x 4 x 5
1 / 9 0 1 -1 / 6 1 / 18 0
1 / 15 1 0 0 -1 / 15 0
4 / 5 0 0 -2 1 / 5 1
8 / 45 0 0 -1 / 6 -1 / 90 0

Представим расчет каждого элемента в виде таблицы:
x 1 x 2 x 3 x 4 x 5

1 / 9 -(1 / 15 0):1

0-(1 0):1 1-(0 0):1 -1 / 6 -(0 0):1 1 / 18 -(-1 / 15 0):1 0-(0 0):1
1: 1 0: 1 0: 1 -1 / 15: 1 0: 1

4 / 5 -(1 / 15 0):1

0-(1 0):1 0-(0 0):1 -2-(0 0):1 1 / 5 -(-1 / 15 0):1 1-(0 0):1

8 / 45 -(1 / 15 0):1

0-(1 0):1 0-(0 0):1 -1 / 6 -(0 0):1 -1 / 90 -(-1 / 15 0):1 0-(0 0):1

В базисном столбце все элементы положительные.
Переходим к основному алгоритму симплекс-метода.
1. Проверка критерия оптимальности .
Среди значений индексной строки нет положительных. Поэтому эта таблица определяет оптимальный план задачи.
Окончательный вариант симплекс-таблицы:
B x 1 x 2 x 3 x 4 x 5
1 / 9 0 1 -1 / 6 1 / 18 0
1 / 15 1 0 0 -1 / 15 0
4 / 5 0 0 -2 1 / 5 1
8 / 45 0 0 -1 / 6 -1 / 90 0
Оптимальный план можно записать так:
x 1 = 1 / 15
x 2 = 1 / 9
F(X) = 1 1 / 9 + 1 1 / 15 = 8 / 45

Так как есть три единичных вектора, то
можно сразу записать опорный план
Х=(0,0,0,360,192,180).
Составим нулевую симплекс-таблицу

Полученный опорный план проверяем
на оптимальность.
Вычисляем значение целевой функции и
симплекс-разности.
F0 c P0 0 360 0 192 0 180 0,
1 z1 c1 c P1 c1 9,
2 z2 c2 cP2 c2 10,...

Как видно из 0-й таблицы отличными от нуля
являются переменные x4 , x5 , x6 , а x , x , x
1
2
3
равны нулю, т.к. они небазисные, а свободные.
Дополнительные же переменные x4 , x5 , x6
принимают свои значения в соответствии с
ограничениями.
Эти значения переменных отвечают такому
«плану», при котором ничего не производится, сырье
не используется и значение целевой функции равно
нулю, т. е. стоимость произведенной продукции
отсутствует.
Такой план, конечно, не является оптимальным.
Это видно и из 4-й строки таблицы, в которой
имеется три отрицательных оценки -9, -16 и -10.

10.

Отрицательные числа не только
свидетельствуют о возможности увеличения
общей стоимости производимой продукции (в
столбцах над отрицательными оценками
стоят положительные числа), но и
показывают, на сколько увеличится эта сумма
при введении в план единицы того или иного
вида продукции.
Так, число -9 означает, что при включении в
план производства одного изделия А
обеспечивается увеличение стоимости
продукции на 9 д.е.

11.

Если включить в план производства по
одному изделию В и С, то общая стоимость
изготовляемой продукции возрастет
соответственно на 10 и 16 д.е. Поэтому с
экономической точки зрения целесообразным
является включение в план изделий С.
Это же необходимо сделать и с той точки
зрения, что -16 является наименьшей
отрицательной оценкой. Значит, в базис
введем вектор P3 .

12.

Найдем число Q .
360 192 180
Q min
;
;
min 30; 24;60
3
12 8
Введем его в последний столбец таблицы.
Число 24 соответствует вектору P5 .
192/8=24 с экономической точки зрения
означает, какое количество изделий С
предприятие может изготовлять с учетом
норм расхода и имеющихся объемов сырья
каждого вида.

13.

Так как сырья каждого вида имеется
соответственно 360, 192 и 180 кг, а на одно
изделие С требуется затратить сырья каждого
вида 12, 8 и 3 кг, то максимальное число
изделий С, которое может быть изготовлено
предприятием равно
min{360/12,192/8,180/3}=192/8=24, т.е.
ограничивающим фактором для производства
изделий С является имеющийся объем сырья
2-го вида. С учетом его предприятие может
производить 24 изделия С.При этом сырье 2го вида будет полностью использовано и,
значит, вектор подлежит исключению из
P5
базиса.

14.

Составляем следующую таблицу. В ней
разрешающей является вторая строка,
а разрешающим столбцом –третий. На
их пересечении стоит элемент 8.
Разделим вторую строку на 8, а затем
обнулим по методу Жордана- Гаусса
или по формулам треугольника третий
столбец.

15.

16.

Подсчитаем симплекс-разности и заполним 4ю строку таблицы.
При данном плане производства
изготовляется 24 изделия С и остается
неиспользованным 72 кг сырья 1-го и 108 кг
сырья 3-го вида. 2-й вид сырья использован
полностью. Стоимость всей продукции при
этом плане составляет 384 д.е. Указанные
числа записаны в столбце План. Это опять
параметры задачи, но они претерпели
изменения. Изменились и данные других
столбцов. Их экономическое содержание
стало еще более сложным.

17.

Имеется одна отрицательная оценка -2.
План можно улучшить. Введем в базис
вектор P2 . Вычислим
72 24 108
Q min ;
;
min 8; 48;72 8.
9 1/ 2 3 / 2
.
Выводим из базиса P4 .

18.

Разрешающими будут 1-я строка и 2-й
столбец. Разрешающий элемент 9.
Разделим на 9 1-ю строку, заполним
1-ю строку новой таблицы, затем
обнулим 2-й столбец. Для этого
умножим 1-ю строку на (-1/2) и
прибавим ко 2-й, а затем умножим 1-ю
строку на (-3/2) и прибавим к 3-й строке.
Заполним таблицу 2.

19.

20.

В этом мы убеждаемся,
вычисляя симплекс-разности
1 cP1 c1 10 1 16 0.25 9 5,
2 cP2 c2 10 1 16 0 10 0,
3 cP3 c3 10 0 16 1 0 0 16 0,
4 cP4 c4 10 1/ 9 16 1/ 8 0 (1/ 6) 2 / 9,
5 cP5 -c5 =10 (-1/6)+16 5/24+0(-1/2)=5/3,
6 0.

21.

Оптимальным планом производства не
предусмотрен выпуск изделий А. Введение в
план выпуска продукции вида А привело бы к
уменьшению указанной общей стоимости.
Это видно из 4-й строки столбца, где число 5
показывает, что при данном плане включение
в него выпуска единицы изделия А приводит
лишь к уменьшению общей величины
стоимости на 5 д.е.
Итак, план предусматривает выпуск 8 изделий
В и 20 изделий С. Сырье видов 1 и 2
используется целиком, а вида 3неиспользованным остается 96 кг.

22. ДВОЙСТВЕННЫЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Каждой ЗЛП можно поставить в соответствие
задачу, называемую двойственной к исходной
задаче.
Рассмотрим задачу об использовании
ресурсов. Предположим, что предприятие А
производит n видов продукции, величина
выпуска которых определяется переменными
x1 , x2 , ..., xn
.
В производстве используются m различных
видов ресурсов, объем которых ограничен
величинами b1 , b2 , ..., bn .

23.

Известны нормы затрат каждого ресурса на единицу
каждого вида продукции, образующие матрицу,
a11
a21
A
...
am1
a12
a22
...
am 2
... a1n
... a2 n
... ...
... amn
а также стоимость единицы продукции каждого вида
c1 , c2 , ..., cn
Требуется организовать производство так, чтобы
предприятию А была обеспечена максимальная
прибыль.

24.

Задача сводится к нахождению
неотрицательных переменных
x1 , x2 , ..., xn ,
при которых расход ресурсов не
превышает заданного их количества, а
стоимость всей продукции достигнет
максимума.

25.

В математической форме задача
записывается следующем виде:
F c1 x1 c2 x2 ... c j x j ... cn xn max
при условиях
a11 x1 a12 x2 ... a1 j x j ... a1n xn b1 ,
a21 x2 a22 x2 ... a2 j x j ... a2 n xn b2 ,
.
...............................................................,
a x a x ... a x ... a x b
mj j
mn n
m
m1 1 m 2 2
x j 0, j 1, n.

26.

По этим же исходным данным может быть
сформулирована другая задача.
Предположим, что предприятие В решило закупить
все ресурсы, которыми располагает предприятие А. В
этом случае предприятию В необходимо установить
оптимальные цены на эти ресурсы, исходя из
следующих условий:
общая стоимость ресурсов для предприятия В
должна быть минимальной;
за каждый вид ресурса предприятию А надо
уплатить не менее той суммы, которую это
предприятие может получить при переработке
данного вида ресурса в готовую продукцию.

27.

Если обозначить через y1 , y2 , ..., yn
цены, по которым предприятие В
покупает ресурсы у предприятия А, то
задача сводится к следующему: найти
такие значения переменных y1 , y2 , ..., yn ,
при которых стоимость ресурсов,
расходуемых на единицу любого вида
продукции не меньше прибыли (цены)
за эту единицу продукции, а общая
стоимость ресурсов достигает
минимума,

28.

т.е.какова должна быть оценка единицы
каждого из ресурсов y1 , y2 , ..., yn ,
чтобы при заданных объемах
имеющихся ресурсов bi , при заданных
стоимостях c j (j 1, n) единицы
продукции и нормах расходов aij
минимизировать общую оценку затрат
на всю продукцию.

29. Мат. модель двойственной задачи

В математической форме задача
записывается в виде:
*
F b1 y1 b2 y2 ... bm ym min
при ограничениях
a11 y1 a21 y2 ... am1 ym c1 ,
a y a y ... a y c ,
m2 m
2
12 1 22 2
..................................................
a y a y ... a y c ,
mn m
n
1n 1 2 n 2
yi 0, i 1, 2,..., m.

30. Экономический смысл переменных двойственной задачи

Переменные yi двойственной задачи в литературе
могут иметь различные названия:учетные, неявные,
теневые, объективно обусловленные оценки,
двойственные оценки или «цены» ресурсов.
Эти две задачи образуют пару взаимно
двойственных задач, любая из которых может
рассматриваться как исходная. Решение одной
задачи дает оптимальный план производства
продукции, а решение другой – оптимальную
систему оценок сырья, используемого для
производства этой продукции.

31.

Двойственные задачи линейного
программирования называют
симметричными, если они удовлетворяют
следующим свойствам:
число переменных в двойственной задаче
равно числу ограничений исходной задачи, а
число ограничений двойственной задачи
равно числу равно числу переменных в
исходной;
в одной задаче ищется максимум целевой
функции, в другой – минимум;
коэффициенты при переменных в целевой
функции одной задачи являются свободными
членами системы ограничений другой задачи;

32.

в каждой задаче система ограничений задается в
виде неравенств, причем, в задаче на отыскание
максимума, все неравенства вида «≤», а в задаче на
отыскание минимума, все неравенства вида «≥»;
матрица коэффициентов системы ограничений
получается одна из другой путем транспонирования;
каждому ограничению одной задачи соответствует
переменная другой задачи, номер переменной
совпадает с номером ограничения;
условия не отрицательности переменных
сохраняются в обеих задачах;

33. Решение симметричных двойственных задач

Первая теорема двойственности.
Если одна из двойственных задач
имеет оптимальное решение, то
оптимальное решение имеет и другая
задача, при этом значения целевых
функций задач равны между собой.
Если целевая функция одной из
задач не ограничена, то другая задача
вообще не имеет решения

34. Экономическое содержание первой теоремы двойственности

Если задача определения оптимального плана,
максимизирующего выпуск продукции, разрешима, то
разрешима и задача определения оценок ресурсов.
Причем цена продукта, полученного в результате
реализации оптимального плана, совпадает с
суммарной оценкой ресурсов.
Совпадения значений целевых функций для
соответствующих решений пары двойственных задач
достаточно для того, чтобы эти решения были
оптимальными.
Решая ЗЛП симплекс-методом, мы одновременно
решаем и исходную и двойственную задачи.

35. Метод одновременного решения пары двойственных задач

Исходная задача: Двойственная задача:
F c1x1 c2 x2 ... c j x j ... F * b1 y1 b2 y2 ...
cn xn max
a11 x1 a12 x2 ... a1n xn xn 1 b1 ,
a21 x1 a22 x2 ... a2 n xn xn 2 b2 ,
..........................................................
a x a x ... a x x b ,
mn n
n m
m
m1 1 m 2 2
x j 0, j 1, 2,..., n m.
bm ym min,
a11 y1 a21 y2 ... am1 ym ym 1 c1 ,
a y a y ... a y y c ,
m2 m
m 2
2
12 1 22 2
.............................................................
a y a y ... a y y c ,
mn m
m n
n
1n 1 2 n 2
yi 0, i 1, 2,..., m n.

36.

Число переменных в задачах одинаково
и равно m + n. В исходной задаче
базисными переменными являются

переменные xn 1 , xn 2 , ..., xn m
,
а в двойственной задаче –
вспомогательные неотрицательные
переменные yn 1 , yn 2 , ..., yn m .
Базисным переменным одной задачи
соответствуют свободные переменные
другой задачи, и наоборот.

37.

38.

При решении ЗЛП табличным симплексметодом решение двойственной задачи
содержится в последней строке таблицы.
Это j.
Причем основные переменные двойственной

соответствующих дополнительным
переменным исходной задачи, а
дополнительные переменные двойственной
задачи содержатся в столбцах,
соответствующих основным
(первоначальным) переменным исходной
задачи.

39. Пример.

Сформулируем модель задачи, двойственной
к задаче из примера 2 (начало лекции):
Найти максимум функции

40.

41.

Переменные исходной задачи x1 , x2 , x3 это количество изделий А,В и С. Введем
переменные двойственной задачи y1 , y2 , y3
Найти минимум функции
F * 360 y1 192 y2 180 y3 min
при ограничениях
18 y1 6 y2 5 y3 9,
15 y1 4 y2 3 y3 10,
12 y 8 y 3 y 16,
2
3
1
y1 , y2 , y3 0.

42. Рассмотрим последнюю таблицу исходной задачи

43.

Значение y1 в последней строке столбца P4 ,
т.е. y1 2 ;
9y 5
значение 2 3 в последней строке столбца P5,
значение y3 0 в последней строке столбца P6 .
Остальные значения находим в столбцах 1,2,3.
2 5
Y (; ;0;5;0;0)
9 3
При этом
2
5
F 360 192 180 0 0 5 0 0 0 0 400
9
3
*
-это минимальные затраты на всю продукцию.
2/9 и 5/3 –это теневые цены сырья 1-го и 2-го
видов соответственно.


Top