Raspberry pi 3 подключение. Raspberry Pi — подключение (установка ОС, настройка). Если у вас нет дисплея HDMI

Когда вы покупаете Raspberry Pi, то вы покупаете только печатную плату, которая приходит даже без источника питания и операционной системы. Данная статья предназначена для того, чтобы дать вам представление, как настроить Raspberry Pi, чтобы можно было начать его использовать.

Raspberry Pi представляет собой миникомпьютер, который имеет много портов, которые могут быть использованы для подключения различных периферийных устройств. Вы можете подключить отдельный монитор через HDMI порт и клавиатуру и мышь через USB разъемы, также у Raspberry Pi имеется Ethernet порт, поэтому вы можете использовать интернет в своих проектах на Raspberry Pi.

В данном руководстве вы пройдете через ряд шагов, которые позволят вам подключить Raspberry Pi к вашему ноутбуку или настольному ПК, что исключает необходимость использования отдельных устройств для Raspberry Pi.

Оборудование и программное обеспечение

  • 1 x ;
  • 1 x кабель Ethernet;
  • 1 x ноутбук или стационарный ПК;
  • 1 x SD карта (минимальный размер 4 ГБ);
  • 1 x кабель Micro USB (чтобы запитать Raspberry Pi).

Прежде, чем мы продолжим, нам понадобится программное обеспечение, которое необходимо скачать. Ниже приведен список программного обеспечения и ссылки, откуда вы можете его скачать бесплатно:

  • Raspbian OS : когда вы покупаете Raspberry Pi, у вас есть возможность (в некоторых магазинах) купить предустановленную на SD карту операционную систему, либо просто скачать zip-файл c https://www.raspberrypi.org/downloads/ , который содержит образ Raspbian OS, чтобы записать его на вашу SD карту;
  • SDFormatter : у SD Card Association есть очень хорошее ПО, которое может быть использовано для форматирования вашей SD карты. Посетите https://www.sdcard.org/downloads/formatter_4/index.html и скачайте SDFormatter для вашей операционной системы;
  • Win32DiskImager : чтобы записать Raspbian OS на вашу SD карту, вам понадобится полезная утилита Win32DiskImager. Скачать её можно здесь ;
  • : вам будет необходимо определить IP адрес вашего Raspberry Pi, когда подключите его компьютеру. Просто скачайте эту программу http://www.advanced-ip-scanner.com/ ;
  • PuTTy : PuTTy - это SSH клиент, который будет использоваться для подключения к Raspberry Pi. Вы можете скачать его здесь http://www.putty.org/ ;
  • VNC : и последнее это VNC сервер. Скачать его можно здесь https://www.realvnc.com/download/ .

Когда скачаете всё это программное обеспечение, распакуйте и установите его.

Установка операционной системы

  1. Вставьте SD карту в картридер и проверьте, какая буква была присвоена диску.
  2. Откройте Win32DiskImager, возможно понадобится запустить его от имени администратора.
  3. Выберите образ распакованной Raspbian OS.
  4. Выберите букву, присвоенную вашей SD карте, в выпадающем списке устройств. Убедитесь в том, что выбрали правильную букву диска, чтобы не повредить данные на каком-либо другом диске.
  5. Нажмите Записать (Write ) и ждите завершения.
  6. Закройте Win32DiskImager, выньте SD карту и вставьте её в Raspberry Pi.

Примечание: после записи операционной системы вы заметите, что на SD карте осталось лишь несколько мегабайт. Это из-за созданного раздела, остальная часть свободного пространства скрыта. Вы сможете это исправить, как только мы подключимся к Raspberry Pi.

Общий интернет через Ethernet порт

Как только SD карта будет готова, вставьте её в Raspberry Pi. Подключите USB кабель питания. А также соедините Raspberry Pi и ноутбук кабелем Ethernet.

Если вы подключаете Raspberry Pi к роутеру с доступом к интернету, то этот шаг можно пропустить.

Проверка IP адреса, присвоенного вашему Raspberry Pi

Это просто, убедитесь, что ваш Raspberry Pi подключен к Ethernet сети вашего компьютера (напрямую или через роутер). Если всё работает нормально, вы увидите, что светодиоды на плате мигают.


Подключение к Raspberry Pi через PuTTy

Отлично! Перед тем, как продолжить, посмотрим, что у нас уже сделано к текущему моменту.

Raspberry Pi - это крошечный, но вполне полноценный компьютер. По внешним признакам его можно отнести к т.н. встраиваемым или одноплатным компьютерам, т.е. компьютерам, предназначенным для использования в качестве части каких-либо изделий: автомобилей, игровых приставок, промышленного и врачебного оборудования, «умного дома», устройств «интернета вещей» и т.п. В отличие от микроконтроллеров, например, Arduino, Raspberry Pi обладает полноценной операционной системой, поэтому он способен выполнять гораздо более сложные задачи.

Raspberry Pi является торговой маркой Фонда Raspberry Pi.

Какие бывают Raspberry Pi

Компьютеры Raspberry Pi продаются с 2012 года, и за это время было выпущено немало разновидностей. Ниже мы подробно рассмотрим современные образцы, а более старые модели перечислим бегло.

Raspberry Pi 3 model B

Эта разновидность была выпущена в феврале 2016 года. Вот ее основные технические характеристики:

  • оперативная память (RAM): 1 Гбайт;
  • размер: 85,6х56,5х17 мм.

Возможности для взаимодействия с внешним миром у этого компьютера очень впечатляющие:

  • полноразмерный HDMI-видеовыход;
  • 4 полноразмерных разъема USB;
  • аудиовыход;
  • Ethernet-разъем для проводного подключения к локальной сети;
  • Wi-Fi для беспроводного подключения к локальной сети;
  • Bluetooth;
  • разъем ввода-вывода общего назначения (т.н. GPIO);
  • разъем для подключения камеры (CSI);
  • разъем для подключения дисплея (DSI), в т.ч. поддерживаются экраны, чувствительные к касанию, т.н. тачскрины.

Обратите внимание: на плате Raspberry Pi 3 model B отсутствует встроенная флеш-память. Чтобы запустить этот одноплатный компьютер, нужно взять карту памяти microSD, записать на нее образ операционной системы и вставить в разъем на плате.

Также особенностью Raspberry Pi 3 model B является использование для подключения источника питания разъема micro-USB, как в современных сотовых телефонах. Однако нужно учитывать, что не каждая зарядка от телефона подойдет для питания «малинки». Например, для питания Raspberry Pi 3 model B изготовитель советует использовать источник питания от надежного производителя, рассчитанный на ток до 2,5А.

Raspberry Pi 3 Zero и Zero W

Это особые разновидности Raspberry Pi уменьшенного размера и, соответственно, мощности. Модель Zero 3 была выпущена в мае 2016 года, а Zero W - в феврале 2017. Они предназначены для тех применений, где не требуется высокая производительность старшего образца, но зато большое значение имеет малый размер и малое потребление электроэнергии.

Вот основные технические характеристики этих образцов:

  • процессор (CPU): 32-разрядный 1-ядерный ARM частотой 1 ГГц;
  • оперативная память (RAM): 512 Мбайт;
  • размер: 65х30х5 мм.

Возможности для подключения внешних устройств здесь более скромные:

  • видеовыход мини-HDMI;
  • 1 разъем micro-USB;
  • разъем для карты памяти microSD;
  • разъем ввода-вывода общего назначения (GPIO);
  • разъем для подключения камеры (CSI).

Zero W отличается от просто Zero тем, что имеет Wi-Fi и Bluetooth. Обе платы получают питание через разъем micro-USB. Таким образом, здесь имеется по 2 разъема micro-USB, один из которых служит только для подключения питания, а второй - для подключения внешних устройств.

Обратите внимание: как и у старшего брата, Raspberry Pi 3 model B, в этих разновидностях отсутствует встроенная флеш-память. Чтобы запустить этот одноплатный компьютер, нужно взять карту памяти microSD, записать на нее образ операционной системы и вставить в разъем на плате.

Raspberry Pi 3 Compute Module

Это т.н. вычислительный узел - разновидность Raspberry Pi, прямо предназначенная для использования как части какого-либо промышленного изделия. Мощность этого встраиваемого компьютера такая же, как и у Raspberry Pi 3 model B, а размеры близки к разновидности Zero:

  • процессор (CPU): 64-разрядный 4-ядерный ARM частотой 1,2 ГГц;
  • оперативная память (RAM): 1 ГБайт;
  • размер: 67,6х31 мм.

Основные отличия от рассмотренных ранее разновидностей следующие:

  • все разъемы собраны в один большой 200-выводный разъем вида SO-DIMM, расположенный по краю платы;
  • нет Wi-Fi, Bluetooth и Ethernet;
  • имеет встроенную флеш-память объемом 4 ГБайт.

Чтобы использовать этот узел, он должен быть вставлен в особую материнскую плату с разъемом SO-DIMM. Через этот разъем узел получает электропитание и взаимодействует с изделием, частью которого он является, например, автомобилем, станком с ЧПУ, беспилотником и т.п.

Может возникнуть вопрос: зачем нужен вычислительный узел, если уже есть Raspberry Pi 3 model B и Zero? Ответ прост: во-первых, Zero все-таки относительно слабый по мощности компьютер; а Raspberry Pi 3 model B нацелен в основном на рукастых умельцев, для которых некоторая избыточность размеров и разъемов вполне допустима. В случае же с профессиональным использованием Raspberry Pi неиспользуемые разъемы неприемлемы, даже если они будут скрыты под обшивкой. Согласитесь, будет очень странно, если кто-то обнаружит внутри, скажем, домашней развлекательной системы разъем для подключения камеры или пару скрытых USB-портов.

Существует также облегченная разновидность вычислительного узла: она отличается от полной отсутствием встроенной флеш-памяти.

Предыдущие образцы Raspberry Pi

Из разновидностей «малинового пирога» прошлых лет разработки, самое, пожалуй, широкое распространение получил Raspberry Pi 2 model B:

Он лишь немного уступает по производительности своему старшему брату 3-го поколения, а размеры, разъемы и возможности беспроводного подключения у него такие же.

Первая разновидность Raspberry Pi Zero, выпущенная в ноябре 2015 года, отличается от современных отсутствием разъема для подключения камеры.

Особенностью самых первых образцов Raspberry Pi model B, выпускавшихся в 2012 и 2013-м годах, было наличие аналогового видеовыхода RCA, т.н. «тюльпана», и меньшее количество USB-разъемов:

Также у тех образцов Raspberry Pi разъем GPIO был короче и состоял только из 26 выводов. Впрочем, обратная совместимость сохранена: платы расширения, выпущенные для тех Raspberry Pi, можно без каких-либо переделок подключать к первым 26-ти выводам разъема GPIO современных «малинок», у которых этот разъем имеет 40 выводов. Более того, многие современные платы расширения, подключаемые к Raspberry Pi GPIO, могут успешно работать и при подключении к разъему ввода-вывода тех, самых первых образцов встраиваемого компьютера.

Существовала еще разновидность Raspberry Pi 1 model A, которая была младшим братом model B: она имела только 1 USB-разъем, а Ethernet-разъем отсутствовал.

Все образцы Raspberry Pi 1-го поколения не имели встроенных возможностей для беспроводных подключений, таких как Wi-Fi и Bluetooth. Впрочем, к ним можно было подключить соответствующие устройства через USB-разъем.

Что можно сделать на основе Raspberry Pi

Можно сказать просто: если какая-то задача решается с помощью компьютера или микроконтроллера, ее можно успешно и, как правило, дешево решить при помощи Raspberry Pi!

Как и с любым компьютером, возможности Raspberry Pi определяются не только «железом», т.е. возможностями устройств, распаянных на плате одноплатника и подключенных к ней, но и «софтом», т.е. программным обеспечением. Основа ПО любого компьютера - операционная система. Raspberry Pi может работать под управлением большого количества различных ОС, но основной операционной системой для него является Raspbian. Именно ее мы советуем использовать в подавляющем большинстве случаев, т.к. она создана специально для Raspberry Pi.

Итак, что можно сделать на основе этого одноплатного компьютера? Начнем с простых, лежащих на поверхности примеров:

  • Raspberry Pi 3 model B успешно заменит рабочий компьютер: вставьте в него SD-карту с записанным образом операционной системы Raspbian, подключите к нему через USB-разъемы или Bluetooth клавиатуру и мышь, а по HDMI - монитор - и вот вам готовый компьютер! ОС Raspbian вполне современная. После ее запуска пользователь попадает на привычный графический рабочий стол. В ОС есть интернет-обозреватель Chromium, набор офисных приложений LibreOffice и приложение для работы с почтой. Подключить компьютер к локальной сети на работе или дома можно как проводом через Ethernet-разъем, так и по радиоканалу при помощи Wi-Fi.
  • Raspberry Pi 3 model B отлично подойдет в качестве личного компьютера школьника. Кроме уже упомянутых интернет-обозревателя и офисных приложений, в нем есть возможности для обучения программированию на языках Scratch, Python, Perl, C/С++, JavaScript. Можно делать математические расчеты при помощи приложения Wolfram Mathematica, а еще писать электронную музыку в Sonic Pi.

Для установки по требованию доступно огромное количество других приложений на все случаи жизни.

Менее очевидные, но тоже очень распространенные примеры использования Raspberry Pi:

  • мультимедийный развлекательный центр, например, Kodi;
  • «цифровая вывеска»: проигрыватель видео для монитора, расположенного в каком-либо общественном месте: магазине, школе, ВУЗе, поликлинике, витрине и т.д.;
  • фотокиоск.
  • ноутбук;
  • веб-камеру;
  • камеру для покадровой съемки видеороликов;
  • Wi-Fi роутер;
  • голосовой помощник наподобие Яндекс.Станции;
  • автоматическую телефонную станцию (АТС);
  • отображатель сведений о погоде;
  • электронную приборную панель для автомобиля;
  • дверцу для кошки, узнающую вашего питомца и пускающую только его;
  • дешевые очки ночного видения;
  • и многое, многое другое.

Если вас привлекают роботы, можете собрать своего робота на основе Raspberry Pi:

    простая 2-колесная машинка;

    та же машинка, умеющая ездить вдоль нарисованной линии;

    машинка с дистанционным управлением;

    L3-37 из «Звездных войн»;

Подключение устройств к Raspberry Pi

Бытовые разъемы и беспроводные подключения

К видеовыходу HDMI вы можете подключить телевизор, монитор или видеопроектор. Также есть аналоговый видеовыход. Чтобы получить сигнал с него, необходимо использовать особый провод, подключаемый в 3,5-мм звуковой выход.

К USB-разъему Raspberry Pi можно подключить любое USB-устройство при условии, что драйвер для него загружен в операционной системе, под управлением которой работает одноплатный компьютер. Как правило, такие распространенные устройства, как клавиатура, мышь, флешки и внешние жесткие диски, работают «из коробки». А вот подключение 3G/4G-модема или ТВ-приемника может потребовать ручной установки драйверов. Неполный список устройств, которые работают с Raspberry Pi, можно посмотреть на сетевом узле eLinux.org.

Звуковой выход - обычный 3,5-мм разъем, к нему можно подключить наушники или проводные колонки c усилителем.

Bluetooth: можно подключать гарнитуры, беспроводные колонки и множество других устройств; можно подключить смартфон и управлять с него вашим одноплатным компьютером.

Wi-Fi: Raspberry Pi может работать как в качестве подчиненного устройства, т.н. клиента сети Wi-Fi, так и в качестве ведущего, т.н. точка доступа Wi-Fi.

Камера и экран

Raspberry Pi 3 model B и Zero имеют особый разъем для подключения камеры. Доступны камеры разрешением 5 и 8 мегапикселей, с инфракрасными фильтром и без него, с постоянным или изменяемым фокусным расстоянием, для дневной или ночной съемки - выбор огромен, и удовлетворит запросы большинства пользователей.

Так же хорошо обстоит дело с экранами: доступны жидкокристаллические экраны различных размеров и всевозможных разрешений, в том числе поддерживающие 10-точечное касание, цветные, одноцветные и черно-белые. Есть также экраны типа «электронная бумага» - они хороши для приложений, где изображение обновляется нечасто. Любопытно, что экраны для Raspberry Pi подключаются не только через разъем DSI, но и через разъемы GPIO, HDMI и USB.

Платы расширения

Изюминкой Raspberry Pi является GPIO - 40-контактный разъем ввода-вывода общего назначения:

К нему можно подключать платы расширения (HAT, англ. hardware on top), добавляющие к встраиваемому компьютеру новые возможности. Удобство использования такой платы в том, что не требуется паять или внимательно соединять по одному перемычками выводы GPIO и подключаемой платы. Все выводы разъема имеют определенное назначение; достаточно совместить разъем на Raspberry Pi с ответной частью на подключаемой плате, нажать - и готово! Нужно, однако, заметить, что назначение некоторых выводов GPIO можно менять. В этом случае изучите руководство к подключаемой плате, чтобы понять, будет ли она работать с переназначенными выводами.

Так, например, выглядит Raspberry Pi 3 model B с подключенной платой Sense HAT:

Выбор плат расширения поистине огромен. Вот далеко не полный список их видов:

  • светодиоды и их сетки;
  • светодиодные (OLED), ЖК (TFT), сегментные экраны;
  • небольшие громкоговорители, жужжатели (зуммеры);
  • микрофоны;
  • звуковые карты, усилители звука;
  • кнопки, клавиши, джойстики;
  • приемники и излучатели ИК-излучения;
  • приемники сигнала GPS/ГЛОНАСС;
  • приемопередатчики NFC/RFID, LPWAN, XBee, Z-wave;
  • GSM 2G/3G/4G модемы;
  • замыкатели (реле);
  • цифро-аналоговые и аналого-цифровые преобразователи;
  • источники бесперебойного питания;
  • платы управления электромоторами и сервоприводами;
  • и т.д.

Также большим удобством является то, что к Raspberry Pi GPIO можно подключать несколько плат расширения одновременно. Получается что-то вроде этажерки или слоеного пирога. Конечно, при подключении к разъему ввода-вывода общего назначения Raspberry Pi нескольких плат расширения нужно учитывать, какие выводы GPIO каждая плата использует и каким образом, чтобы платы не мешали друг другу.

Датчики

К Raspberry Pi можно подключить датчики, наверное, для всего, что только можно себе представить:

  • нагрева воздуха, жидкости, почвы;
  • влажности воздуха, почвы;
  • освещенности;
  • инфракрасного, ультрафиолетового излучения;
  • давления воздуха;
  • движения;
  • удара, трясения;
  • ускорения;
  • касания;
  • скорости и направления ветра;
  • наклона;
  • расстояния;
  • направления по сторонам света (компас);
  • дыма;
  • газов: кислорода, углекислого, угарного, NO2, водорода, метана, бытового, паров спирта и т.д.;
  • сердцебиения;
  • датчик Холла;
  • магнитного поля;
  • силы тока;
  • расхода жидкости;
  • и др.

Датчики могут быть как цифровыми, так и аналоговыми. Способ подключения у каждого датчика различный. Одни подключаются непосредственно к разъему ввода-вывода общего назначения (GPIO), другие - к особой плате расширения или к USB-разъему. Для подключения некоторых датчиков могут потребоваться простые радиодетали, такие как сопротивления. В зависимости от способа подключения имеется возможность подключить к одному Raspberry Pi только один датчик или сразу множество, как одного вида, так и разных.

Особенности покупки Raspberry Pi

Если вы собираетесь купить этот одноплатный компьютер, учтите следующие особенности:

Карта памяти microSD

Raspberry Pi, кроме разновидности Compute Module, не имеет встроенной постоянной (флеш) памяти. В этой памяти будет размещен образ операционной системы, прикладное программное обеспечение, а также данные, необходимые для их работы. Поэтому необходимо будет купить также карту памяти microSD. Емкости 4 ГБайт достаточно для простейших применений, но мы советуем использовать карту размером от 8 ГБайт.

Источник питания

Raspberry Pi продается без источника питания. Источник питания должен быть оснащен разъемом micro-USB, как у источников питания современных сотовых телефонов. Однако нужно учитывать, что не каждая зарядка для телефона подойдет для питания Raspberry Pi. Например, для питания Raspberry Pi 3 model B изготовитель советует использовать источник питания от надежного производителя, рассчитанный на ток до 2,5А. Для разновидности Zero можно использовать более слабый источник. Учитывайте, что многое зависит от количества и мощности подключенных USB-устройств и плат расширения, а также от того, используется ли беспроводная передача данных по Wi-Fi или Bluetooth.

Корпус

Raspberry Pi продается без корпуса. В ряде случаев корпус вам не нужен, если вы собираетесь встроить этот одноплатный компьютер в какое-либо изделие, имеющее собственный корпус. Можно также сделать корпус самостоятельно из подручных предметов, или даже напечатать его на 3D-принтере - в Сети вы найдете множество готовых 3D-моделей корпусов для «малинки».
Если же ваш случай не относится к перечисленным выше, то купите вместе с Raspberry Pi корпус. Учтите, что корпус для разновидности Zero не подойдет для Raspberry Pi 3 model B. Обратное может быть как верным, так и нет - читайте внимательно описания. Также при выборе корпуса учитывайте:

  • будете ли вы подключать платы расширения: это влияет на высоту корпуса;
  • будете ли вы подключать камеру: есть корпуса, где уже предусмотрено место для установки камеры;
  • будете ли вы подключать экран: есть корпуса, где уже предусмотрено место для установки экрана;
  • будете ли вы подключать к разъему ввода-вывода общего назначения (GPIO) Raspberry Pi какие-либо устройства, расположенные вне корпуса, например, датчики, светодиоды, кнопки, экраны и т.п.: есть корпуса с прорезями для проводов, идущих к разъему GPIO.

Часы реального времени

Raspberry Pi не имеет встроенных часов реального времени. Это означает, что после каждого выключения питания часы останавливаются. Для некоторых применений Raspberry Pi это не имеет значения. В случае, если для вашего случая точное время на компьютере является необходимым, рассмотрите следующие возможности:

  • каждый раз после включения устанавливать время вручную. Это самый неудобный способ;
  • настроить постоянное подключение Raspberry Pi к сети интернет по Wi-Fi, Ethernet, 2G/3G/4G GSM-модему или Bluetooth. В этом случае через несколько минут после запуска Raspberry Pi и установления соединения с сетью интернет произойдет автоматическая установка часов в правильное значение;
  • купить и установить особую плату расширения, например, RasClock, на которой расположены часы реального времени и батарейка;
  • купить и установить особую плату расширения, например, UPS Pico, которая будет работать как источник бесперебойного питания для вашего Raspberry Pi. К такой плате подключается аккумуляторная батарея, которая будет питать ваш встраиваемый компьютер в то время, пока будет недоступно электричество от сетевого источника питания.

Raspberry Pi как домашний или рабочий компьютер

Если вы хотите купить Raspberry Pi для использования в качестве рабочего или домашнего компьютера, вам также понадобятся:

  • клавиатура с подключением через USB или Bluetooth;
  • мышь с подключением через USB или Bluetooth;
  • монитор или телевизор с подключением по HDMI или DVI, в последнем случае вам потребуется также переходник с HDMI на DVI.

Дополнительные принадлежности

Как правило, в магазинах, где можно купить Raspberry Pi, продаются также различные дополнительные устройства и принадлежности: платы расширения, датчики, камеры, экраны, соединительные провода, перемычки и т.п. Не забудьте купить эти принадлежности вместе с Raspberry Pi.

Установка операционной системы на Raspberry Pi 3

Выбор операционных систем для Raspberry Pi 3

Полный список операционных систем, которые можно установить на Raspberry Pi 3, а в большинстве случаев и на более старые разновидности «малины», насчитывает несколько десятков штук. Как правило, это ОС, основанные на ядре Linux, такие как Raspbian, Ubuntu, LibreELEC и OSMC. Также можно установить особое издание Windows 10 - IoT Core. Конечно, рассмотреть в одной статье установку всех поддерживаемых операционок невозможно. Мы ограничимся описанием установки основной ОС, предназначенной для Raspberry Pi - ОС Raspbian, затем расскажем про установку Windows 10 IoT Core и, наконец, про установку медиацентра Kodi.

Вам понадобится

  • Raspberry Pi 3 model B, Zero или другая разновидность этого микрокомпьютера;
  • microSD-карта размером 8 Гбайт или больше;
  • источник питания для «малины»;
  • USB-клавиатура;
  • USB-мышь;
  • монитор с подключением через HDMI-разъем;
  • другой компьютер, оснащенный устройством для чтения и записи microSD-карт.

Это волшебное слово NOOBS

NOOBS расшифровывается как New Out Of Box Software, что можно перевести на русский язык как «установочное программное обеспечение». Это то же самое, что, например, установочный DVD-диск или установочная флешка с операционной системой Windows 10 или Linux для персонального компьютера. Обычно установка ОС с DVD-диска или флешки выполняется на жесткий диск компьютера, и сам носитель установочного ПО не изменяется. В случае с NOOBS для Raspberry Pi 3 сделано иначе: вы записываете на карту памяти установочное ПО NOOBS, вставляете ее в «малину», включаете и попадаете в установщик. После окончания его работы вместо NOOBS на флеш-карте будет установлена выбранная вами операционная система.

Отметим, что это не единственный способ установки ОС на Raspberry Pi 3. Однако для начинающих пользователей советуем использовать именно его: он самый простой.

С помощью NOOBS на микрокомпьютер можно установить следующие операционные системы:

  • Raspbian,
  • Windows 10 IoT Core,
  • LibreELEC и OSMC - операционки для медиацентра Kodi.

Есть возможность установить при помощи NOOBS и несколько других ОС, но их рассмотрение выходит за границы данной статьи.

Установка Raspbian на Raspberry Pi 3

Чтобы установить операционную систему Raspbian на Raspberry Pi при помощи NOOBS, действуйте по приведенным ниже шагам:

  1. скачайте приложение SD Memory Card Formatter с сетевого узла SD Association;
  2. отформатируйте с ее помощью карту памяти;
  3. зайдите в подраздел NOOBS раздела Downloads («Загрузки») сетевого узла Фонда Raspberry Pi и скачайте установочное ПО NOOBS в виде.zip-архива. Примерный размер файла составляет 1,2 Гбайт;
  4. скопируйте содержимое.zip-архива на флеш-карту. Обратите внимание: содержимое.zip-файла необходимо положить в корень карты;
  5. выполните безопасное извлечение карты памяти;
  6. вставьте microSD-карту в «малину», подключите к USB-разъемам клавиатуру и мышь, подключите монитор через HDMI-разъем и источник питания;
  7. вставьте источник питания микрокомпьютера в розетку и дождитесь, когда установочное ПО NOOBS загрузится;
  8. в появившемся списке выберите операционную систему Raspbian;
  9. запустите установку и дождитесь ее завершения. После перезагрузки Raspberry Pi 3 будет загружена ОС Raspbian.

Обратите внимание: если вы используете карту памяти размером 64 Гбайт или более, после выполнения шага 3 карта будет содержать, как и должно быть, единственный раздел, но он окажется отформатированным в файловой системе exFAT, которую загрузчик микрокомпьютера не понимает. В этом случае после шага 3 вам нужно использовать другое приложение, чтобы отформатировать единственный раздел на флеш-карте в файловую систему FAT32. Если компьютер, на котором вы готовите карту памяти для «малинки», работает под управлением ОС Linux или MacOS, используйте штатные средства. В Windows встроенная утилита форматирования не подойдет, поэтому придется использовать стороннее приложение, например, FAT32 format GUI от RidgeCrop Consultants.

Вы также можете установить Raspbian на Raspberry Pi при помощи прямой заливки на microSD-карту. Берется образ карты памяти, на которой уже установлена Raspbian, и непосредственно посекторно записывается на новую карту. При этом нет необходимости в ее предварительном форматировании: нужный набор разделов и файловая система уже находятся в исходном образе.

Такой способ подойдет более опытным пользователям. Особенно это удобно, если нужно подготовить сразу несколько Raspberry Pi 3 с одной и той же операционной системой и одним и тем же набором прикладного ПО.

  1. зайдите в подраздел Raspbian раздела Downloads («Загрузки») сетевого узла Фонда Raspberry Pi и скачайте Raspbian Stretch with desktop или Raspbian Stretch Lite в виде.zip-архива. Примерный размер файла составляет 1300 Мбайт в первом случае и 350 Мбайт в последнем;
  2. извлеките из скачанного.zip-архива в произвольную папку на диске файл с образом ОС. Обычно этот файл имеет расширение.img;
  3. скачайте и установите приложение Etcher, предназначенное для низкоуровневой записи образов операционных систем на флеш-карту;
  4. вставьте карту памяти, на которую нужно записать образ Raspbian, в устройство для чтения и записи microSD-карт;
  5. запустите Etcher, укажите букву диска, соответствующую вашей карте памяти, укажите путь к.img-файлу с образом операционной системы Raspbian и запустите запись;
  6. по окончании записи вставьте карту памяти в Raspberry Pi 3, подключите к USB-разъемам клавиатуру и мышь, подключите монитор через HDMI-разъем и источник питания;
  7. вставьте источник питания микрокомпьютера в розетку и дождитесь, когда загрузится операционная система Raspbian.

Большим удобством является то, что приложение Etcher поддерживается на всех основных операционках: Windows, Linux и MacOS.

Установка Windows 10 на Raspberry Pi 3

Чтобы выполнить установку Windows 10 IoT Core на «малину» при помощи NOOBS, нужно действовать образом, похожим на установку Raspbian при помощи NOOBS. Единственное отличие заключается в том, что на шаге 9, когда появится выбор операционных систем для установки, вам необходимо выбрать Windows 10 IoT Core.

Вы также можете установить Windows 10 при помощи прямой заливки на microSD-карту. Этот способ удобен тем,что выполняется быстрее, чем установка через NOOBS. К тому же, можно быстро подготовить несколько одинаковых карт памяти, например, если вы собираетесь провести практическое занятие по Windows 10 IoT Core или если вам нужно отгрузить заказчику сразу много встраиваемых компьютеров с предустановленной ОС и единым набором прикладных приложений.

Microsoft позаботилась об удобстве пользователей и выпустила особое приложение, которое облегчает дело. Действуйте следующим образом:

  1. скачайте с сетевого узла Microsoft приложение Windows 10 IoT Core Dashboard, установите его и запустите;
  2. вставьте карту памяти, на которую нужно записать образ операционки, в устройство для чтения и записи microSD-карт;
  3. в окне IoT Core Dashboard укажите значения для полей Device type («Вид устройства», например, “Raspberry Pi 2 & 3”), OS Build (номер сборки Windows 10), Drive (буква диска, соответствующего карте памяти), Device name (сетевое имя микрокомпьютера под управлением Windows 10), New Administrator password (пароль администратора), Confirm Administrator password (еще раз пароль администратора);
  4. если вы хотите, чтобы подготовленный Raspberry Pi под управлением Windows 10 после запуска самостоятельно подключился к Wi-Fi сети, известной вашему компьютеру, поставьте галочку Wi-Fi Network Connection и выберите сеть Wi-Fi из списка;
  5. поставьте галочку I accept the software license terms и нажмите Download and install («Загрузить и установить»). IoT Core Dashboard сама загрузит нужный образ Windows 10 и запишет его на microSD-карту.

Нужно, однако, заметить, что приложение IoT Core Dashboard работает только в операционной системе Windows, поэтому пользователям MacOS и Linux оно не подойдет.

Установка медиацентра Kodi на Raspberry Pi 3

Kodi - это продвинутый бесплатный медиапроигрыватель с удобной пользовательской оболочкой. Именно за высокое качество и распространенность создатели Raspberry Pi включили его в состав установочного приложения NOOBS. Вообще говоря, Kodi можно установить на Raspberry Pi 3 как приложение для Raspbian. Однако это не самое удобное и надежное решение. Лучше использовать операционную систему LibreELEC или OSMC, которые содержат в себе только Kodi и библиотеки, необходимые для его работы.

Чтобы установить Kodi, действуйте так же, как и при установке ОС Raspbian при помощи NOOBS. Единственное отличие заключается в том, что на шаге 9, когда появится выбор операционных систем для установки, вам необходимо выбрать LibreELEC или OSMC.

Установка ОС на Raspberry Pi 3 для ленивых

Если вам лень или некогда самостоятельно записывать установочное ПО NOOBS на карту памяти, вы можете купить ее с уже записанным NOOBS. По цене она почти не отличается от пустой карты. Дополнительным преимуществом этого подхода будет то, что такая карта наверняка будет совместима с этим микрокомпьютером.

Raspberry Pi 3 model B+: новинка 2018 года

Raspberry Pi развивается довольно быстро, и каждый год разработчики выпускают что-нибудь новое. Самым значимым на сегодня новшеством 2018 года стал, конечно же, выпуск новой разновидности этого одноплатного компьютера - Raspberry Pi 3 model B+:

Самая мощная на сегодня модель Raspberry Pi 3 Model B имеет разъём HDMI для подключения монитора, 4 USB-порта для подключения USB устройств, Ethernet-порт для подключения к сети, встроенный Wi-Fi и Bluetooth, 4 ядерный 64-битный процессор ARM 1.2 ГГц, 1 ГБ оперативной памяти. В отличие от обычных компьютеров на маленькой плате Raspberry есть 40 контактов (пинов) GPIO, который могут использоваться как на вход, так и на выход с применением различных протоколов взаимодействия с внешними устройствами, что и позволяет подсоединять к плате различные датчики и исполнительные приборы.

1. Внешний вид, основные элементы, корпус.

Итак, в наших руках Raspberry Pi 3 Model B.

Верхняя сторона выглядит так:

Нижняя сторона:

На нижней стороне установлены слот для SD-карты и оперативная память. SD-карта служит постоянным запоминающим устройством и содержит файлы операционной системы, программ и файлы пользователя.

Для удобства обращения с платой предлагается множество различных корпусов, а вот детали одного из них, они соединяются между собой без винтов:

Но сначала на процессор и графический чип стоит установить радиаторы, поскольку эти микросхемы прилично греются при активной работе платы:

Вот теперь можно собрать корпус и пометить туда плату микрокомпьютера:




Корпус имеет открывающуюся крышку для удобного подключения камеры, дисплея и контактов GPIO.

2. Подготовка к включению и первый запуск.

Для первого запуска Raspberry необходимо следующее:

  • микро SD-карта с установленной операционной системой (OC) Raspbian, рекомендуемой для этого устройства (оптимальная емкость карты - 8 Гб, класс скорости - 10);
  • монитор с HDMI входом;
  • сетевой блок питания с выходным напряжением 5 В и током не менее 2 А, с выходным разъемом micro-USB;
  • USB-мышь и USB-клавитура.

Образ операционной системы Raspbian, созданной на основе Linux Debian 8 Jessi, можно скачать в разделе Downloads сайта raspberrypi.org. Для начала можно воспользоваться образом RASPBIAN JESSIE LITE, как наиболее простым в изучении. Записать образ на SD-карту удобно из-под Windows с помощью программы Win32DiskImager. Способ установки и сама программа описаны на сайте Raspberry по адресу.

Вы также можете воспользоваться файлами, размещенными на нашем сайте в карточке Raspberry Pi 3 или напрямую скачать с Яндекс диска:

  • образ операционной системы;
  • программа Win32DiskImager.

Дальнейшее описание базируется именно на этом образе.

Мышь и клавиатура, подключенные к Raspberry без проблем распознаются системой. Можно также использовать беспроводную мышь и клавиатуру, например Bluetooth, но их надо настроить после запуска Raspberry, а для этого нужна хотя бы USB-мышь. У нас в хозяйстве не нашлось USB-клавиатуры, поэтому для первого запуска мы подключили USB-мышь, а также монитор и питание:

Кстати, на плате нет выключателя питания, она запускается сразу при подключении разъема, и начинается загрузка операционной системы. После загрузки на экране появляется рабочий стол с вполне привычными (но оригинальными) обоями и иконками:

На начальном экране имеются легко распознаваемые иконки Меню, интернет-браузера, менеджера Bluetooth, регулятора громкости, настройки сети и некоторые другие. Из них, пожалуй, самая нужная при настройке и работе - это черный экранчик в правой верхнем углу: терминал. С помощью терминала вводятся команды операционной системы. Поскольку далеко не все программы для Linux имеют графический интерфейс, их можно запустить и работать в них только посредством командной строки. Именно эту возможность и предоставляет терминал. Также все системные операции Linux, например установка и удаление программ осуществляются преимущественно через терминал. В OC используется программа LXTerminal, которая и запускается при щелчке правой кнопкой мыши по иконке. Следует заметить, что многие команды требуют ввода в начале строки приставку sudo (gksudo при запуске программ с графическим интерфейсом), что позволяет выполнить команду от лица администратора компьютера, то есть с наивысшими правами (sudo - Super User Do). Только администратор может устанавливать и удалять программы, а также менять параметры OC и ее конфигурацию.

После первой загрузки системы имеет смысл сразу подключиться к интернету, чтобы обновить файлы ОС до актуальной версии. В правом верхнем углу рабочего стола есть иконка с узнаваемым изображением двух терминалов. При подключении кабеля к разъему Ethernet на плате Raspberry происходит автоматическое подключение к локальной сети. Если щелкнуть мышью по этой иконке, появляется список беспроводных сетей, из которых можно выбрать свою и подключиться к ней, введя соответствующий ключ. При этом вместо терминалов на иконке появится стандартное изображение подключение к беспроводной сети. Именно такая ситуация показана на рисунке выше.

Надо сказать, что по сравнению с ранними версиями Linux многие задачи сейчас автоматизированы. Например, если ранее было необходимо из командной строки монтировать том при подключении обычной флешки, то сейчас флешка распознается при подключении в один из четырех разъемов USB на плате вполне самостоятельно и ей сразу можно пользоваться.

Теперь можно подключить, например, беспроводные мышь и клавиатуру по Bluetooth:

Это делается щелчком на иконке с логотипом Голубого Зуба рядом с индикатором подключение к сети в правом верхнем углу экрана. Далее надо нажать Add Device и выбрать ваши устройства из списка найденных беспроводных устройств.

Следует отметить, что при всем удобстве использовании Bluetooth устройств ввода с Raspberry - они не занимают разъемов USB - эти устройства в нашем случае периодически теряли связь с платой. Поэтому для стабильной работы, все же следует использовать USB-мышь и клавиатуру, а так же, в качестве альтернативного варианта, занимающего только один USB-разъем, комплект мыши и клавиатуры с одним приемопередатчиком по радиоканалу.

После соединения с сетью мы попробовали, используя уже и мышь и клавиатуру, зайти в интернет, щелкнув на иконке браузера. Сайты открывались без проблем, с приемлемой скоростью.

3. Знакомство с GPIO, программированием на Python и запуск светофора

Контакты GPIO, безусловно, являются очень интересной частью Raspberry, значительно расширяющей возможности микрокомпьютера для применения в электронных автоматизированных системах. С помощью этих контактов можно как считывать данные с огромного множества предлагаемых сегодня датчиков: температуры, давления, движения, наклона, ориентации, открытия и т.п., так и посылать команды на исполнительные устройства: реле, двигатели, актуаторы, серво-машины и многие другие.

Вот схема 40-контактного разъема GPIO:

Как видно, кроме обычных цифровых пинов вход/выход, принимающих или выдающих значения логических 0 и 1, имеются контакты, работающие по распространенным интерфейсам I 2 C, SPI и UART. Также есть возможность генерации ШИМ и прерываний от изменения уровней на входах.

Используем GPIO для моделирования работы светофора по нажатию кнопки, как это делается на редко используемых пешеходных переходах, где обычно горит зеленый свет для транспорта, а пешеход может кнопкой запустить программу включения красного света для транспорта. Алгоритм этой программы такой: при нажатии кнопки начинает мигать зеленый свет, затем на короткое время зажигается желтый, затем красный; красный свет горит некоторое время, затем короткое время горят красный и желтый, и, наконец, снова зеленый; далее система ждет очередного нажатия кнопки.

Для программирования этого алгоритма воспользуемся встроенной в образ ОС Raspbian интегрированной среды разработки (IDE) на языке Python (Пайтон). Язык Python имеет большое число достоинств, о которых можно почитать в сети, что делает его весьма хорошим инструментом как для начинающих программистов, так и для профессионалов. Это интепретирущий язык, его команды выполняются последовательно, одна за другой. В IDE Python команды можно выполнять, просто вводя их с клавиатуры и нажимая клавишу Enter в конце строки.

Среда разработки программ на языке Python запускается с рабочего стола последовательным выбором Menu - Programming - Python 3 . Далее, в открывшемся окне Python Shell следует нажать File - New File . В открывшемся окне редактора нужно набрать или скопировать следущий текст программы, обращая особое внимания на отступы в тексте, так как для программ на Python они имеют принципиальное значение:

#!/usr/bin/python

import RPi.GPIO as GPIO
from time import sleep

RED_PIN = 36

YELLOW_PIN = 32
GREEN_PIN = 29
BUTTON_PIN = 40

print ("RPi.GPIO init start")
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
print ("RPi.GPIO init end")

print ("GPIO setup")

GPIO.setup(RED_PIN, GPIO.OUT)

GPIO.setup(YELLOW_PIN, GPIO.OUT)
GPIO.setup(GREEN_PIN, GPIO.OUT)
GPIO.setup(BUTTON_PIN, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.output(RED_PIN, 0)
GPIO.output(YELLOW_PIN, 0)
GPIO.output(GREEN_PIN, 1)

while True:

if inp==0:
for x in range(0, 5):
GPIO.output(GREEN_PIN, 1)
sleep(0.5)
GPIO.output(GREEN_PIN, 0)
sleep(0.5)
GPIO.output(YELLOW_PIN, 1)
sleep(2)
GPIO.output(YELLOW_PIN, 0)
GPIO.output(RED_PIN, 1)
sleep(5)
GPIO.output(YELLOW_PIN, 1)
sleep(1)
GPIO.output(RED_PIN, 0)
GPIO.output(YELLOW_PIN, 0)
GPIO.output(GREEN_PIN, 1)

Первая строка указывает, где в ОС находится интерпретатор Python.

Функция, начинающаяся с print , просто выводит свой аргумент на экран.

Строки, начинающиеся с GPIO.setup , задают режим выхода (OUT ) или входа (IN ) соответствующих пинов, а аргумент pull_up_down=GPIO.PUD_UP включает подтягивающий резистор на входе 40, к которому подключена кнопка. Поскольку программа на Python не имеет стандартного «вечного цикла», как, например в Ардуино, где загруженная в микроконтроллер программа выполняется бесконечно, пока подано питание, оператор while True: осуществляет этот цикл. Нам ведь надо возвращать наш светофор в исходное состояние всякий раз по завершению цикла его работы.

Оператор присвоения inp = GPIO.input(BUTTON_PIN) записывает в переменную inp значение на входе 40. Если кнопка не нажата - это 0, если нажата - 1. Если inp равно 0, то начинается цикл работы светофора:

  • с помощью цикла for 5 раз мигает зеленый светодиод;
  • на 2 секунды зажигается желтый (пауза задается оператором sleep);
  • желтый гаснет, зажигается красный на 5 секунд и т д.

После окончания цикла работы светофора все начинается снова.

Теперь необходимо собрать электрическую схему с помощью проводов с разъемами без пайки:



Короткие ножки светодиодов (это минус) подключаем к земле - контакты 6, 14, 20; длинные (плюс) через резисторы 240 Ом - к контактам 29 (зеленый), 32 (желтый), 36 (красный).

Кнопку подключаем к контактам 39 и 40.

Теперь в редакторе с нашей программой выбираем Run - Run Modul или нажимаем F5, и программа начинает выполняться, ожидая нажатия кнопки.

Но вовсе неудобно каждый раз запускать программу с помощью оболочки. Удобнее, чтобы наша программа запускалась при включении питания Raspberry, ведь тогда устройство можно использовать автономно, без монитора, клавиатуры и мыши.

Для этого необходимо включить нашу программу в автозагрузку операционной системы.

Тут нам понадобится терминал, без него обойтись.

Сначала сохраним нашу программу в виде файла svetofor-rpi.py3 в корневом каталоге пользователя /home/pi .

Теперь запустим терминал и после приглашения pi@raspberrypi:~ $ наберем следующую строку: gksudo leafpad /etc/xdg/autostart/Svetofor.desktop .

Тем самым мы вызовем текстовый редактор leafpad и создадим файл Svetofor.desktop в папке автозапуска.

В текстовом редакторе набираем следующее:


Version=1.0
Encoding=UTF-8
Name=Svetofor
Comment=
Exec=sudo python /home/pi/svetofor-rpi.py3
Terminal=false
Type=Application

и сохраняем файл.

Основное в этом файле - строка, начинающаяся с Exec , которая запускает интерпретатор Python на выполнение программы svetofor-rpi.py3 .

Можно проверить, зайдя в папку /etc/xdg/autostart с помощью файлового менеджера, чья иконка в виде двух ящичков расположена в левом углу экрана, появился ли в этой папке файл Svetofor.

Теперь, если выключить питание, отключить монитор, мышь и клавиатуру, и снова включить питание, наш светофор начнет работать в автономном режиме!

Видео работы светофора:

В этой достаточно длинной даже для блога статье описаны первые шаги уже немолодого "айтишника" на пути освоения новейшего подхода к информационному образованию в школах и ВУЗах развитых стран - физического компьютинга на devboard Raspberry Pi, чтобы сделать его доступным своему любимому ребенку и родной школе.

По ходу дела, мне впервые в жизни пришлось познакомиться с альтернативной "Wintel" аппаратной платформой (Raspberry Pi 3 на базе ARM-процессора), освоить работу в незнакомой операционной системе (Rasbian OS на базе Debian Linux), подружиться с новым языком программирования (Python), вспомнить азы радиоэлектроники .

В итоге, всего за 3,5 т.р. и месяц ожидания у моего ребенка появился достаточно мощный, уникальный по своим образовательным возможностям инструмент, сочетающий в себе бесшумный 4-ядерный компьютер размером с кредитную карту, вебсервер, медиацентр, центр управления датчиками "умного дома", лабораторию для освоения основ программирования, робототехники и радиоэлектроники - почти идеальное решение для школьного кружка информатики.
При этом, все программы на нем изначально бесплатны и в широком разнообразии доступны из онлайн-репозиториев, а вирусов не бывает в принципе.

Экскурс в историю обучения информатике в школе и ВУЗе

С конца 90-х тем или иным образом принимаю участие в развитии процесса информатизации образования в школах и ВУЗах.
В конце 80-х будучи старшеклассником "зацепил" начало внедрения компьютеров в школьное образование. Тогда это были компьютерные классы на основе микроЭВМ БК 0010 и учительского компьютера ДВК-2. С увлеченим осваивал программирование Basic. Книг тогда по нему практически не было. Вместе с преподавателем приходилось все изучать по брошюркам и "методом научного тыка". Перед окончанием школы в Чувашию приехал проект IBM "Пилотные школы". К счастью, в одну из школ Новочебоксарска (№14) был поставлен компьютерный класса на основе IBM PS/2. Тогда это было подобно чуду - настоящий компьютер "IBM PS" с "мышкой", флоппи-дисководом и шикарным 256-цветным экраном! Учительский компьютер имел 286-й процессор, 1 мегабайт оперативной памяти и 40Мб жесткий диск (который казался настолько большым по сравнению с флоппи-диском, что мы не знали, можно ли его вообще чем-то заполнить "под завязку"). Ко всему прилагался матричный принтер - "чудо враждебной техники".
Затем были 5 "перестроечных" лет учебы в университете, где в ходе учебного процесса я познакомился с кубинскими СМ ЭВМ (те самые, с катушками для записи данных и с тяжелыми металлическими клавиатурами). Но как раз в те самые годы ВУЗы по западным гратнам стали получать современные компьютеры IBM PC-XT 286 и IBM PC/AT 386. Снова я испытал потрясение, изучая Pascal, работая в Norton Commander и осваивая среду гипертекстовой верстки документов LaTex.
Работая несколько лет в школе после окончания ВУЗа имел счастье наблюдать, как в кабинетах информатики БК 0010 постепенно сменяются новыми, на порядки более мощными комьютерами Pentium с графической ОС Windows и офисными программами "на борту". Но дети продолжают изучать на них Basic и Pascal...
По роду деятельности одним из первых в родном городе зашел в Internet и тут же понял, что за ним будущее. Стал заниматься созданием вебсайтов разработкой интернет-проектов, познакомился с Linux- основной ОС Интернета и Perl - тогда самым популярным языком программирования интернет-приложений.
На какой то период времени отошел от школьного образования. Примерно через 10 лет нашел время и желание организовать кружок по компьютерной астрономии в родной школе (ныне гимназии). Практически на моих глазах старые Pentium-ы и Celesron-ы в компьютерном классе благодаря президентскому гранту сменились на мощные двухядерные ноутбуки. В учебной программе уже присутствовали офисные пакеты и графичекские редакторы, основы работы в интернет и знакомство с HTML. Но старые Basic и Pascal также остались...
И вот на дворе уже второе десятилетие нового тысячилетия. Дочка доросла до уроков информатики. От нее я узнал, что в школах все-так же изучают основы работы в Windows и... программирование на Borland Pascal...
А тем временем, во всем мире дети младшего школьного возраста уже пишут программы под Андроид, создают интернет-сервисы на сверхпопулярном языке Python и управляют со смартфонов умными домами на базе Linux-devboard"s с SoC-процессорами...
Задавал вопросы представителям системы образования, в чем проблема застоя с внедрением обучения современным технологиям в школе? Односложного ответа на этот вопрос не услышал. Понял лишь одно, что из-за непопулярности среди продвинутой молодежи профессии учителя информатики, длительности процесса написания учебных программ и пособий, переобучения учительсого состава и переоборудования компьютерных классов, в ближайшем времени моему ребенку в школе ничего не светит, если... Если внедрением новых технологий хотя бы в качестве внеурочной, или олимпиадной работы не займутся энтузиасты. К моему счастью, я сам энтузиаст, и мой первый учитель информатики тоже из их числа. Только нужно помочь с чего-то начать...

Arduino vs Raspberry Pi


Погуглив немного, выяснил, что самым современным в последние пару лет направлением информационного образования во всем мире становитя физический компьютинг - основа технологии IoT (Интернет вещей). Эта тема стала бурно развиваться благодаря появлению недорогой, но достаточно мощной аппаратной платформы Raspberry Pi и связанной с ней инфраструктуры - огромного сообщества преподавателей и этнузиастов, бесчисленнного множества стартовых руководств и учебников, тысяч разработчиков различных библиотек, широкого ассортимента готовых расширений и датчиков. До Raspberry Pi в школьном образовании за рубежом активно продвигалась тема освоения основ кибернетики и физического компьютинга на базе микроконтроллеров Arduino. Благодаря этому для Arduino в настоящее время существует богатый выбор различных датчиков, позволяющим детям под присмотром взрослых, к примеру, конструировать роботизированные платформы, чтобы устраивать примитивные "гонки роботов". В принципе, тема Arduino актуальна и по сей день, но как начальная часть процесса обучения физическому компьютингу, программированию и кибернетике. Raspberry Pi - следующий, существенно более продвинутый, фактически, не ограниченный по возможностям уровень...

Понять, чем отличаются, по своему хороши Raspberry Pi и Arduino можно, сравнив их возможности.

Arduino - это не являющийся полноценным компьютером однозадачный одноядерный микроконтроллер с малым объемом оперативной памяти, невысокой вычислительной мощностью, отсудствием мультимедийных и сетевых возможностей, но низким энергопотреблением и высокой скоростью реакции в критичных к времени проектах. Для управления Arduino требуется компьютер, или ноутбук с USB-портом, что существенно увеличивает стартовый бюджет одного учебного места. Для программирования Arduino необходимо будет изучать C-подобный язык. Arduino достаточно для быстрой реакции на сигнал с датчика, например, чтобы повернуть в другую сторону колесо робота. Но управлять роботом через интернет и обрабатывать маршрут Arduino уже не сможет.

Raspberry Pi (v3 Model B) - полноценный 4-ядерный одноплатный компьютер с 1Гб оперативной памяти и возможностью подключения через USB внешних накопителей, работающий под управлением современной Linux-системы, обладающий продвинутыми мультимедийными (Open GL, HD-Video) и коммуникационными (WiFi, Bluetooth, Ethernet) возможностями. За некоторыми оговорками, Raspberry Pi может с успехом использоваться в качестве полноценного ученического/студенческого компьютера, на котором можно, помимо основной задачи- физического компьютинга, слушать музыку, смотреть HD-видео, заниматься вебсерфингом, работать с документами в офисных редакторах, читать электронные книги и т.п... И при этом, не считая монитора (в качестве которого может выступать обычный ЖК-телевизор с VGA/HDMI-разьемом), USB-клавиатуры и мыши, стоимость одного учебного места на базе Raspberry Pi начинается с 2,5 т.р. На Raspberry Pi можно изучать основы программирования на любых языках. По умолчанию на него предустановлены Python, Scratch и Node-RED, но ничего не мешает через удобный интерфейс Debian-репозитория программ установить LAMP c PHP, Ruby, Java и другие популярные среды разработки. Также на Raspberry Pi, как полноценный Linux-компьютер, можно установить массу полезных бесплатных и полезных для освоения программ, в том числе, вебсервер Apache-основу современного Интернета, среду 3D-проектирования Blender, графический редактор The Gimp, векторные редакторы Xara-X и Inkscape, издательскую систему Scribus. И в добавок, Raspberry Pi располагает интерфейсом GPIO для управления датчиками, изначально предназначенными для Arduino. Более того, если требуется мгновенная реакция на события и АЦП-преобразования сигнала, к Raspberry Pi можно подключить Arduino и управлять датчиками через него!
В итоге, Raspberry Pi представляет собой самый доступный по цене персональный компьютер для учащихся и одновременено развитую аппаратно-программную платформу для «Интернета Вещей».

1. Покупка стартового комплекта Raspberry Pi

Итак, разобравшись, что минуя этап Arduino стоит сразу начинать с Raspberry Pi, я пришел к решению о покупке стартового комплекта для первоначального знакомства, освоения основ работы и азов физического компьютинга на Python, чтобы затем продемонстрировать все это в школе и заинтересовать энтузастов-преподавателей, а также продвинутых учащихся. Таким образом и началась моя эпопея с Raspberry Pi.

К счастью для россиян, все модели Raspberry Pi, включая самую совершенную v3 Model B, а также необходимые компоненты к ней можно заказать с доставкой на aliexpress.com.

По минимуму можно заказать только саму плату Raspberry Pi 3 Модель B с доставкой по цене 2200р. Для начала работы вам понадобится блок питания (зарядник для сотового/планшета) с miniUSB-разъемом, дающим на выходе ток 1А-1,5А, ЖК-монитор или телевизор с HDMI-разъемом, USB-клавиатура и мышь.

Я решил добавить 1,2 т.р. и купить необходимый набор компонент, с которым Raspberry Pi станет более удобным, производительным, совместимым и эффективным. Прежде всего, стоит купить комплект радиаторов для отвода тепла от SoC-процессора и памяти, чтобы они не перегревались на сложных задачах и не снижали производительность системы последовательным отключением ядер процессора и снижением тактовой частоты.
Также очень рекомендуется купить какой либо недорогой корпус, чтобы избежать неудобств и защитить детей от неприятностей. Я взял оригинальный корпус Модель R1 бело-малинового цвета.
Для начала освоения основ физического компьютинга вместе с Raspberry Pi сразу стоит заказать стартовый комплект датчиков и монтажную плату с шлейфом для интерфейса GPIO, которые не купишь в местных магазинах. На aliexpress.com существую готовые комплекты, состоящие из датчиков, монтажной платы со шлейфом и переходником, соединительных проводов, светодиодов, кнопок и резисторов. Но они показались мне немного дороговатыми... Поэтому, я взял почти все по отдельности, а светодиоды, кнопки и резисторы решил купить в ближайшем радиоларьке.

Мой список покупок через интернет:
1. Raspberry Pi 3 Модель B с блоком питания на 2,5А и двумя радиаторами для процессора и памяти - 2412р.
2. bredaboard с 40-жильным кабелем и переходником - 282р.
3. HDMI2VGA переходник - 233р.
4. Корпус, модель R1 - 280р.
5. Стартовый комплект из 16 датчиков - 510р.
6. Комплект соединительных проводов - 186р.
Итого : 3900р. (по ценам на февраль 2017г. при курсе рубля 57,70)

После примерно месяца ожидания все заказанные компоненты прибыли в целости и сохранности.

2. Подготовка Raspberry Pi к работе


До первого включения Raspberry Pi необходимо сделать несколько обязательных процедур. Внимание! Перед тем, как достать плату из антистатического пакета, обязательно снимите статическое электричество с рук, прикоснувшись к водопроводному крану или оголенному участку батареи отопления, иначем можете сжечь чувствительную электронику.
Сперва нужно наклеить радиаторы на процессор и микросхему памяти. Это не сложно: сначала отклеиваем защитную пленку с радиатора, затем аккуратно располагаем его над микросхемой, соответствующей ему по размеру и без усилия опускаем на нее радиатор. Сильно прижимать радиатор к микросхеме не надо, он и так будет хорошо держаться.
Затем нужно собрать из частей корпус и поместить в него плату. При сборке корпуса верхнюю крышку и сторону с вырезами под USB-разъемы устанавливаем после вставки (с некоторым усилием) в пазы платы Raspberry Pi.

3. Установка ОС Rasbian

Поскольку Raspberry Pi по умолчанию поставляется без предустановленной операционной системы и собственного носителя информации, его нужно будет купить, а систему скачать и самостоятельно установить.
В качестве системного диска Raspberry Pi на используется microSD-карта минимум 6 класса (скорость записи 6Мб/сек) объемом не менее 8Мб. В интернете советовали сразу покупать карту 10 класса, чтобы избежать возможных проблем с установкой ОС и работой Raspberry Pi.
В ближайшем компьютерном ларьке я купил microSD-карту 10 класса марки Sundisk объемом 8Гб.
Затем я скачал операционную систему Raspbian (на основе Debian Jessie) по адресу https://www.raspberrypi.org/downloads/raspbian/ . Выбирайте Raspbian Jessie with PIXEL - это дистрибутив с графическим интерфейсом и комплектом программ для начала продуктивной работы.
Как выяснилось, скачанный образ при распаковке из архива разворачивается до 4Гб и на диске с файловой системой FAT32 из-за ограничений на максимальный размер одиночных файлов записан быть не может.
Пришлось подключить внешний USB-диск с ФС NTFS и распаковать образ Raspbian ОС на него.
Для записи образа на SD-карту, потребовалось скачать программу Win32DiskImager по адресу и подключить microSD-карту к компьютеру через USB-кардридер.
Интерфейс программы до безобразия прост: в строке "Image File" надо указать на диске образ Raspbian ОС, в выпадающем списке "Device" выбрать microSD-карту и нажать кнопку "Write". Кстати, этой же программой время от времени стоит делать резервное копирование microSD-карты, вставив ее в кардридер, выбрав путь сохранения образа в поле "Image File", задав в выпадающем списке Device имя диска, под которым определиась microSD-картаи выбрав команду "Read".

4. Первый запуск


После успешного завершения процесса записи, вставляем microSD-карту в соответствующий разъем кардридера на Raspberry Pi, подключаем через HDMI-кабель, или HDMI2VGA переходник монитор, подключаем к нижним USB-разъемам клавиатуру и мышь, и только после этого подсоединяем блок питания. Поскольку Raspberry Pi не имее кнопки включения питания, подсоединение/отсоединение блока питания включает и выключает устройство. На всякий случай заранее напишу, что перед обесточиванием на Raspberry Pi желательно корректно завершить работу ОС, чтобы не возникали ошибки при последующем запуске.
К моему глубокому сожалению и ужасу, после подключения питания к Raspberry Pi на мониторе не загорелась заставка графической оболочки Pixel, а выскочила тирада из текстовых "ругательств", завершившаяся строкой "kernel panic" с номером ошибки.
Погуглив на смартфоне, я тут же выяснил, что, повидимому, Raspberry Pi не нравится моя microSD-карта (как позже выяснилось, скорости чтения/записи не достаточно для нормальной работы ОС Raspbian). Во время повторной записи образа ОС Raspbian на SD-карту я заметил, что скорость записи не привышает 4Мб/сек (соответствует 4-му классу SD-карты).
При повторном включении Raspberry Pi со злополучной картой я снова увидел "kernel panic". Пришлось сходить в ларек и поменять ее после некоторых объяснений на менее "брендовую" Prestigio microSDHC 8Гб 10 класса (U1). На "свежекупленную" microSD-карту образ ОС записался в два раза быстрее со скоростью примерно 9,5Мб/сек. При включении с ней Raspberry Pi тут же отобразила приветственное окно и через несколько секунд загрузки я с радостью увидел на дисплее интерфейс X-Windows с красивой заставкой в виде пустынной дороги, уходящей в сторону восходящего солнца.
По-видимому, карта Sundisk оказалась поддельной...

5. Знакомство с Debian Linux, первичная настройка Raspbian ОС, установка полезных программ


Вооружившись парочкой руководств на русском и английском языке, скачанных с различных гик-ресурсов, решил посвятить вечер выходного дня на первичную настройку удобной рабочей среды на Raspbian ОС.

Прежде всего, стоит сказать несколько слов о консоли Debian Linux. Она доступна по кнопке LXTerminal на верхней панели интерфейса Raspbian ОС.
В Linux-консоли вводятся команды для управления ОС, установки, запуска и удаления программ, внесения ручных правок в настройки самой ОС и ее отдельных компонентов. Для успешного запуска большинства команд требуется уровень доступа администратора (root-доступ). Для этого нужно перед командой вводить "sudo ".
Некоторые операции в Raspbian ОС доступны только из консоли.
Прежде всего, это доступ к программе настройки системы raspi_config. Именно в ней производится первичная настройка Raspbian ОС.
Для запуска программы настройки системы надо открыть LXTerminal и ввести в консоли команду:
sudo raspi-config

Первым делом, надо выбрать команду "Expand Filesystem", чтобы расширить файловую систему ОС на все доступное пространство microSD-карты.
Затем обязательно стоит поменять пароль root по умолчанию на доступ к системе через консоль и по SSH командой "Change User Password". Из косоли это далается командой "sudo passwd root".
Затем стоит запустить SSH-сервер для того, чтобы иметь возможность заходить на Raspberry Pi по терминальному протоколу SSH с другого ПК командой "SSH" в окне "Advanced Options".

Очень важно сразу поменять локаль (язык интерфейса) на русский и добавить русскую раскладку клавиатуры.
Это осуществляется в окне "Internationalisation Options". Смена локали осуществляется по команде "Change locale".
Надо выбрать локаль ru_RU.UTF-8 UTF-8. Смена раскладки клавиатуры производится по команде "Change keyboard layout". Далее придется в новом окне выбрать нужную раскладку (ru_RU.UTF-8), в следующем окне задать горячие клавиши смены раскладки, каждый раз подтверждая выбранные действия переходом кнопкой "Tab" клавиатуры на кнопку "Enter" окна программ и нажатием "Enter" на клавиатуре.
Стоит также в окне "Advanced options" перейти на пункт меню "Audio" и выбрать в новом окне варинат вывода звука по умолчанию на внутренний разъем 3.5mm jack, чтобы слушать звук в наушниках, подключенных к стандартному звуковому разъему Raspberry Pi.
После завершения настроек выбираем кнопку "Finish" и соглашаемся на перезагрузку системы.

Следующим этапом настройки Raspbian ОС рекомендуется выполнить обновление ее базы программ и установленных компонент.
Для этого последовательно введем в консоли следующие команды, дожидаясь окончания выполнения каждой из них до появления зеленого приглашения ввода консоли.
Обновление базы программ:
apt-get update
Обновление установленных программ
sudo apt-get upgrade
Удаления оставшихся после удаления программ библиотек, сопутствующих программ и др.
sudo apt-get autoremove
Выполнение второй команды обычно занимает 10-15 минут.
Вспоминая прежний опыт работы в Linux, поспешил установить файловый менеджер Midnight Commander.
sudo apt-get install mc
Без него перемещаться по структуре папок системы командой "cd" получается медленно и не удобно.

На всякий случай, у новичка всегда должна быть под рукой шаргалка по базовым командам Unix...

Ctrl+C - выход из открытой консольной программы (если не предусмотрено других клавиш)
Shift+Ins - вставить текст в консоль
Ctrl+Ins - копировать выделенный текст из консоли
sudo - ставится перед командой и выполняет ее с правами пользователя root
- выключение
sudo shutdown -h now - немедленная остановка системы и запуск процесса выключения
sudo shutdown -h 21:55 - остановка системы и выключение в 21:55
sudo shutdown -h now — выключение Raspberry Pi
sudo su - открыть командную строку с правами root
sudo -i - открыть командную строку с правами root
sudo cp - копирование файла (с ключом -r рекурсивное копирование)
sudo mv - перемещение файла
cat - вывод содержимого файла/файлов
cd — Переход в нужную папку. Например cd /home/pi
chmod - изменения прав на использование файла; u (означает пользователя, который владеет этим файлом), g (группа файлов) и o (другие пользователи), а также r (считывание), w (запись) и x (выполнение)
chmod u+x - устанавливает разрешение владельцу файла на его исполнение
sudo chown pi:root - смена пользователя и/или группы пользователей, которые владеют этим файлом, например пользователя на pi, а группу на root.
dir - покажет содержимое текущей папки
pwd - покажет ваше текущее расположении
date - покажет время и дату
cal - покажет календарь на текущий месяц
cal -y - покажет календарь на текущий год
wget - скачать файл в текущую директорию. Например wget http://mysite.com/myfile.deb
sudo apt-get update - обновит список пакетов с репозитария
sudo apt-get upgrade - обновит установленные пакеты
sudo apt-get install <название> - установка программы <название> из Debian-репозитория
sudo apt-get remove <название> - удаление программы <название>
info <название> -вывод информации о программе
apt-cache search <запрос> - поиск по базе Debian-репозитория программы или утилиты с описанием <запрос>
apt-cache search screen capture - поиск программ для создания скриншотов
sudo apt-get install mc - установка файлменеджера Midnight Commander (Mc)
sudo apt-get install links - установка текстового браузера Links
udo apt-get install scrot - установка утилиты для скриншотов
scrot -d5 - создание скриншота черех 5 секунд
sudo apt-get install synaptic - установка менежера пакетов Synaptic
sudo apt-get install x11vnc - установка VNC-сервера
x11vnc -desktop:0 - запуск VNC-сервера для удаленного управления через VNC-клиент, например realVNC (http://www.realvnc.com/download/viewer/)
top - запуск диспетчера задач
sudo nano - редактирование файла
sudo nano /boot/config.txt - редактирование файла настроек запуска Raspberry Pi
ifconfig — утилита конфигурирования сетевых интерфейсов
iwconfig - просмотр информации о беспроводных устройствах
sudo iwlist wlan0 scan — сканирование Wi-Fi
cat /proc/cpuinfo — смотрим инфо о процессоре
cat /proc/meminfo — отображает подробную информацию о памяти Raspberry Pi
cat /proc/partitions — показывает размер и количество разделов на Вашей карте SD или HDD
cat /sys/devices/system/cpu/cpu0/cpufreq/sca ling_cur_freq — информация о частоте процессора
<имя_программы> --help — отбражение помощи по программе
vcgencmd measure_temp - покажет температуру процессора
free -o -h - покажет, сколько свободной системной памяти доступно
vcgencmd get_mem arm && vcgencmd get_mem gpu — покажет распределение памяти между процессором и GPU
lsusb - список подключенных устройствах
mkdir newDir - создание директории newDir
rmdir oldDir - удаление пустой директории oldDir
rm <имя_файла> - удаление файла/папки (с ключем -r рекурсивное удаление содержимого папки)
& - запускает команду в фоновом режиме
curl - загружает файл либо с сервера, либо на него
grep "паттерн" *.txt - поиск в файлах по маске и заданному паттерну
ping <имя_сервера> - провера доступности сервера
df -h - свободное и занятое дисковое пространство на подключенных устройствах
scp myfile.txt [email protected]: - копирование файла myfile.txt на устройство [email protected] по SSH в папку /home/pi/
scp [email protected]:myfile.txt . - копирование файла myfile.txt с устройства [email protected] в текущую папку по SSH
scp *.txt [email protected]: - копирование всех текстовых файлов с устройства [email protected] в текущую папку по SSH
dd if=/dev/sdd of=backup.img - создание бэкап-образа SD-карты или USB-носителя (/dev/sdd)
dd if=/dev/sda of=/dev/sdb bs=4096 - побайтное копирование данных с устройства на устройство (dd if=/dev/zero of=/dev/sda bs=4k - очистка диска sda)
dd if=myfile of=myfile conv=ucase - прообразование файла в верхний регистр
dd if=myfile of=myfile conv=lcase - прообразование файла в нижний регистр
ls -l | dd conv=ucase - преобразует вывод команды в верхний регистр
apt-mark showauto > autopackagelist.txt - создание списка предустановленных приложений
apt-mark showmanual > manualpackagelist.txt - создание списка установленных вручную приложений

6. Тестирование Raspberry Pi в качестве десктопа

Итак, через полчаса настроек и обновлений Raspberry Pi готов к работе. Что мы имеем "на борту" по умолчанию?
Помимо средств разработки программ, на Raspberry ОС установлен базовый комплект необходимых приложений.
Для работы с документами предустановлены пакет Libre Office и средство просмотра PDF. Для продуктивной работы в интернет с Raspberry ОС поставляется броузер Chromium и почтовый клиент Claws Mail. Для удаленного управления с десктопа и мобильных устройств на Raspberry Pi установлен VNC Connect.
К сожалению, по умолчанию система не содержит медиаплеера с графическим интерфейсом для воспроизведения видео и аудио, но с консоли воспроизведение мультимедийных файлов можно запустить через программу omxplayer, поддерживающую аппаратное ускорение видео в полноэкранном режиме.
В системе имеется графический файловый менеджер Xfce, позволяющий перемещаться по папкам при помощи мышки, осуществлять файловые операции, открывать документы двойным кликом мышки. Как показала практика, по удобству и принципам работы он практически ничем не отличается от привычного нам Проводника.
Открытие меню и переход по папкам в интерфейсе Raspbian ОС осуществляется на удивление быстро, поживее, чем на моем стареньком двухядерном Celeron-е.
После инвентаризации установленного ПО любопытство подтолкнуло проверить скорость работы на Raspberry Pi в Интернет. Открыл в Chromium и первым делом зашел на родной портал cheboksary.ru: страницы открываются быстро и без тормозов. Во второй вкладке открыл соцсеть ВК. Стал прокручивать свою ленту при помощи колесика мышки - неприятных задержек подгрузки не заметил. Лента соцсети скроллится в броузере плавно, без рывков. В третьей вкладке открыл Youtube, а в нем - популярный видеоклип. Видео воспроизводится без задержек и рывков с достаточно хорошим разрешением и достаточно качественным звуком. Развернул видео на полный экран - воспроизведение продолжилось без рывков. Заметил единственный момент - немного заторможенную реакцию на клики мышкой по интерфейсу воспроизведения видео. Можно сказать, что тест на производительность работы в интернет Raspberry Pi прошел.
Проверил скорость рендеринга страниц электронной книги во встроенном в систему PDF-просмотрщике Xpdf. Для этого решил воткнуть в USB-разъем "флешку" и... система сразу ее распознала, открыв через пару секунд окно файлменеджера на папке /media/pi/usb/ с содержимым моего сменного носителя! Приятный сюрприз - в Raspbian ОС реализовано автомонтирование USB-drive! Как выяснилось позже, для демонтирования "флешки" перед отсоединением надо нажать на стрелочку в правом верхнем углу экрана и выбрать ее из списка.
Быстро выбрав нужный PDF-файл, просто кликнул по нему и увидел содержимое в окне просмотрщика. При скроллинге страницы электронной книги рендерились с задержкой примерно в одну секунду, что можно считать вполне приемлемым результатом. Единственный неприятный момент - просмотрщик не смог отобразить русские буквы в оглавлении книги.
Чтобы проверить воспроизведение музыки и видео с "флешки", решил не пользоваться консолью и установил для этого графическую оболочку на Python для системного проигрывателя omxplayer. Конечно, tk-интерфейс оболочки не блещет красотой и дизайном, но все-таки позволяет при помощи мышки выбрать нужные файлы и создавать плей-листы. Хотя в сети писали, что в окне на Raspberry Pi видео с аппаратным ускорением не воспроизводится, как оказалось, через omxplayerGUI это вполне возможно! Видео выводилось на экране с исходным разрешением в окне без рамки, но позволяло перетаскивать окно, причем, без остановки воспроизведения.
Одним словом, интернет на Raspberry Pi работает без ограничений, музыка и видео воспроизводятся, флешки автомонтируются, офисные документы редактируются, фотографии показываются. Что еще нужно для продуктивной работы?

Я давно следил на ХабраХабр за проектом Raspberry Pi и твердо решил заполучить свой мини-компьютер. Когда начался предзаказ, я воспользовался им практически сразу, однако только 17 июня 2012 года мне на Email пришло сообщение от RSComponents.Com о возможности заказа моего экземпляра Raspberry Pi. Итого прошло около месяца с момента предзаказа.

В этот же день я создал заказ (кстати, в то время уже можно было заказать «официально» в Российскую Федерацию) и стал ждать свою «малину». Информационное письмо обещало отгрузку в течение максимум 6 недель, но в этот срок я так и не получил свою плату. Во время звонка в московское представительство RS, менеджер фирма дал понять, что поставки скоро будут, но когда - неизвестно.

17 августа мне на email пришло сообщение от сотрудницы Московского RS, что моя плата доставлена в офис и ее можно забирать (т.к. заказать из RS с доставкой на дом нельзя, потому что DHL не доставляет посылки частным лицам). Собственно говоря, в этот же день я и получил свой компьютер Raspberry Pi!


Весь необходимый набор комплектующих был куплен мною заранее (собственно говоря, все позаимствовал от других устройств). Я использовал:

  • 4Gb Class6 SD-карту от Transcend
  • NoName usb-зарядник на 1А с MicroUSB кабелем
  • HDMI кабель Hama
  • Ethernet-кабель
В качестве клавиатуры и мыши я использовал свой рабочий USB-Reciever Unifying от Logitech. Подключил Raspberry к монитору с помощью HDMI-DVI кабеля.

Действо первое. Установка ОС.

В качестве ОС для Raspberry была выбрана Raspbian (как я понял из форумов, практически все сборки сделаны на основе Debian, поэтому выбор, на мой неискушенный взгляд, не особо богат). Данная ОС широко описана в интернете, а также оптимизирована специально для RPi.
Образ ОС можно скачать с официального сайта: 2012-07-15-wheezy-raspbian.zip . Образ заархивирован в ZIP, сам имеет расширение IMG. Его необходимо разархивировать.
Также, потребуется утилита Win32DiskImager , запустить которую необходимо с правами администратора.

Устанавливаем вашу SD карту в кард-ридер, смотрим в Проводнике, какую букву она получила в системе (чтобы ненароком не затереть данные на другом носителе).
В программе Win32DiskImager выбираем скачанный ранее образ Raspbian, выбираем нужную букву носителя и жмем Write. На предложенное предостережение отвечаем “Yes”.
Пойдет процесс заливки ОС на карту и разбиения ее на разделы:

Процесс закончится сообщением об успехе:

Теперь необходимо немного подредактировать файл config.txt в корне карты памяти – это конфигурационный файл системы для Raspberry Pi. Обратите внимание, что приведенные мною настройки актуальны для ЖК мониторов с разрешением экрана 1920*1080.

Следует раскомментировать параметр disable_overscan=1 (если Вы не планируете использовать RCA выход).
Советую также установить фиксированное разрешение, для этого раскомметруйте строки hdmi_group и hdmi_mode . Значение параметра hdmi_mode следует изменить в соответствии с таблицей, которая приведена (также, по этой ссылке приведены другие параметры, которые, возможно, будут Вам полезны). Например, для монитора с разрешением 1920*1080 следует написать hdmi_mode=16 .

Не забываем сохранить изменения, отсоединяем SD-карту и вставляем ее в Raspberry Pi.
Подключаем к плате питание и видим на мониторе процесс загрузки, который нас (во всяком случае - пока) мало интересует. Наблюдаем радостное мигание лампочек Raspberry Pi:

При первой загрузке автоматически будет запущена программа настройки системы raspi_config :

  1. Выполняем команду expand_rootfs , которая расширит root раздел на всю SD-карту.
  2. Входим в раздел configure_keyboard и устанавливаем наиболее подходящий тип клавиатуры. Я выбрал Logitech Cordless Desktop
  3. Затем, входим в раздел change_pass устанавливаем новый пароль для пользователя pi (обратите внимание, что вводимые символы не отображаются вообще, даже в виде звездочек!).
  4. Устанавливаем дополнительные локали с помощью пункта change_locale (я не стал этого делать и оставил единственную локаль по умолчанию - en_GB UTF8).
  5. Устанавливаем часовой пояс (set_timezone ). Например, если Вы живете в Москве, необходимо найти пункт Europe, а в нем - Moscow
  6. Memory_split устанавливаем в соотвествии с собственным желанием, рекомендую отвести под video – 32Mb, если планируете пользоваться графическим интерфейсом.
  7. Обязательно активируем ssh !
  8. Если хотим, чтобы при загрузке Raspbian автоматически запускалась графическая среда – активируем опцию boot_behaviour .
В конце нажимаем +[F] и выбираем пункт Finish , соглашаясь на перезагрузку устройства.

На этом установка и первичная настройка системы завершена!

Следующая часть будет интересна тем, кто особо не знаком с Linux (как был и я).

Действо второе. Установка вебсервера и настройка Samba.

Не забывайте, что если Ваш Raspberry подключен в сеть, то можно использовать SSH доступ, что во много раз удобнее.

Перед началом работы обновим apt-get :
sudo apt-get update

Установка Web-сервера:
Устанавливаем MySQL:
sudo apt-get install mysql-server mysql-client
Когда запросит установить пароль для root – укажите любой пароль, который Вы запомните.

Устанавливаем Lighttpd:
sudo apt-get install lighttpd
С этого момента Rpi будет откликаться тестовой страницей, если набрать ее IP адрес в браузере любого компьютера в сети!

Устанавливаем PHP5:
sudo apt-get install php5-cgi

Теперь необходимо активировать PHP в настройках сервера. Открываем файл в редакторе nano:
sudo nano /etc/lighttpd/lighttpd.conf
Пункт server_modules должен выглядеть вот так:
server.modules = ("mod_access", "mod_fastcgi", "mod_alias", "mod_compress", "mod_redirect", "mod_rewrite",)
А в самый конец файла добавьте вот это:
fastcgi.server = (".php" => (("bin-path" => "/usr/bin/php5-cgi", "socket" => "/tmp/php.socket")))
Сохраняем, нажав +[X], [Y] и .

Осталось отредактировать файл конфигурации PHP5:
sudo nano /etc/php5/cgi/php.ini
Находим и раскоментируем (удаляем символ ";") строку cgi.fix_pathinfo = 1 . Сохраняем файл.

После всего проделанного, перезапускаем Lighttpd, выполнив команду:
sudo /etc/init.d/lighttpd restart

Установка и настройка Samba
Установим Samba:
sudo apt-get install samba samba-common-bin
Так как моя Rpi находится в домашней сети, я решил не устанавливать пароль на доступ к папкам, а просто настроил публичный шаринг для всей сети.
Для этого открываем файл smb.conf:
sudo nano /etc/samba/smb.conf
Вместо всего имеющегося содержимого пишем:
workgroup = WORKGROUP guest ok = yes netbios name = Raspberry security = share browseable = yes path = /var/www writeable = yes browseable = yes
Сохраняем. Перезапускаем Samba:
sudo /etc/init.d/samba restart
С этого момента в вашей сети появилось новое устройство RASPBERRY, которое имеет папку www.
В ней Вы можете создать любые файлы, которые будут доступны для просмотра во всей сети с помощью браузера.

Кстати! Гораздо удобнее управлять шарингом файлов и папок с помощь программы SWAT, которая предоставляет веб-интерфейс.
Установить ее очень просто:
sudo apt-get install swat
Панель управления SWAT будет расположена по адресу: http://:901
Логин и пароль соответствуют Вашей учетной записи (той, которой Вы пользуетесь для SSH)

Действо третье. Монтирование носителя файлов.

В качестве носителя я решил использовать обычную флэшку, которую подключил в один из USB портов Raspberry Pi. При желании можно подключить к Rpi и внешний жесткий диск, однако надо будет организовать для него отдельное питание, так как USB порты платы на такие нагрузки не рассчитаны и, в лучшем случае, жесткий диск просто не «заведется». Мне же объема флэшки (16Гб) должно вполне хватить.

Подключаем носитель и выполняем команду:
sudo fdisk -l
Команда покажет все устройства, которые подключены к нашему устройству. Ищем в списке нужное устройство по его объему. Например, у меня нужная строка выглядит вот так:
Disk /dev/sda: 16.0 GB, 16013852672 bytes
Искомый путь к устройству - /dev/sda , запомните его!

Запускаем fdisk для форматирования носителя:
sudo fdisk /dev/sda
Вначале удаляем существующие разделы командой d (выбираем нужные разделы цифрами), затем создаем новый с помощью команды n (все значения принимаем по умолчанию), сохраняем проделанную работу с помощью команды w .

Создаем файловую систему ext2 на носителе:
sudo mkfs -t ext2 /dev/sda1

Монтируем:
sudo mount -t ext2 /dev/sda1

Теперь необходимо обеспечить автоматическое монтирование носителя при каждой загрузке Raspbian. Для этого создаем папку:
sudo mkdir /mnt/flash
Отрываем файл настроек:
sudo nano /etc/fstab
и добавляем в него строку:
/dev/sda1 /mnt/flash ext2 defaults 0 0
Сохраняем и перезагружаем устройство. При загрузке носитель должен автоматически примонтироваться, что можно проверить командой:
df
Она выведет список примонтированных устройств с указанием точек их монтирования.

Кстати! Рекомендую установить также файловый менеджер Midnight Commander для работы с файлами через консоль:
sudo apt-get install mc
Если Вы пользуетесь Putty для работы с SSH, то для корректной работы MC Вам необходимо сделать настройку. В настройках Putty установите значение Remote character set в разделе Translation на «UTF-8»:

Действо четвертое. Установка Transmission и настройка закачек

Мы подобрались к цели данного топика - установке и настройке Torrent-клиента на нашем устройстве. Я остановил свой выбор на Transmission.

Устанавливаем Transmission:
sudo apt-get install transmission-daemon
Создаем директорию для закачек, для неоконченных закачек и для торрентов на подключенном носителе и даем права на запись:
sudo mkdir /mnt/flash/torrent sudo mkdir /mnt/flash/torrentfiles sudo mkdir /mnt/flash/incomplete sudo chmod 777 /mnt/flash/torrent sudo chmod 777 /mnt/flash/torrentfiles sudo chmod 777 /mnt/flash/incomplete
Редактируем настройки:
sudo nano /etc/transmission-daemon/settings.json
Здесь необходимо поменять на указанные значения следующие параметры:
"cache-size-mb": 2; "download-dir": "/mnt/flash/torrent", "incomplete-dir": "/mnt/flash/incomplete", "preallocation": 2, "rpc-password": "любой удобный вам пароль (при перезапуске демона будет зашифрован)", "rpc-username": "pi", "rpc-whitelist-enabled": false, "speed-limit-down": 3000, "speed-limit-up": 1000,
К сожалению на высоких скоростях скачивания и отдачи Raspberry начинает очень сильно тормозить, поэтому экспериментальным путем были выявлены те ограничения, которые Вы видите в настройках выше.

Перезапускаем Transmission командой:
sudo /etc/init.d/transmission-daemon restart
С этого момента у Вас установлен рабочий Torrent-клиент, веб-панель управления которым доступна по адресу: http://:9091, логин pi, пароль Вы установили в конфигурационном файле.

Не забудьте также добавить папку /mnt/flash/torrent в сетевую шару через Samba, чтобы скачанные файлы можно было смотреть на других устройствах, например, на Вашем медиаплеере:


Название фильма намеренно изменено, такого фильма не существует

Стоит отметить, что с отдачей файлов по сети Raspberry Pi, на мой взгляд, справляется отлично - при копировании файла с Raspberry Pi на компьютер, максимальная скорость достигла 7Мб/сек, что практически соответствует максимальной скорости чтения для использованной флэшки.

Эпилог

На этом моя статья заканчивается. Raspberry Pi обеспечила огромный толчок в моем изучении многих аспектов работы с OC Linux. В планах есть еще много задумок, касающихся Raspberry Pi, которые я постараюсь реализовать и описать в моих дальнейших статьях.

Буду рад замечаниям об ошибках от более опытных пользователей!




Top