AVR. Учебный Курс. Управляемый вектор прерывания. Примеры прерываний. Ниже приведено назначение некоторых векторов

Вложенные прерывания

Этот механизм полностью поддерживается в ОС QNX Neutrino. В предыдущих сценариях описывалась самая простая и наиболее распространенная ситуация, когда возникает только одно прерывание. Однако для получения максимального значения задержки в отсутствие немаскированных прерываний следует рассматривать время с учетом сразу всех текущих прерываний, так как немаскированное прерывание с более высоким приоритетом будет вытеснять текущее прерывание.

На рис. 2.25 показан выполняемый Поток А. Прерывание IRQx запускает обработчик прерываний Intx, который вытесняется прерыванием IRQy и обработчиком прерываний lnty. Обработчик прерываний Inty возвращает событие, которое запускает Поток В, а обработчик прерываний Intx возвращает событие, которое запускает Поток С.

Вызовы, связанные с прерываниями

Программный интерфейс обработки прерываний включает в себя следующие вызовы ядра.

Посредством этого программного интерфейса поток с соответствующими пользовательскими привилегиями может вызывать функцию InterruptAttachQ или Interrupt Attach EventQ, передавая номер аппаратного прерывания и адрес функции в адресном пространстве потока, которая должна быть вызвана при возникновении прерывания. ОС QNX Neutrino позволяет с каждым номером аппаратного прерывания связывать множество обработчиков прерываний (ISR). Немаскированные прерывания могут обрабатываться во время выполнения уже запущенных обработчиков прерываний.

Далее приводится пример программного кода, с помощью которого обработчик прерываний (ISR) присоединяется к аппаратному прерыванию таймера (которое ОС также использует в качестве системных часов). Обработчик прерываний таймера, имеющийся в ядре, самостоятельно выполняет очистку источников прерываний, поэтому он только увеличивает значение счетчика в пространстве данных потока и затем передает управление ядру.

В результате пользовательские потоки, имеющие соответствующие привилегии, могут динамически присоединять (и отсоединять) обработчики прерываний к (от) векторам аппаратных прерываний в процессе их выполнения. Эти потоки могут быть отлажены на уровне исходного текста с помощью обычных отладочных средств, а сам обработчик прерываний может быть отлажен посредством вызова этого обработчика на уровне потока и пошагового выполнения на уровне исходного текста или посредством вызова функции InterruptAttachEventQ.

Когда происходит аппаратное прерывание, процессор вызывает модуль первичной обработки прерываний (interrupt redirector) микроядра. Данный модуль записывает на стек регистровый контекст выполняемого потока в соответствующий элемент таблицы потоков и затем устанавливает такой контекст, чтобы у обработчика прерываний был доступ к программному коду и данным потока, в котором содержится этот обработчик прерываний. Таким образом, обработчик прерываний получает возможность использовать буферы и код в пользовательском: потоке для определения источника возникшего прерывания и, в случае если поток требует выполнения работы более высокого уровня, сгенерировать событие для того потока, в который входит данный обработчик прерываний, после чего этот поток может обработать данные, которые обработчик прерываний поместил в принадлежащий ему буфер.

Поскольку обработчик прерываний отображается в контекст содержащего его потока, он может непосредственно оперировать устройствами, отображенными в адресном пространстве потока, или самостоятельно выполнять команды ввода/вывода. В результате это избавляет от необходимости связывать драйверы устройств с ядром.

Модуль первичной обработки прерываний, который содержится в микроядре, вызывает все обработчики, связанные с данным аппаратным прерыванием. Если возвращенное значение указывает на то, что процессу должно быть передано некоторое событие, ядро ставит это событие в очередь. После того как последний обработчик прерываний вызывается для обработки данного вектора прерываний, обработчик прерываний ядра завершает работу с устройством управления прерываниями и "возвращается из прерывания".

Этот возврат из прерывания не обязательно должен приводить в контекст прерванного потока. Если событие, поставленное в очередь, заставило поток с более высоким приоритетом перейти в состояние готовности (READY), то микроядро выполнит возврат из прерывания в контекст потока, который является активным в текущий момент.

Таким образом устанавливается период (т. н. задержка обработки прерывания) между возникновением прерывания и выполнением первой инструкции обработчика прерываний, а также период (т. н. задержка планирования) между последней инструкцией обработчика прерываний и первой инструкцией потока, приведенного обработчиком прерываний в состояние готовности.

Период максимальной задержки обработки прерывания строго определяется благодаря тому, что ОС запрещает прерывания только на время выполнения нескольких инструкций в нескольких критических секциях программного кода. Периоды, в течение которых прерывания запрещены, продолжаются строго определенное время и не имеют зависимости от данных.

Модуль первичной обработки прерываний, имеющийся в микроядре, выполняет несколько инструкций перед тем, как вызвать обработчик прерываний. В результате вытеснение процессов по аппаратным прерываниям или вызовам ядра происходит одинаково быстро и посредством одной и той же цепи инструкций.

Во время своей работы обработчик прерываний имеет полный доступ к оборудованию (поскольку является частью привилегированного потока), но другие вызовы ядра выполнять не может. Обработчик прерываний должен реагировать на аппаратное прерывание с максимально возможной скоростью, выполнять минимальный объем работы для обслуживания прерывания (чтение байта из универсального асинхронного приемопередатчика (UART) и т. д.) и, при необходимости, производить планирование потока с некоторым приоритетом для выполнения дальнейшей работы.

Максимальная задержка обработки прерывания для заданного аппаратного приоритета может быть непосредственно вычислена, исходя из значения задержки обработки прерывания, вносимой ядром, и максимального времени работы обработчика прерываний по каждому прерыванию, имеющему более высокий аппаратный приоритет, чем заданный обработчик. Поскольку приоритеты аппаратных прерываний могут переназначаться, самому важному прерыванию в системе можно присвоить наивысший приоритет.

Следует отметить, что вызов функции InterruptAttachEventQ не приводит к запуску обработчика прерываний. Вместо этого по каждому прерыванию генерируется заданное пользователем событие. Как правило, это событие приводит к планированию ожидающего потока, чтобы он мог выполнить основную работу. Прерывание автоматически маскируется после генерации события и должно в нужный момент явно демаскироваться потоком, обслуживающим устройство.

Таким образом, приоритет работы, осуществляемой по аппаратным прерываниям, может регулироваться самой операционной системой, а не оборудованием. Источник прерывания не генерирует нового прерывания до тех пор, пока не будет обслужено текущее, что позволяет управлять действием прерываний на критические секции программного кода и осуществлять высокоточное управление планированием.

Пользовательские процессы и потоки могут "перехватывать" не только аппаратные прерывания, но и различные "события" внутри микроядра. Когда происходит какое-либо из этих событий, ядро может вызвать указанную внешнюю функцию (upcall) в пользовательском потоке для обработки данного события. Например, при каждом вызове потока idle пользовательский поток может указать ядру сделать внешний вызов для реализации специальных режимов энергосбережения оборудования.

Механизм приоритетов (МП) показывает какие устройства нужно обслужить первыми. МП решает следующие задачи:

    Фиксирует приоритет любой выполняемой процессором программы.

    Идентифицирует ЗП от ВУ с максимальным приоритетом.

    Разрешает прерывание программы при возникновении запроса с большим приоритетом.

Прерывание программы обслуживания прерываний называется вложенным прерыванием.

Рис. 6.4 Пример работы ЦП в режиме вложенных прерываний.

На рис 6.4 показан пример вложенного прерывания:

    До t 1 нет ЗП

    t 1 → ЗП от ВУ4

    t 2 → ЗП от ВУ3

    t 3 → ЗП от ВУ2

    t 4 → закончено обслуживание ВУ2

    t 5 → ЗП от ВУ1

    t 6 → закончено обслуживание ВУ1

    t 7 → закончено обслуживание ВУ3

    t 8 → закончено обслуживание ВУ4

Недостаток: При большой частоте поступления ЗП ЦП работает неэффективно, т.к. много времени ЦП расходуется на ЗП, восстановление регистров процессора, переход от одной программы к другой.

Можно уменьшить частоту ЗП путем включения буферных ЗУ.

При присвоении приоритетов ВУ учитываются следующие условия:

    Чем больше быстродействие устройства, тем выше приоритет ему присваивается.

    Наивысший приоритет присваивается устройству, данные от которого не могут быть восстановлены (обычно таймер).

    В ЭВМ семейства Macintosh приоритет программы указывается во втором слове ВП.

    В ЭВМ семейства IBM PC приоритет программы устанавливается с помощью специальной БИС (большая интегральная схема) – программируемый контроллер прерываний.

Техническая реализация многоуровневых вложенных приоритетных векторных прерываний в ЭВМ на основе единого магистрального канала обмена данными.

Реализация многоуровневых ВП в ЭВМ семейства IBM .

Для Реализация многоуровневых ВП в ЭВМ семейства IBM применена БИСIntel 8259A .

Технические характеристики бис Intel 8259a.

    Число уровней ЗП = 8.

    Количество уровней можно расширить до 64 за счет каскадного включения микросхем

    Режим обслуживания ЗП, уровни приоритетов, АВП устанавливаются программным путем.

    Техническая реализация приоритетных векторных прерываний в ЭВМ с изолированными магистральными каналами обмена данными (семейство IBM AT ): режимы работы программируемого контроллера прерываний (ПКП),

схема подключения ПКП к системной магистрали,

Схема включения ПКП к системной шине ВУ.

Рис. 6.7 Схема включения ПКП к системной шине и ВУ.

Назначение выводов БИС:

    D 7- D 0 – выводы ШД, служат для приема управляющее информации от ЦП и передачи статусной информации в ЦП.

    A 0 – адресный вход, адресация внутренних регистров контроллера (2 адреса).

    ~ CS (chip select ) - выбор кристалла, разрешает или запрещает связь контроллера с системной шиной.

    • ~CS = 0 – есть связь, ~CS = 1 – нет связи.

Первый ПКП использует адреса – 20 h , 21 h .

Второй ПКП использует адреса – A 0 h , A 1 h .

    ~ RD , ~ WR – ввод, вывод (сигналы ШУ), соединяются с линиями магистрали~ IOR и ~ IOW .

    INT (выход) – сигнал ЗП в ЦП.

    ~INTA (interrupt acknowledge) – сигнал РП от ЦП.

    CAS 2, CAS 1, CAS 0 – шина каскадирования. Для ведущего контроллера прерывания эти линии являются выходами, а для ведомого – входами.

    ~ SP /~ EN – указывает ведущий (1) или ведомый (0) ПКП.

    IR 0... IR 7 – входы запросов прерывания от ВУ.

функциональный состав и программная модель ПКП.

Прерывание - это изменение естественного порядка выполнения программы, которое связано с необходимостью реакции системы на работу внешних устройств, а также на ошибки и особые ситуации, возникшие при выполнении программы. При этом вызывается специальная программа - обработчик прерываний , специфическая для каждой возникшей ситуации, после выполнения которой возобновляется работа прерванной программы.

Механизм прерывания обеспечивается соответствующими аппаратно-программными средствами компьютера.

Классификация прерываний представлена на рис. 7.1 .


Рис. 7.1.

Запросы аппаратных прерываний возникают асинхронно по отношению к работе микропроцессора и связаны с работой внешних устройств.

Запрос от немаскируемых прерываний поступает на вход NMI микропроцессора и не может быть программно заблокирован. Обычно этот вход используется для запросов прерываний от схем контроля питания или неустранимых ошибок ввода/вывода.

Для запросов маскируемых прерываний используется вход INT микропроцессора. Обработка запроса прерывания по данному входу может быть заблокирована сбросом бита IF в регистре флагов микропроцессора.

Программные прерывания , строго говоря, называются исключениями или особыми случаями. Они связаны с особыми ситуациями, возникающими при выполнении программы (отсутствие страницы в оперативной памяти, нарушение защиты, переполнение ), то есть с теми ситуациями, которые программист предвидеть не может, либо с наличием в программе специальной команды INT n, которая используется программистом для вызова функций операционной системы либо BIOS , поддерживающих работу с внешними устройствами. В дальнейшем при обсуждении работы системы прерываний мы будем употреблять единый термин " прерывание " для аппаратных прерываний и исключений, если это не оговорено особо.

Программные прерывания делятся на следующие типы.

Нарушение (отказ) - особый случай, который микропроцессор может обнаружить до возникновения фактической ошибки (например, отсутствие страницы в оперативной памяти); после обработки нарушения программа выполняется с рестарта команды, приведшей к нарушению.

Ловушка - особый случай, который обнаруживается после окончания выполнения команды (например, наличие в программе команды INT n или установленный флаг TF в регистре флагов ). После обработки этого прерывания выполнение программы продолжается со следующей команды.

Авария ( выход из процесса) - столь серьезная ошибка, что некоторый контекст программы теряется и ее продолжение невозможно. Причину аварии установить нельзя, поэтому программа снимается с обработки. К авариям относятся аппаратные ошибки, а также несовместимые или недопустимые значения в системных таблицах.

Порядок обработки прерываний

Прерывания и особые случаи распознаются на границах команд, и программист может не заботиться о состоянии внутренних рабочих регистров и устройств конвейера.

Реагируя на запросы прерываний, микропроцессор должен идентифицировать его источник, сохранить минимальный контекст текущей программы и переключиться на специальную программу - обработчик прерывания. После обслуживания прерывания МП возвращается к прерванной программе, и она должна возобновиться так, как будто прерывания не было.

Обработка запросов прерываний состоит из:

  • "рефлекторных" действий процессора, которые одинаковы для всех прерываний и особых случаев и которыми программист управлять не может;
  • выполнения созданного программистом обработчика.

Для того чтобы микропроцессор мог идентифицировать источник прерывания и найти обработчик, соответствующий полученному запросу, каждому запросу прерывания присвоен свой номер (тип прерывания ).

Тип прерывания для программных прерываний вводится изнутри микропроцессора; например, прерывание по отсутствию страницы в памяти имеет тип 14. Для прерываний, вызываемых командой INT n, тип содержится в самой команде. Для маскируемых аппаратных прерываний тип вводится из контроллера приоритетных прерываний по шине данных . Немаскируемому прерыванию назначен тип 2.

Всего микропроцессор различает 256 типов прерываний . Таким образом, все они могут быть закодированы в 1 байте.

"Рефлекторные" действия микропроцессора по обработке запроса прерывания выполняются аппаратными средствами МП и включают в себя:

  • определение типа прерывания ;
  • сохранение контекста прерываемой программы (некоторой информации, которая позволит вернуться к прерванной программе и продолжить ее выполнение). Всегда автоматически сохраняются как минимум регистры EIP и CS , определяющие точку возврата в прерванную программу, и регистр флагов EFLAGS . Если вызов обработчика прерывания проводится с использованием шлюза задачи, то в памяти полностью сохраняется сегмент состояния TSS прерываемой задачи;
  • определение адреса обработчика прерывания и передача управления первой команде этого обработчика.

После этого выполняется программа - обработчик прерывания , соответствующая поступившему запросу. Эта программа пишется и размещается в памяти прикладным или системным программистом. Обработчик прерывания должен завершаться командой I RET , по которой автоматически происходит переход к продолжению выполнения прерванной программы с восстановлением ее контекста.

Для вызова обработчика прерывания микропроцессор при работе в реальном режиме использует таблицу векторов прерываний , а в защищенном режиме - таблицу дескрипторов прерываний .


Рис. 7.3.

Содержимое регистра IDTr не сохраняется в сегментах TSS и не изменяется при переключении задачи. Программы не могут обратиться к IDT , так как единственный бит TI индикатора таблицы в селекторе сегмента обеспечивает выбор только между таблицами GDT и LDT .

Максимальный предел таблицы дескрипторов прерываний составляет 256*8 - 1 = 2047.

Можно определить предел меньшим, но это не рекомендуется. Если происходит обращение к дескриптору вне пределов IDT , процессор переходит в режим отключения до получения сигнала по входу NMI или сброса.

В IDT могут храниться только дескрипторы следующих типов:

  • шлюз ловушки ,
  • шлюз прерывания, шлюз задачи.

Бывает такая ситуация, когда надо на один периферийный девайс повесить много разных задач, а он всего один и что то надо с этим делать.

Простой пример — таймер и его прерывание по переполнению.
Мы можем задавать выдержку и по прерыванию делать какие-нибудь операции. Но если в один момент времени мы хотим чтобы таймер по прерванию сделал одну операцию, а потом другую, третью. Да сколько угодно, в зависимости от состояния. А вектор один.

Или, например, USART. Нам запросто может потребоваться, чтобы в зависимости от режима на прерывание по приходу байта выполнялся разный код. В одном режиме — выдача приветствия, в другом посыл матом в баню. В третьем удар в голову. А вектор один.

Конечно, можно добавить в обработчик прерывания switch-case конструкцию и по выбору режима перейти на нужный участок кода, но это довольно громоздко, а самое главное — время перехода будет разное, в зависимости от того в каком порядке будет идти опрос-сравнение switch-case структуры.

То есть в свитче вида:

1 2 3 4 5 6 7 switch (x) { 1 : Действие 1 2 : Действие 2 3 : Действие 3 4 : Действие 4 }

switch(x) { 1: Действие 1 2: Действие 2 3: Действие 3 4: Действие 4 }

Будет последовательное сравнение х вначале с 1, потом с 2, потом с 3 и так до перебора всех вариантов. А в таком случае реакция на Действие 1 будет быстрей чем реакция на Действие 4. Особо важно это при расчете точных временных интервалов на таймере.

Но есть простое решение этой проблемы — индексный переход. Достаточно перед тем как мы начнем ожидать прерывание предварительно загрузить в переменные (а можно и сразу в индексный регистр Z) направление куда нам надо перенаправить наш вектор и воткнуть в обработчик прерывания индексный переход. И вуаля! Переход будет туда куда нужно, без всякого сравнения вариантов.

В памяти создаем переменные под плавающий вектор:

Timer0_Vect_L: .byte 1 ; Два байта адреса, старший и младший Timer0_Vect_H: .byte 1

Подготовка к ожиданию прерывания проста, мы берем и загружаем в нашу переменную нужным адресом

CLI ; Критическая часть. Прерывания OFF LDI R16,low(Timer_01) ; Берем адрес и сохраняем STS Timer0_Vect_L,R16 ; его в ячейку памяти. LDI R16,High(Timer_01) ; Аналогично, но уже со старшим вектором STS Timer0_Vect_H,R16 SEI ; Прерывания ON

Все, можно запускать таймер и ждать нашего прерывания. С другими случаями аналогично.

А обработчик получается вида:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ;============================= ; Вход в прерывание по переполнению от Timer0 ;============================= TIMER_0: PUSH ZL ; сохраняем индексный регистр в стек PUSH ZH ; т.к. мы его используем PUSH R2 ; сохраняем R2, т.к. мы его тоже портим IN R2,SREG ; Извлекем и сохраняем флаговый регистр PUSH R2 ; Если не сделать это, то 100% получим глюки LDS ZL,Timer0_Vect_L ; загружаем адрес нового вектора LDS ZH,Timer0_Vect_H ; оба байта. CLR R2 ; Очищаем R2 OR R2,ZL ; Проверяем вектор на ноль. Иначе схватим аналог OR R2,ZH ; reset"a. Проверка идет через операцию OR BREQ Exit_Tm0 ; с накоплением результата в R2 ; так мы не портим содержимое Z и нам не придется; загружать его снова IJMP ; Уходим по новому вектору; Выход из прерывания. Exit_Tm0: POP R2 ; Достаем и восстанавливаем регистр флагов OUT SREG,R2 POP R2 ; восстанавливаем R2 POP ZH ; Восстанавливаем Z POP ZL RETI ; Дополнительный вектор 1 Timer_01: NOP ; Это наши новые вектора NOP ; тут мы можем творить что угодно NOP ; желательно недолго - в прерывании же NOP ; как никак. Если используем какие другие NOP ; регистры, то их тоже в стеке сохраняем RJMP Exit_Tm0 ; Это переход на выход из прерывания; специально сделал через RJMP чтобы; Дополнительный вектор 2 ; сэкономить десяток байт на коде возврата:))) Timer_02: NOP NOP NOP NOP NOP RJMP Exit_Tm0 ; Дополнительный вектор 3 Timer_03: NOP NOP NOP NOP NOP RJMP Exit_Tm0

;============================= ; Вход в прерывание по переполнению от Timer0 ;============================= TIMER_0: PUSH ZL ; сохраняем индексный регистр в стек PUSH ZH ; т.к. мы его используем PUSH R2 ; сохраняем R2, т.к. мы его тоже портим IN R2,SREG ; Извлекем и сохраняем флаговый регистр PUSH R2 ; Если не сделать это, то 100% получим глюки LDS ZL,Timer0_Vect_L ; загружаем адрес нового вектора LDS ZH,Timer0_Vect_H ; оба байта. CLR R2 ; Очищаем R2 OR R2,ZL ; Проверяем вектор на ноль. Иначе схватим аналог OR R2,ZH ; reset"a. Проверка идет через операцию OR BREQ Exit_Tm0 ; с накоплением результата в R2 ; так мы не портим содержимое Z и нам не придется; загружать его снова IJMP ; Уходим по новому вектору; Выход из прерывания. Exit_Tm0: POP R2 ; Достаем и восстанавливаем регистр флагов OUT SREG,R2 POP R2 ; восстанавливаем R2 POP ZH ; Восстанавливаем Z POP ZL RETI ; Дополнительный вектор 1 Timer_01: NOP ; Это наши новые вектора NOP ; тут мы можем творить что угодно NOP ; желательно недолго - в прерывании же NOP ; как никак. Если используем какие другие NOP ; регистры, то их тоже в стеке сохраняем RJMP Exit_Tm0 ; Это переход на выход из прерывания; специально сделал через RJMP чтобы; Дополнительный вектор 2 ; сэкономить десяток байт на коде возврата:))) Timer_02: NOP NOP NOP NOP NOP RJMP Exit_Tm0 ; Дополнительный вектор 3 Timer_03: NOP NOP NOP NOP NOP RJMP Exit_Tm0

Реализация для RTOS
Но что делать если у нас программа построена так, что весь код вращается по цепочкам задач через диспетчер RTOS? Просчитать в уме как эти цепочки выполняются относительно друг друга очень сложно. И каждая из них может попытаться завладеть таймером (конечно не самовольно, с нашей подачи, мы же программу пишем, но отследить по времени как все будет сложно).
В современных больших осях на этот случай есть механизм Mutual exclusion — mutex. Т.е. это своего рода флаг занятости. Если какой нибудь процесс общается, например, с UART то другой процесс туда байт сунуть не смеет и покорно ждет пока первый процесс освободит UART, о чем просемафорит флажок.

В моей механизмов взаимоисключений нет, но их можно реализовать. По крайней мере сделать некоторое минимальное подобие. Полноценную реализацию всего этого барахла я делать не хочу, т.к. моей целью является удержания размера ядра на уровне 500-800 байт.
Проще всего зарезервировать в памяти еще один байт — переменную занятости. И когда один процесс захватывает ресурс, то в эту переменную он записывает время когда ориентировочно он его освободит. Время идет в тиках системного таймера которое у меня 1ms.
Если какой либо другой процесс попытается обратиться к этому же аппаратному ресурсу, то он вначале посмотрит на состояние его занятости, считает время в течении которого будет занято и уйдет покурить на этот период — загрузит сам себя в очередь по таймеру. Там снова проверит и так далее. Это простейший вариант.

Проблема тут в том, что если на один вектор много желающих будет, то процессы так и будут бегать вокруг да около, словно бухая молодежь вокруг единственного сортира на площади в период праздничных гуляний. У кого нибудь да мочевой пузырь не выдержит — запорет алгоритм. А у кого тут фиг угадаешь, т.к. промоделировать это будет сложновато.

Решение проблемы — добавление еще одной очередной цепочки, на этот раз уже на доступ к ресурсу. Чтобы он не простаивал вообще. Т.е. один выскочил, тут же второй, третий и так далее пока все процессы не справят свою нужду в какой нибудь там USART.
Недостаток очевиден — еще одна очередь это дополнительная память, дополнительный код, дополнительное время. Можно, конечно, извратиться и на очередь к вектору натравить код диспетчера основной цепи. Но тут надо все внимательно отлаживать, ведь вызываться он будет по прерыванию! Да и громоздко, требуется лишь тогда, когда у нас много желающих.

Второе решение — выкинуть переменную времени занятости, оставив только флаг «Занято!». А процесс который пытается обратиться не убегает покурить, а отскакивает на пару шагов назад — на конец очереди задач и сразу же ломится обратно. Народ вокруг сортира не вокруг бегает, а толкется локтями у входа по принципу кто первый пролезет.
Недостаток другой — большая нагрузка на главный конвеер, куча запросов на постановку в очередь так недолго распухнуть на всю оперативку и повстречаться со стеком, а это черевато глобальным апокалипсисом.

Разумеется таймер тут приведен для примера, большую часть задач можно решить системным таймером RTOS, но если нужна вдруг меньшая дискретность или высокая скорость реакции на событие (а не пока главный конвеер дотащит задачу до исполнения), то механим управляемых прерываний, ИМХО, то что доктор прописал.




Top