Метод неопределенных коэффициентов лагранжа. Задача Лагранжа с одним ограничением. Условия куна - таккера

Описание метода

где .

Обоснование

Нижеприведенное обоснование метода множителей Лагранжа не является его строгим доказательством. Оно содержит эвристические рассуждения, помогающие понять геометрический смысл метода.

Двумерный случай

Линии уровня и кривая .

Пусть требуется найти экстремум некоторой функции двух переменных при условии, задаваемом уравнением . Мы будем считать, что все функции непрерывно дифференцируемы, и данное уравнение задает гладкую кривую S на плоскости . Тогда задача сводится к нахождению экстремума функции f на кривой S . Будем также считать, что S не проходит через точки, в которых градиент f обращается в 0 .

Нарисуем на плоскости линии уровня функции f (то есть кривые ). Из геометрических соображений видно, что экстремумом функции f на кривой S могут быть только точки, в которых касательные к S и соответствующей линии уровня совпадают. Действительно, если кривая S пересекает линию уровня f в точке трансверсально (то есть под некоторым ненулевым углом), то двигаясь по кривой S из точки мы можем попасть как на линии уровня, соответствующие большему значению f , так и меньшему. Следовательно, такая точка не может быть точкой экстремума.

Тем самым, необходимым условием экстремума в нашем случае будет совпадение касательных. Чтобы записать его в аналитической форме, заметим, что оно эквивалентно параллельности градиентов функций f и ψ в данной точке, поскольку вектор градиента перпендикулярен касательной к линии уровня. Это условие выражается в следующей форме:

где λ - некоторое число, отличное от нуля, и являющееся множителем Лагранжа.

Рассмотрим теперь функцию Лагранжа , зависящую от и λ :

Необходимым условием ее экстремума является равенство нулю градиента . В соответствии с правилами дифференцирования, оно записывается в виде

Мы получили систему, первые два уравнения которой эквивалентны необходимому условию локального экстремума (1), а третье - уравнению . Из нее можно найти . При этом , поскольку в противном случае градиент функции f обращается в нуль в точке , что противоречит нашим предположениям. Следует заметить, что найденные таким образом точки могут и не являться искомыми точками условного экстремума - рассмотренное условие носит необходимый, но не достаточный характер. Нахождение условного экстремума с помощью вспомогательной функции L и составляет основу метода множителей Лагранжа, примененного здесь для простейшего случая двух переменных. Оказывается, вышеприведенные рассуждения обобщаются на случай произвольного числа переменных и уравнений, задающих условия.

На основе метода множителей Лагранжа можно доказать и некоторые достаточные условия для условного экстремума, требующие анализа вторых производных функции Лагранжа.

Применение

  • Метод множителей Лагранжа применяется при решении задач нелинейного программирования, возникающих во многих областях (например, в экономике).
  • Основной метод решения задачи об оптимизации качества кодирования аудио и видео данных при заданном среднем битрейте (оптимизация искажений - англ. Rate-Distortion optimization ).

См. также

Ссылки

  • Зорич В. А. Математический анализ. Часть 1. - изд. 2-е, испр. и доп. - М.: ФАЗИС, 1997.

Wikimedia Foundation . 2010 .

Смотреть что такое "Множители Лагранжа" в других словарях:

    Множители Лагранжа - дополнительные множители, преобразующие целевую функцию экстремальной задачи выпуклого программирования (в частности, линейного программирования) при ее решении одним из классических методов методом разрешающих множителей… … Экономико-математический словарь

    множители Лагранжа - Дополнительные множители, преобразующие целевую функцию экстремальной задачи выпуклого программирования (в частности, линейного программирования) при ее решении одним из классических методов методом разрешающих множителей (методом Лагранжа).… … Справочник технического переводчика

    Механики. 1) Лагранжа уравнения 1 го рода дифференциальные ур ния движения механич. системы, к рые даны в проекциях на прямоугольные координатные оси и содержат т. н. множители Лагранжа. Получены Ж. Лагранжем в 1788. Для голономной системы,… … Физическая энциклопедия

    Механики обыкновенные дифференциальные уравнения 2 го порядка, описывающие движения механич. систем под действием приложенных к ним сил. Л. у. установлены Ж. Лаг ранжем в двух формах: Л. у. 1 го рода, или уравнения в декартовых координатах с… … Математическая энциклопедия

    1) в гидромеханике ур ния движения жидкости (газа) в переменных Лагранжа, к рыми являются координаты ч ц среды. Получены франц. учёным Ж. Лагранжем (J. Lagrange; ок. 1780). Из Л. у. определяется закон движения ч ц среды в виде зависимостей… … Физическая энциклопедия

    Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где, относительно m ограничений, i меняется от единицы до m. Содержание 1 Описание метода … Википедия

    Функция, используемая при решении задач на условный экстремум функций многих переменных и функционалов. С помощью Л. ф. записываются необходимые условия оптимальности в задачах на условный экстремум. При этом не требуется выражать одни переменные … Математическая энциклопедия

    Метод решения задач на Условный экстремум; Л. м. м. заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции т. н. функции Лагранжа. Для задачи об экстремуме функции f (х1, x2,..., xn) при… …

    Переменные, с помощью к рых строится Лагранжа функция при исследовании задач на условный экстремум. Использование Л. м. и функции Лагранжа позволяет единообразным способом получать необходимые условия оптимальности в задачах на условный экстремум … Математическая энциклопедия

    1) в гидромеханике уравнения движения жид кой среды, записанные в переменных Лагранжа, которыми являются координаты частиц среды. Из Л. у. определяется закон движения частиц среды в виде зависимостей координат от времени, а по ним… … Большая советская энциклопедия

Рассмотрим задачу условной оптимизации, содержащую только ограничения в виде равенств

min

при наличии ограничений

,
.

Эта задача в принципе может быть решена как задача безусловной оптимизации, полученная путем исключения из целевой функции m независимых переменных с помощью заданных равенств. Наличие ограничений в виде равенств фактически позволяет уменьшить размерность исходной задачи. Новая задача может быть решена с помощью подходящего метода безусловной оптимизации.

Пример . Требуется минимизировать функцию

при ограничении

Исключив переменную с помощью уравнения, получим оптимизационную задачу с двумя переменными без ограничений:

минимизировать ,

которую можно решить одним из методов безусловной оптимизации.

Однако метод исключения переменных применим лишь в тех случаях, когда уравнения, представляющие ограничения, можно разрешить относительно некоторого набора переменных. При наличии большого числа ограничений в виде равенств процесс исключения переменных становится весьма трудоемкой процедурой. Кроме того, возможны ситуации, когда уравнение не удается разрешить относительно переменной. В этом случае целесообразно использовать метод множителей Лагранжа.

С помощью метода множителей Лагранжа по существу устанавливаются необходимые условия, позволяющие идентифицировать точки оптимума в задачах оптимизации с ограничениями в виде равенств.

Рассмотрим задачу

min

при наличии ограничений

,
.

Из курса математического анализа хорошо известно, что точка условного минимума функции совпадает с седловой точкой функции Лагранжа:

,

при этом седловая точка должна обеспечивать минимум по переменным и максимум по параметрам. Эти параметры называются множителями Лагранжа. Приравнивая частные производные функциипои пок нулю, получим необходимые условия стационарной точки:

,
,

,
.

Решение системы
уравнений определяет стационарную точку функции Лагранжа. Достаточные условия существования минимума исходной задачи содержат, кроме выше упомянутых, положительную определенность матрицы Гессе целевой функции.

4.2. Условия куна - таккера

Рассмотрим задачу нелинейного программирования с ограничениями в виде неравенств

min

при ограничениях

,
.

Сведем ограничения в виде неравенств к ограничениям-равенствам добавлением к каждому из них ослабляющих переменных ,
:



.

Сформируем функцию Лагранжа:

Тогда необходимые условия минимума принимают вид

,
;

,
;

,
.

Можно умножить последнее уравнение на и заменить ослабляющие переменные, выразив их из второго уравнения. Второе уравнение можно преобразовать, отбросив ослабляющие переменные и переходя к ограничениям-неравенствам. Следует добавить еще одно условие
, которое должно выполняться в точке условного минимума.

Окончательно получаем необходимые условия существования минимума задачи нелинейного программирования с ограничениями неравенствами, которые называются условиями Куна- Таккера:

,
; (1)

,
; (2)

,
; (3)

,
. (4)

Ограничение в виде неравенства
называется активным в точке, если оно превращается в равенство
, и называется неактивным, если
. Если существует возможность обнаружить до непосредственного решения задачи ограничения, которые неактивны в точке оптимума, то эти ограничения можно исключить из модели и тем самым уменьшить ее размеры.

Уравнение (3) означает, что либо
, либо
. Если
, то
и ограничение является активным и представляет собой ограничение равенство. С другой стороны, если ограничение является строгим неравенством
, то множитель Лагранжа будет иметь вид
т.е. ограничение
является неактивным и им можно пренебречь. Конечно, предварительно не известно какими ограничениями можно пренебречь.

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $\varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $\varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=\psi(x)$, то подставив $y=\psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=f\left(x,\psi(x)\right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+\lambda\varphi(x,y)$ (параметр $\lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

$$ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right. $$

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F < 0$, то условный максимум.

Есть и другой способ для определения характера экстремума. Из уравнения связи получаем: $\varphi_{x}^{"}dx+\varphi_{y}^{"}dy=0$, $dy=-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx$, поэтому в любой стационарной точке имеем:

$$d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=F_{xx}^{""}dx^2+2F_{xy}^{""}dx\left(-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx\right)+F_{yy}^{""}\left(-\frac{\varphi_{x}^{"}}{\varphi_{y}^{"}}dx\right)^2=\\ =-\frac{dx^2}{\left(\varphi_{y}^{"} \right)^2}\cdot\left(-(\varphi_{y}^{"})^2 F_{xx}^{""}+2\varphi_{x}^{"}\varphi_{y}^{"}F_{xy}^{""}-(\varphi_{x}^{"})^2 F_{yy}^{""} \right)$$

Второй сомножитель (расположенный в скобке) можно представить в такой форме:

Красным цветом выделены элементы определителя $\left| \begin{array} {cc} F_{xx}^{""} & F_{xy}^{""} \\ F_{xy}^{""} & F_{yy}^{""} \end{array} \right|$, который является гессианом функции Лагранжа. Если $H > 0$, то $d^2F < 0$, что указывает на условный максимум. Аналогично, при $H < 0$ имеем $d^2F > 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$. показать\скрыть

$$ H=-\left|\begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right| $$

В этой ситуации сформулированное выше правило изменится следующим образом: если $H > 0$, то функция имеет условный минимум, а при $H < 0$ получим условный максимум функции $z=f(x,y)$. При решении задач следует учитывать такие нюансы.

Алгоритм исследования функции двух переменных на условный экстремум

  1. Составить функцию Лагранжа $F(x,y)=f(x,y)+\lambda\varphi(x,y)$
  2. Решить систему $ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right.$
  3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить любой из указанных способов:
    • Составить определитель $H$ и выяснить его знак
    • С учетом уравнения связи вычислить знак $d^2F$

Метод множителей Лагранжа для функций n переменных

Допустим, мы имеем функцию $n$ переменных $z=f(x_1,x_2,\ldots,x_n)$ и $m$ уравнений связи ($n > m$):

$$\varphi_1(x_1,x_2,\ldots,x_n)=0; \; \varphi_2(x_1,x_2,\ldots,x_n)=0,\ldots,\varphi_m(x_1,x_2,\ldots,x_n)=0.$$

Обозначив множители Лагранжа как $\lambda_1,\lambda_2,\ldots,\lambda_m$, составим функцию Лагранжа:

$$F(x_1,x_2,\ldots,x_n,\lambda_1,\lambda_2,\ldots,\lambda_m)=f+\lambda_1\varphi_1+\lambda_2\varphi_2+\ldots+\lambda_m\varphi_m$$

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

$$\left\{\begin{aligned} & \frac{\partial F}{\partial x_i}=0; (i=\overline{1,n})\\ & \varphi_j=0; (j=\overline{1,m}) \end{aligned} \right.$$

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F < 0$, - то условный максимум. Можно пойти иным путем, рассмотрев следующую матрицу:

Определитель матрицы $\left| \begin{array} {ccccc} \frac{\partial^2F}{\partial x_{1}^{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{1}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{2}\partial x_1} & \frac{\partial^2F}{\partial x_{2}^{2}} & \frac{\partial^2F}{\partial x_{2}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{2}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{3} \partial x_{1}} & \frac{\partial^2F}{\partial x_{3}\partial x_{2}} & \frac{\partial^2F}{\partial x_{3}^{2}} &\ldots & \frac{\partial^2F}{\partial x_{3}\partial x_{n}}\\ \ldots & \ldots & \ldots &\ldots & \ldots\\ \frac{\partial^2F}{\partial x_{n}\partial x_{1}} & \frac{\partial^2F}{\partial x_{n}\partial x_{2}} & \frac{\partial^2F}{\partial x_{n}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{n}^{2}}\\ \end{array} \right|$, выделенной в матрице $L$ красным цветом, есть гессиан функции Лагранжа. Используем следующее правило:

  • Если знаки угловых миноров $H_{2m+1},\; H_{2m+2},\ldots,H_{m+n}$ матрицы $L$ совпадают с знаком $(-1)^m$, то исследуемая стационарная точка является точкой условного минимума функции $z=f(x_1,x_2,x_3,\ldots,x_n)$.
  • Если знаки угловых миноров $H_{2m+1},\; H_{2m+2},\ldots,H_{m+n}$ чередуются, причём знак минора $H_{2m+1}$ совпадает с знаком числа $(-1)^{m+1}$, то исследуемая стационарная точка является точкой условного максимума функции $z=f(x_1,x_2,x_3,\ldots,x_n)$.

Пример №1

Найти условный экстремум функции $z(x,y)=x+3y$ при условии $x^2+y^2=10$.

Геометрическая интерпретация данной задачи такова: требуется найти наибольшее и наименьшее значение аппликаты плоскости $z=x+3y$ для точек ее пересечения с цилиндром $x^2+y^2=10$.

Выразить одну переменную через другую из уравнения связи и подставить ее в функцию $z(x,y)=x+3y$ несколько затруднительно, поэтому будем использовать метод Лагранжа.

Обозначив $\varphi(x,y)=x^2+y^2-10$, составим функцию Лагранжа:

$$ F(x,y)=z(x,y)+\lambda \varphi(x,y)=x+3y+\lambda(x^2+y^2-10);\\ \frac{\partial F}{\partial x}=1+2\lambda x; \frac{\partial F}{\partial y}=3+2\lambda y. $$

Запишем систему уравнений для определения стационарных точек функции Лагранжа:

$$ \left \{ \begin{aligned} & 1+2\lambda x=0;\\ & 3+2\lambda y=0;\\ & x^2+y^2-10=0. \end{aligned} \right. $$

Если предположить $\lambda=0$, то первое уравнение станет таким: $1=0$. Полученное противоречие говорит о том, что $\lambda\neq 0$. При условии $\lambda\neq 0$ из первого и второго уравнений имеем: $x=-\frac{1}{2\lambda}$, $y=-\frac{3}{2\lambda}$. Подставляя полученные значения в третье уравнение, получим:

$$ \left(-\frac{1}{2\lambda} \right)^2+\left(-\frac{3}{2\lambda} \right)^2-10=0;\\ \frac{1}{4\lambda^2}+\frac{9}{4\lambda^2}=10; \lambda^2=\frac{1}{4}; \left[ \begin{aligned} & \lambda_1=-\frac{1}{2};\\ & \lambda_2=\frac{1}{2}. \end{aligned} \right.\\ \begin{aligned} & \lambda_1=-\frac{1}{2}; \; x_1=-\frac{1}{2\lambda_1}=1; \; y_1=-\frac{3}{2\lambda_1}=3;\\ & \lambda_2=\frac{1}{2}; \; x_2=-\frac{1}{2\lambda_2}=-1; \; y_2=-\frac{3}{2\lambda_2}=-3.\end{aligned} $$

Итак, система имеет два решения: $x_1=1;\; y_1=3;\; \lambda_1=-\frac{1}{2}$ и $x_2=-1;\; y_2=-3;\; \lambda_2=\frac{1}{2}$. Выясним характер экстремума в каждой стационарной точке: $M_1(1;3)$ и $M_2(-1;-3)$. Для этого вычислим определитель $H$ в каждой из точек.

$$ \varphi_{x}^{"}=2x;\; \varphi_{y}^{"}=2y;\; F_{xx}^{""}=2\lambda;\; F_{xy}^{""}=0;\; F_{yy}^{""}=2\lambda.\\ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right|= \left| \begin{array} {ccc} 0 & 2x & 2y\\ 2x & 2\lambda & 0 \\ 2y & 0 & 2\lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right| $$

В точке $M_1(1;3)$ получим: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & 1 & 3\\ 1 & -1/2 & 0 \\ 3 & 0 & -1/2 \end{array} \right|=40 > 0$, поэтому в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_{\max}=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & -1 & -3\\ -1 & 1/2 & 0 \\ -3 & 0 & 1/2 \end{array} \right|=-40$. Так как $H < 0$, то в точке $M_2(-1;-3)$ имеем условный минимум функции $z(x,y)=x+3y$, а именно: $z_{\min}=z(-1;-3)=-10$.

Отмечу, что вместо вычисления значения определителя $H$ в каждой точке, гораздо удобнее раскрыть его в общем виде. Дабы не загромождать текст подробностями, этот способ скрою под примечание.

Запись определителя $H$ в общем виде. показать\скрыть

$$ H=8\cdot\left|\begin{array}{ccc}0&x&y\\x&\lambda&0\\y&0&\lambda\end{array}\right| =8\cdot\left(-\lambda{y^2}-\lambda{x^2}\right) =-8\lambda\cdot\left(y^2+x^2\right). $$

В принципе, уже очевидно, какой знак имеет $H$. Так как ни одна из точек $M_1$ или $M_2$ не совпадает с началом координат, то $y^2+x^2>0$. Следовательно, знак $H$ противоположен знаку $\lambda$. Можно и довести вычисления до конца:

$$ \begin{aligned} &H(M_1)=-8\cdot\left(-\frac{1}{2}\right)\cdot\left(3^2+1^2\right)=40;\\ &H(M_2)=-8\cdot\frac{1}{2}\cdot\left((-3)^2+(-1)^2\right)=-40. \end{aligned} $$

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=2\lambda \left(dx^2+dy^2\right) $$

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $\left(dx \right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $\lambda_1=-\frac{1}{2}$ получим $d^2F < 0$. Следовательно, функция имеет в точке $M_1(1;3)$ условный максимум. Аналогично, в точке $M_2(-1;-3)$ получим условный минимум функции $z(x,y)=x+3y$. Отметим, что для определения знака $d^2F$ не пришлось учитывать связь между $dx$ и $dy$, ибо знак $d^2F$ очевиден без дополнительных преобразований. В следующем примере для определения знака $d^2F$ уже будет необходимо учесть связь между $dx$ и $dy$.

Ответ : в точке $(-1;-3)$ функция имеет условный минимум, $z_{\min}=-10$. В точке $(1;3)$ функция имеет условный максимум, $z_{\max}=10$

Пример №2

Найти условный экстремум функции $z(x,y)=3y^3+4x^2-xy$ при условии $x+y=0$.

Первый способ (метод множителей Лагранжа)

Обозначив $\varphi(x,y)=x+y$ составим функцию Лагранжа: $F(x,y)=z(x,y)+\lambda \varphi(x,y)=3y^3+4x^2-xy+\lambda(x+y)$.

$$ \frac{\partial F}{\partial x}=8x-y+\lambda; \; \frac{\partial F}{\partial y}=9y^2-x+\lambda.\\ \left \{ \begin{aligned} & 8x-y+\lambda=0;\\ & 9y^2-x+\lambda=0; \\ & x+y=0. \end{aligned} \right. $$

Решив систему, получим: $x_1=0$, $y_1=0$, $\lambda_1=0$ и $x_2=\frac{10}{9}$, $y_2=-\frac{10}{9}$, $\lambda_2=-10$. Имеем две стационарные точки: $M_1(0;0)$ и $M_2 \left(\frac{10}{9};-\frac{10}{9} \right)$. Выясним характер экстремума в каждой стационарной точке с использованием определителя $H$.

$$ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{"} & \varphi_{y}^{"}\\ \varphi_{x}^{"} & F_{xx}^{""} & F_{xy}^{""} \\ \varphi_{y}^{"} & F_{xy}^{""} & F_{yy}^{""} \end{array} \right|= \left| \begin{array} {ccc} 0 & 1 & 1\\ 1 & 8 & -1 \\ 1 & -1 & 18y \end{array} \right|=-10-18y $$

В точке $M_1(0;0)$ $H=-10-18\cdot 0=-10 < 0$, поэтому $M_1(0;0)$ есть точка условного минимума функции $z(x,y)=3y^3+4x^2-xy$, $z_{\min}=0$. В точке $M_2\left(\frac{10}{9};-\frac{10}{9}\right)$ $H=10 > 0$, посему в данной точке функция имеет условный максимум, $z_{\max}=\frac{500}{243}$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=8dx^2-2dxdy+18ydy^2 $$

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

$$ d^2 F=8dx^2-2dxdy+18ydy^2=8dx^2-2dx(-dx)+18y(-dx)^2=(10+18y)dx^2 $$

Так как $ d^2F \Bigr|_{M_1}=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $d^2F \Bigr|_{M_2}=-10 dx^2 < 0$, т.е. $M_2\left(\frac{10}{9}; -\frac{10}{9} \right)$ - точка условного максимума.

Второй способ

Из уравнения связи $x+y=0$ получим: $y=-x$. Подставив $y=-x$ в функцию $z(x,y)=3y^3+4x^2-xy$, получим некоторую функцию переменной $x$. Обозначим эту функцию как $u(x)$:

$$ u(x)=z(x,-x)=3\cdot(-x)^3+4x^2-x\cdot(-x)=-3x^3+5x^2. $$

Таким образом задачу о нахождении условного экстремума функции двух переменных мы свели к задаче определения экстремума функции одной переменной.

$$ u_{x}^{"}=-9x^2+10x;\\ -9x^2+10x=0; \; x\cdot(-9x+10)=0;\\ x_1=0; \; y_1=-x_1=0;\\ x_2=\frac{10}{9}; \; y_2=-x_2=-\frac{10}{9}. $$

Получили точки $M_1(0;0)$ и $M_2\left(\frac{10}{9}; -\frac{10}{9}\right)$. Дальнейшее исследование известно из курса дифференциального исчисления функций одной переменой. Исследуя знак $u_{xx}^{""}$ в каждой стационарной точке или проверяя смену знака $u_{x}^{"}$ в найденных точках, получим те же выводы, что и при решении первым способом. Например, проверим знак $u_{xx}^{""}$:

$$u_{xx}^{""}=-18x+10;\\ u_{xx}^{""}(M_1)=10;\;u_{xx}^{""}(M_2)=-10.$$

Так как $u_{xx}^{""}(M_1)>0$, то $M_1$ - точка минимума функции $u(x)$, при этом $u_{\min}=u(0)=0$. Так как $u_{xx}^{""}(M_2)<0$, то $M_2$ - точка максимума функции $u(x)$, причём $u_{\max}=u\left(\frac{10}{9}\right)=\frac{500}{243}$.

Значения функции $u(x)$ при заданном условии связи совпадают с значениями функции $z(x,y)$, т.е. найденные экстремумы функции $u(x)$ и есть искомые условные экстремумы функции $z(x,y)$.

Ответ : в точке $(0;0)$ функция имеет условный минимум, $z_{\min}=0$. В точке $\left(\frac{10}{9}; -\frac{10}{9} \right)$ функция имеет условный максимум, $z_{\max}=\frac{500}{243}$.

Рассмотрим еще один пример, в котором характер экстремума выясним посредством определения знака $d^2F$.

Пример №3

Найти наибольшее и наименьшее значения функции $z=5xy-4$, если переменные $x$ и $y$ положительны и удовлетворяют уравнению связи $\frac{x^2}{8}+\frac{y^2}{2}-1=0$.

Составим функцию Лагранжа: $F=5xy-4+\lambda \left(\frac{x^2}{8}+\frac{y^2}{2}-1 \right)$. Найдем стационарные точки функции Лагранжа:

$$ F_{x}^{"}=5y+\frac{\lambda x}{4}; \; F_{y}^{"}=5x+\lambda y.\\ \left \{ \begin{aligned} & 5y+\frac{\lambda x}{4}=0;\\ & 5x+\lambda y=0;\\ & \frac{x^2}{8}+\frac{y^2}{2}-1=0;\\ & x > 0; \; y > 0. \end{aligned} \right. $$

Все дальнейшие преобразования осуществляются с учетом $x > 0; \; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $\lambda=-\frac{5x}{y}$ и подставим найденное значение в первое уравнение: $5y-\frac{5x}{y}\cdot \frac{x}{4}=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $\frac{4y^2}{8}+\frac{y^2}{2}-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $\lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

$$ F_{xx}^{""}=\frac{\lambda}{4}; \; F_{xy}^{""}=5; \; F_{yy}^{""}=\lambda. $$

Так как $\frac{x^2}{8}+\frac{y^2}{2}-1=0$, то:

$$ d\left(\frac{x^2}{8}+\frac{y^2}{2}-1\right)=0; \; d\left(\frac{x^2}{8} \right)+d\left(\frac{y^2}{2} \right)=0; \; \frac{x}{4}dx+ydy=0; \; dy=-\frac{xdx}{4y}. $$

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $\lambda=-10$, получив при этом:

$$ F_{xx}^{""}=\frac{-5}{2}; \; F_{xy}^{""}=-10; \; dy=-\frac{dx}{2}.\\ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=-\frac{5}{2}dx^2+10dx\cdot \left(-\frac{dx}{2} \right)-10\cdot \left(-\frac{dx}{2} \right)^2=\\ =-\frac{5}{2}dx^2-5dx^2-\frac{5}{2}dx^2=-10dx^2. $$

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

$$ d^2 F=F_{xx}^{""}dx^2+2F_{xy}^{""}dxdy+F_{yy}^{""}dy^2=\frac{\lambda}{4}dx^2+10\cdot dx\cdot \frac{-xdx}{4y} +\lambda\cdot \left(-\frac{xdx}{4y} \right)^2=\\ =\frac{\lambda}{4}dx^2-\frac{5x}{2y}dx^2+\lambda \cdot \frac{x^2dx^2}{16y^2}=\left(\frac{\lambda}{4}-\frac{5x}{2y}+\frac{\lambda \cdot x^2}{16y^2} \right)\cdot dx^2 $$

Подставляя $x=2$, $y=1$, $\lambda=-10$, получим:

$$ d^2 F=\left(\frac{-10}{4}-\frac{10}{2}-\frac{10 \cdot 4}{16} \right)\cdot dx^2=-10dx^2. $$

Так как $d^2F=-10\cdot dx^2 < 0$, то точка $(2;1)$ есть точкой условного максимума функции $z=5xy-4$, причём $z_{\max}=10-4=6$.

Ответ : в точке $(2;1)$ функция имеет условный максимум, $z_{\max}=6$.

В следующей части рассмотрим применение метода Лагранжа для функций большего количества переменных.

Применяется для решения задач с аналитическим выражением для критерия оптимальности и при наличии ограничений на независимые переменные типа равенств. Для получения аналитического решения требуется, чтобы ограничения имели аналитический вид. Применение неопределенных множителей Лагранжа позволяет свести задачу оптимизации с ограничениями к задаче, решаемой методами исследования функций классического анализа. В этом случае порядок системы уравнений, решаемой для нахождения экстремума критерия оптимизации, повышается на число ограничений. Применение метода эффективно при количестве переменных три и менее. Метод используется и при количестве переменных более трех, если процесс описывается конечными уравнениями.

Пусть требуется найти экстремум функции, которая зависит от n переменных, связанных в свою очередь отношениями. Достигаемый функцией экстремум с учетом выполнения условий называется относительным, или условным. Если же число переменных равно числу соотношений (), то искомые неизвестные находятся решением системы уравнений, описываемых соотношениями. Решение задачи оптимизации сводится к проверке найденным таким способом значений переменных на функции. Таким образом, экстремальную задачу можно решить простым перебором переменных, удовлетворяющих условиям.

Если m < n , то можно из уравнений связи найти зависимость m переменных от n - m остальных переменных, т.е.

Функцию можно получить подстановкой полученных переменных в функцию. Тогда будет зависеть только от переменных, не связанных дополнительными условиями. Следовательно, снимая ограничения удается и уменьшить размерность исходной задачи оптимизации. Часто аналитически таким способом задачу решить не удается. Поэтому для решения задач отыскания экстремума функции многих переменных обычно используется метод неопределенных множителей Лагранжа.

При введении новых переменных, носящих название неопределенных множителей Лагранжа появляется возможность ввести новую функцию

т.е. функцию m + n переменных, в которую ограничения, накладываемые системой функций входят как составная часть.

Экстремальное значение функции совпадает с экстремальным значением функции, если выполняется условие по ограничениям. Необходимым условием экстремума функции многих переменных является равенство нулю дифференциала этой функции в экстремальной точке, т.е.

Для того, чтобы это выражение выполнялось при любых значениях независимых дифференциалов, необходимо равенство нулю коэффициентов при этих дифференциалах, что дает систему уравнений

При этом новых независимых определяются из условия

Объединение систем (4.3.1) и (4.3.2) можно получить

Таким образом, задача в форме (4.3.3) сводится к задаче: найти

Отдельно следует отметить, что в общем случае метод множителей Лагранжа позволяет найти лишь необходимые условия существования условного экстремума для непрерывных функций, имеющих непрерывные производные. Однако из физического смысла решаемой задачи обычно известно, идет ли речь о максимуме или минимуме функции, кроме того, как правило, в проектных задачах функция на рассматриваемом отрезке является унимодальной. Поэтому в проектных задачах нет необходимости значения переменных, найденные при решении рассмотренных систем уравнений, проверять на экстремум с помощью анализа производных более высокого порядка.

Метод Множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

Рассмотрим классическую задачу оптимизации

max (min) z=f(x) (7.20)

Эта задача выделяется из задачи (7.18), (7.19) тем, что среди ограничений (7.21) нет неравенств, нет условий неотрицательности переменных, их дискретности, и функции f(x) и непрерывны и имеют частные производные по крайней мере второго порядка.

Классический подход к решению задачи (7.20), (7.21) дает систему уравнений (необходимые условия), которым должна удовлетворять точка х*,доставляющая функции f(x)локальный экстремум на множестве точек, удовлетворяющих ограничениям (7.21) (для задачи выпуклого программирования найденная точка х*в соответствии с теоремой 7.6 будет одновременно и точкой глобального экстремума).

Предположим, что в точке х* функция (7.20) имеет локальный условный экстремум и ранг матрицы равен . Тогда необходимые условия запишутся в виде:

(7.22)

есть функция Лагранжа; - множители Лагранжа.

Существуют также и достаточные условия, при выполнении которых решение системы уравнений (7.22) определяет точку экстремума функции f(x). Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

Можно указать следующий порядок решения задачи (7.20), (7.21) методом множителей Лагранжа:

1) составить функцию Лагранжа (7.23);

2) найти частные производные функции Лагранжа по всем переменным и приравнять их нулю. Тем самым будет получена система (7.22), состоящая из уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

3) из стационарных точек, взятых без координат , выбрать точки, в которых функция f(x) имеет условные локальные экстремумы при наличии ограничений (7.21). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.



Пример 7.3 . Найти оптимальное распределение ограниченного ресурса в a ед. между n потребителями, если прибыль, получаемая при выделении j-му потребителю x j единиц ресурса, вычисляется по формуле .

Решение. Математическая модель задачи имеет следующий вид:


Составляем функцию Лагранжа:

.

Находим частные производные функции Лагранжа и приравниваем их нулю:

Решая эту систему уравнений, получаем:

Таким образом, если j-му потребителю будет выделено ед. ресурса, то суммарная прибыль достигнет максимальной величины и составит ден. ед.

Мы рассмотрелиметод Лагранжа применительно к классической задаче оптимизации. Можно обобщить этот метод на случай, когда переменные неотрицательны и некоторые ограничения заданы в форме неравенств. Однако это обобщение имеет преимущественно теоретическое значение и не приводит к конкретным вычислительным алгоритмам.

В заключение дадим множителям Лагранжа экономическую интерпретацию. Для этого обратимся к простейшей классической задаче оптимизации

max (min) z =f (x 1 , х 2); (7.24)

𝜑(x 1 , х 2)=b. (7.25)

Предположим, что условный экстремум достигается в точке . Соответствующее экстремальное значение функции f (x )

Допустим, что в ограничениях (7.25) величина b может меняться, тогда координаты точки экстремума, а следовательно, и экстремальное значение f* функции f (x ) станут величинами, зависящими от b , т. е. ,, а поэтому производная функции (7.24)




Top